
Recovering Maintainability Effort in the Presence of Global Data Usage∗

Jason W. A. Selby, Fraser P. Ruffell, Mark Giesbrecht and Michael W. Godfrey

David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

E-mail: {j2selby,fruffell,mwg,migod}@uwaterloo.ca

Abstract

As the useful life expectancy of software continues to

increase, the task of maintaining the source code has be-

come the dominant phase of the software life-cycle. In order

to improve the ability of software to age and successfully

evolve over time, it is important to identify system design

and programming practices which may result in increased

difficulty for maintaining the code base.

This study attempts to correlate the use of global vari-

ables to the maintainability of several widely deployed,

large scale software projects as they evolve over time. Two

measures are proposed to quantify the maintenance effort of

a project. The first measure compares the number of CVS

revisions for all source files in a release to the number of

revisions applied to files where the usage of global data is

most prevalent. A second degree of change is characterized

by contrasting the amount of source code that was changed

overall to the changes made to those source files which con-

tain the majority of the references to global data.

We observed a strong correlation between the number of

revisions to global variables references and lines of code

to global variable references. In all cases the correlation

between the number of revisions and global variable refer-

ences was stronger. This provides evidence that a strong re-

lationship exists between the usage of global variables and

both the number and scope of changes applied to files be-

tween product releases.

1. Introduction

The maintenance phase of the software life cycle has

been identified as being the dominant phase in terms of both

time and money [22]. Logically, one could point to the code

size, structure, age, complexity, development language and

the quality of the internal documentation as being the key

∗This research was supported in part by a Natural Sciences and Engi-
neering Research Council of Canada Strategic and Discovery grants.

indicators to the maintainability of a project [11]. However,

few empirical studies have examined the degree to which

these factors impact project maintainability. Evidence link-

ing many of these measures to an approximation of the

maintenance effort for a product has found that the correla-

tion is weak at best for many of these factors [10, 3, 7, 1, 9].

In order to improve the ability of software to age and suc-

cessfully evolve over time, it is important to identify system

design and programming practices which may result in in-

creased difficulty for maintaining the code base.

The decomposition of complex software systems into in-

dividual modules that group together related concepts and

tasks improves program comprehension and maintenance.

Ideally, modules are designed to exhibit a low degree of

coupling between other modules and a high degree within

the same module. However, to enable inter-module commu-

nication, some form of coupling must exist. Common cou-

pling is an undesirable form of coupling introduced when

modules reference the same global data [23] (and worse,

common coupling can be clandestine in the sense that it

can be introduced without explicit changes to a module;

see [15]). The many reasons why global variable usage is

considered harmful and should be avoided are well docu-

mented in [8, 12, 16, 23]. Examples of the unanticipated

side effects of global variable usage include hidden alias-

ing, namespace pollution, and even hampering code reuse

across projects.

We are interested in an empirical evaluation of how the

use of global variables may affect software evolution. In

this paper, we investigate two hypothesis concerning the im-

pact of global variables on maintainability:

H1 The use of global variables leads to code that requires

more maintenance.

H2 The use of global variables leads to code that is difficult

to comprehend.

We interpret these hypotheses more directly by aligning

the files (modules) of the system source code base by the

number of references to global variables. We then observe

Appears in Proc 14th Working Conference on Reverse Engineering (WCRE), pp. 60-69, 2007.



the maintenance effort for all files by tracking the number

and size of CVS commits. In particular, we test the follow-

ing two hypotheses:

H3 Files with a greater number of global variable refer-

ences change more often than files with fewer refer-

ences.

H4 Files with a greater number of global variable refer-

ences entail larger change deltas than files with fewer

references.

If we find support for H3, we take this as evidence that

H1 is true, and similarly if we find support for H4, we take

this as evidence that H2 is true. Using our approach, we an-

alyzed binaries from many popular open-source projects in-

cluding Emacs, GCC, GDB, Make, Vim, and PostgreSQL.

The remainder of the paper is organized in the following

manner. Section 2 details how our study was performed and

the projects that we examined. In Section 3 we report and

discuss the results that were obtained. Section 5 discusses

related research that has examined the usage of global data

and tools which have been developed to extract software

artifacts from CVS repositories. Finally, we conclude and

point out promising future directions based on this work in

Section 6.

2 Methodology

This section begins by describing our approach to track-

ing global variable usage and to measuring the maintain-

ability effort throughout the lifetime of a project. We then

give an overview of the systems that were examined in this

case study.

2.1 Extracting Global Variable Usage
Data - gv-finder

Our initial examination of the evolution of global data

throughout the lifetime of many open source projects re-

sulted in the creation of a linker-like tool capable of ex-

tracting global variable usage data from object files [14].

This tool, named gv-finder, intercepts relocatable Ex-

ecutable and Linking Format (ELF) object files (non-

stripped) at the linking stage of the compilation process,

analyzes the files and then passes the files on to the actual

linker. This process of collecting global variable informa-

tion fits seamlessly into the build process and enables the

analysis of evolutionary trends over entire product lifetimes.

Examination of the symbol and relocation tables in the

object files yields the names of all global variables, the

module in which each is defined, as well as the names of

all modules which reference each global. We classify each

reference as either true, static or external. A true global

variable contains a “global” entry in the symbol table and is

what one typically thinks of as a global variable – a user de-

fined variable storage which can be referenced in any mod-

ule. Usage of a true global variable is considered the most

dangerous due to the implicit coupling between any and all

modules which reference the same global symbol [23].

Static globals are marked as “local” in the symbol ta-

ble and therefore can be referenced anywhere inside the file

in which it is defined (for example, a C file scoped vari-

able). The use of a static global does not introduce clan-

destine coupling however, it does carry the other potential

drawbacks of using global variables. An external global

is denoted by an “undefined” symbol table entry and is a

symbol imported from a library (for example, printf()

or stdout from the C standard library). Differentiation

of external references between function calls and variable

references is performed by disassembling the instructions

which contain a reference to global data. If the instruction

is a jmp or call, then the usage is considered a function

otherwise, it is a variable. All of the data presented in this

paper is restricted to references to true global data. Further

details on gv-finder can be found in [14].

The integration of gv-finder into the linkage stage

enables us to bypass build environment issues and, more

importantly, to base our results solely upon the actual mod-

ules included in the final result. Our analysis is restricted to

the specific global variable references that are present in the

final executable and not those present in the entire source

code base. This eliminates the possibility of counting equiv-

alent global variable references multiple times that are not

present in the executable due to reasons such as conditional

inclusion of object files for specific machine architectures

and operating systems. The disadvantage of our link-time

analysis is that gv-finder requires a successful compila-

tion of the target executable. When analyzing older releases

(for example, we studied versions of Emacs over ten years

old), the build process often failed due to dependencies on

deprecated APIs (either library or OS). Rather than omit

releases which failed to build, we deployed four different

machines each recreating a specific and older build environ-

ment needed to satisfy various releases. The use of different

systems introduced a minimal amount of error, since all of

the machines are of the same architecture (x86, Linux), and

therefore are equally impacted by external factors affecting

the source code (such as conditional compilation).

2.2 Measuring Maintainability Effort

2.2.1 The Concurrent Versions System

We propose two measures to answer our postulates, both of

which harness information extracted from the Concurrent

Versions System (CVS), a popular source code management

system that tracks the various changes made to files and en-



ables concurrent development by many developers [2]. For

example, mining information from a CVS repository can

yield the number of revisions made to each file between

each product release. This then enables the comparison of

the number of CVS revisions for files in which the usage

of global data is most prevalent to those which have fewer

or no references. CVS is also able to report the number of

lines changed between two revisions of a file. In an attempt

to characterize the scope of the changes performed on a file,

we extract this information from the repository and compare

the total lines changed in files which have a large number of

references to global variables to other files in the system.

CVS uniquely identifies each version of a file through

the use of a revision number. The initial version of a file

is assigned the revision number 1.1 after which, each time

an update to the file is checked into the repository, a new

number is assigned to the file (for example, 1.2). CVS re-

vision numbers are internal to the system and have no re-

lationship with software releases. Instead, symbolic names

or tags are applied to the set of files which constitute a par-

ticular release of a system. Typically, all of the files in a

repository are assigned a new tag at every release point,

creating a CVS snapshot of the code which can be later

referenced. Unfortunately, not all releases of the various

projects that we examined were tagged. For releases which

were tagged, identifying the revision number of each file

was simple. However, if no release tag was present, we re-

sorted to a brute force approach which compared the actual

source code files contained in the release with each revision

of the file in the repository in an attempt to find a match. In

some cases (typically in early releases of a project when the

development process was not formalized) we were unable

to find a match for all of the files in a release and there-

fore limited our results to releases in which we were able to

match at least 80% of the source files which constitute the

binary executable examined.

Since the tagging of the source files at specific points

is managed by developers and not CVS, each project that

was examined had a different process in place to record the

merging of branches into the main line (if this was even

recorded at all in the repository). This posed a problem

in uniformly comparing the number of revisions made to

a file between two releases in the presence of branching.

To overcome this issue we recorded two different release

counts. The first is a conservative lower-bound approach

which does not count revisions along a branch between two

releases, thereby assuming that every branch is in fact a

dead branch. Our second method is an optimistic upper-

bound approach and counts every revision along a branch

and possibly even follows other branches that exist between

the two releases. For example, suppose that for some file the

revisions 1.4.2.1, 1.4.2.2, 1.4.2.3, and 1.5 exist between two

releases. If we identified that the first release included revi-

sion 1.4.2.1 and the later 1.5 then the lower-bound approach

would report that a single revision was made between re-

leases, while our upper-bound approach would find that

three revisions were applied (the lower- and upper-bound

approaches are later referred to as no-branch and branch

respectively, in the graphs presented in Section 3). Even

though the lower- and upper-bound approaches may respec-

tively under- or over-estimate the maintainability effort ap-

plied to a file, we found that in practice there was very little

difference between the two approaches.

2.3 Case Study

Using our approach, we analyzed the primary binaries

from many popular open-source projects, including Emacs,

GCC, GDB, Make, Vim, and PostgreSQL over a significant

span of their developments. Specifically, we examined the

following binaries (the number of releases of each binary

studied and the time span of the releases is also reported):

temacs The C core of the GNU Emacs editor which con-

tains a LISP interpreter and basic I/O handling (10 re-

leases, 14 years) [17].

cc1 The GNU C compiler (gcc) not including the libraries

which are linked with it (29 releases, 7 years) [20].

We included only the “hand-written” code and not the

extensive amount of automatically generated code that

is incorporated into cc1.

libbackend.a A library linked with gcc which per-

forms code analysis, optimization and generation (27

releases, 7 years) [20].

libgdb.so.a A library which exports the functionality

of GDB through an API (11 releases, 7 years) [19].

make The GNU utility which automates the compilation

process of source code (18 releases, 16 years) [18].

postgres The back-end server of the PostgreSQL rela-

tional database management system (10 releases, 11

years).

vim A popular open-source text editor modeled after VI (9

releases, 8 years).

3. Results

In order to visually compare the maintenance effort ap-

plied to the source files which contain many references to

global variables to those that do not, we graphed the average

number of revisions for all files along with the average revi-

sions for the files with 50% of the references to global vari-

ables, and for the files with 100% of the references to global



variables (the files composing 50% of the global variable

references were selected by sorting the files by the number

of references and choosing the first files which sum to 50%

of the total number of global variable references). Simi-

larly, we graphed the normalized average number of lines

changed in each release. If the presence of global variables

is in fact detrimental to the comprehension and modification

of code then we would expect a greater number of changes

would be required to maintain the files containing a large

number of references to global data compared to those files

which have fewer references (H3) (although previous re-

search [10] has differentiated between the various forms of

maintenance, we do not in this paper). Not only do we ex-

pect the presence of global variables to increase the number

of modifications required between two releases of a product,

but we would also expect that the usage of global variables

would increase the scope of the modifications, thereby in-

creasing the amount of source code that is changed (H4).

Table 1 reports the details of the initial and fi-

nal releases examined for each project. In an at-

tempt to limit the amount of graphs presented we se-

lected two representative projects and direct the interested

reader to http://plg.uwaterloo.ca/˜j2selby/

wcre07-results.html for the omitted graphs. The

results for cc1 (Figures 1 and 2) and postgres (Figures 3

and 4) illustrate our findings. It should be noted that no

significant difference between the upper and lower-bound

approaches was found for temacs, libbackend, make,

postgres and vim and therefore to improve the clarity of

the graphs, the upper-bound (branch) is omitted.

Every effort was made to include all releases, both ma-

jor and minor, of each project that we examined. How-

ever, some releases were either unanalyzable (due to ei-

ther failed compilation or difficulties in extracting the CVS

information) or omitted (a product release was issued but

the files that constitute the target that we examined were

unchanged). One special incident was encountered in

the analysis of vim and libbackend. The results for

these targets were skewed by the fact that both include a

version.c source file which has a disproportional num-

ber of revisions and lines changed in comparison to other

files (for libbackend this file simply stores the version

number of the release in a string and similarly for vim).

We therefore omitted this file from our analysis, however,

this was the only special circumstance.

As expected, examination of the graphs illustrates that at

almost all points both the number of revisions and the total

number of lines of code changed are higher for the subset of

files which contain a greater number of references to global

variables.

The only instances where the graphs deviate from this

pattern when contrasting lines of code changed to global

variables is for make and libbackend. In only one in-

stance did comparing the number of file revisions to global

variable usage not follow the trend which we envisioned,

namely vim. Further examination of these outlying points

provided some insight into why they were contrary to our

hypotheses. We found that for six of the seventeen releases

of make examined, the average number of file revisions for

all of the files containing a global variable reference was

higher than that of the files containing the top 50% of the

global variable references. At each of these six points a

small group of files (2–3) which are just outside of the 50%

are heavily modified. Interestingly, it is always the same

small set of files which requires substantial changes, pos-

sibly indicating their importance to the system or that they

require complex modification. Investigation of the last three

releases of vim discovered the existence of three files which

contain zero references to a global variable however, they

were changed slightly above the average number of revi-

sions applied to all files. We were unable to identify a sin-

gle cause for the greater number of lines of code changed

for the files containing at least one global variable reference

at the four spikes in libbackend. We plan to examine

this in greater depth in order to find the exact cause of this

behaviour.

In an attempt to track the evolution of global variable

usage throughout each of the projects we identified the top

five files and functions which contain the greatest number

of references to global variables in each release. Further-

more, we also examined the five globals that were the most

heavily referenced in each product release. libgdb exhib-

ited the least amount of fluctuation with the same four files,

functions and variables remaining in the set of top five over

all of the releases examined. temacs and vim were also

found to be quite stable when considering files and vari-

ables. In both, only one file was displaced from the top

five set while three variables remained heavily referenced in

temacs and four in vim. Greater variation was displayed

in the functions which contained the most global variable

references. In temacs only one function remained in the

top five, while two of five remained fixed in vim.

An interesting aspect of examining cc1 and

libbackend fromGCC is that most of the libbackend

code was split off from cc1 in release 3.0 of GCC. In
the creation of libbackend the five files containing

the greatest number of references to global variables

was extracted from cc1. After the split, the set of files

which relied most heavily on global variables remained

fairly fixed with three files remaining in the top five in

libbackend, and four of the five in cc1. The specific

global variables which were referenced most heavily in

cc1 were also the highest used in libbackend and

continued to be over all releases examined. There was

greater variability exhibited in cc1 with only two of the

top five global variables remaining in the set after the split.



Table 1. This table reports the initial and final releases examined for each binary as well as the number of thousands

of lines of source code (KLOC), the total number of files examined, and the number of files that contain the greatest

number of references to global variables that cumulatively account for 50%, and 100% of all global variable references

respectively.

Binary Release KLOC Total Files Total Files Total Files

50% refs 100% refs

temacs 19.25 109 57 10 53

21.4 198 67 9 61

cc1 2.95 232 67 10 59

4.1.0 10 21 3 16

libbackend 3.0 231 79 11 72

4.0.3 233 152 20 133

libgdb 5.0 144 104 12 91

6.5 217 208 15 45

make 6.63 13 16 3 15

6.81 24 24 3 16

postgres 1.02 142 236 18 177

8.13 355 358 26 292

vim 5.5 126 39 8 35

6.4 217 47 11 44

0

40

80

120

160

200

240

280

320

2.95-2.95.1

2.95.2-2.95.3

3.0-3.0.1

3.0.2-3.0.3

3.0.4-3.1

3.1.1-3.2

3.2.1-3.2.2

3.2.3-3.3

3.3.1-3.3.2

3.3.6-3.4.0

3.4.1-3.4.2

3.4.3-3.4.4

4.0.0-4.0.1

4.0.2-4.0.3

Releases

A
v
e
ra

g
e
 N

u
m

b
e
r 

o
f 

F
il
e
 R

e
v
is

io
n

s

Ave. File Revisions (No Br.) Ave. File Revisions (50% Refs, No Br.)
Ave. File Revisions (100% Refs, No Br.) Ave. File Revisions (Br.)
Ave. File Revisions (50% Refs, Br.) Ave. File Revisions (100% Refs, Br.) 

Figure 1. A comparison of the number of CVS file revisions for cc1 from GCC.



0

80

160

240

320

400

480

560

640

2.95-2.95.1

2.95.2-2.95.3

3.0-3.0.1

3.0.2-3.0.3

3.0.4-3.1

3.1.1-3.2

3.2.1-3.2.2

3.2.3-3.3

3.3.1-3.3.2

3.3.6-3.4.0

3.4.1-3.4.2

3.4.3-3.4.4

4.0.0-4.0.1

4.0.2-4.0.3

Releases

N
o

rm
a

li
z
e

d
 A

v
e

ra
g

e
 N

u
m

b
e

r 
o

f 
L

O
C

 C
h

a
n

g
e

d

Norm. Ave. LOC Changed (No Br.) Norm. Ave. LOC Changed (50% Refs, No Br.) 
Norm. Ave. LOC Changed (100% Refs, No Br.) Norm. Ave. LOC Changed (Br.)
Norm. Ave. LOC Changed (50% Refs, Br.) Norm. Ave. LOC Changed (100% Refs, Br.) 

Figure 2. A comparison of the normalized number of lines changed between releases of cc1 from GCC.

0

10

20

30

40

50

60

70

1.02-6.5 6.5-7.0 7.0-7.2 7.2-7.4 7.4-8.0.0 8.0.0-8.0.1 8.0.1-8.0.7 8.0.7-8.0.8 8.0.8-8.1.0 8.1.0-8.1.3

Releases

A
v

e
ra

g
e

 N
u

m
b

e
r 

o
f 

F
il

e
 R

e
v

is
io

n
s

Ave. File Revisions (No Br.) Ave. File Revisions (50% Refs, No Br.) Ave. File Revisions (100% Refs, No Br.) 

Figure 3. A comparison of the number of CVS file revisions for postgres.



0

50

100

150

200

250

300

350

1.02-6.5 6.5-7.0 7.0-7.2 7.2-7.4 7.4-8.0.0 8.0.0-8.0.1 8.0.1-8.0.7 8.0.7-8.0.8 8.0.8-8.1.0 8.1.0-8.1.3

Releases

N
o

rm
a
li
z
e
d

 A
v
e
ra

g
e
 N

u
m

b
e
r 

o
f 

L
O

C
 C

h
a
n

g
e
d

Norm. Ave. LOC Changed (No Br.) Norm. Ave. LOC Changed (50% Refs, No Br.) 

Norm. Ave. LOC Changed (100% Refs, No Br.) 

Figure 4. A comparison of the normalized number of lines changed between releases of postgres.

The set of top five files and functions remained relatively

constant in both make and postgres, with three remain-

ing in the top five over the entire lifetime that we examined.

However, the most heavily referenced global variables fluc-

tuated greatly, with none of the top five in the initial release

remaining in the top five set at the final release.

Although the graphs appear to substantiate the link be-

tween global variable usage and maintenance effort, further

evidence of the connection is required. Therefore, we cal-

culated the correlation coefficients (r values) of both mea-
sures. Calculation of an r value enables one to evaluate
the degree of correlation between two independent vari-

ables (specifically, revisions to global variables and total

lines changed to global variable references). Table 2 lists

the results of correlating the number of references to global

variables in a file to the number of revisions checked into

CVS (r(Rev, Ref)) and also for the total lines of code
changed to the number of references to global variables

(r(Lines,Ref)). The correlation coefficients in bold repre-
sent instances of close correlation between the two variables

for an acceptable error rate of 5% (α = 0.05), however, al-
most all were within a 1% error rate. Strong correlation

was found between both revisions to references and lines to

references. However, in all cases the correlation between

the number of revisions and global variable references was

closer. Although, this does not establish a cause and effect

relationship it does provide evidence that a strong relation-

ship exists between the usage of global variables and both

the number and scope of changes applied to files between

product releases. Furthermore, this provides support for our

hypotheses that files which contain a greater number of ref-

erences to global variables require more changes (H3), and

that these changes correspond to the modification of more

lines of code (H4). Extrapolation from H3 and H4 provides

evidence for the acceptance of our original hypotheses that

global variable usage both increases maintenance (H1), and

impairs comprehension (H2).

4. Threats to Validity

We should note the possible threats to the validity of our

study. As stated earlier, gv-finder requires a successful

compilation of the target executable in order to perform its

analysis. In the worst case this required commenting out the

offending lines of code (this, however, occurred fairly in-

frequently and only for small code segments). Additionally,

since the build environment has changed over the course

of the projects lifetime, we deployed four different ma-

chines, each recreating a specific and older build environ-

ment needed to satisfy various releases. The use of differ-

ent systems introduced a minimal amount of error, since all

of the machines are of the same architecture (x86, Linux),



Table 2. Results of correlating the number of re-

visions made to a file between releases with the

amount of references to global variables within the

file (r(Rev, Ref)), and for the total number of lines
changed in a file to its number of references to global

variables (r(Lines,Ref)). Correlation coefficients
in bold identify instances of a close correlation. N
is the number of pairs examined.

Binary N r(Rev, Ref) r(Lines, Ref)

temacs 520 0.27 0.16

cc1 642 0.16 0.09

libbackend 2822 0.12 0.08

libgdb 1563 0.44 0.39

make 337 0.42 0.31

vim 336 0.33 0.27

postgres 3156 0.24 0.22

and therefore are equally impacted by external factors af-

fecting the source code (such as conditional compilation).

Although this study examined a wide spectrum of software

products, all of the projects are open-source (even further al-

most all are developed by GNU) and therefore it is not clear

that our findings are applicable to proprietary software.

In posing our hypotheses we equated the presence of

global variables to increased maintenance costs in the form

of both the number, and the size of the changes performed.

However, other explanations are also possible. For exam-

ple, a file that changed frequently might be an architec-

tural “hotspot” for the addition of new features; thus fre-

quent changes may be a sign of successful growth rather

than poor design. Similarly, large deltas might mean that

the system’s design was sufficiently robust to allow for the

addition of new functionality. However, in the absence of

a way of automatically categorizing the intent of the indi-

vidual changes, we assume that most changes are due to

“fixing” rather than adding new features.

Finally, when examining the extent of the modifications

performed we normalized the delta values by the file size.

However, we did not normalize the number of changes to

the size of the file. In future work we plan on taking this

into account and normalizing the number of changes by the

amount of references to global variables per line of source

code.

5. Related Work

A tool similar to gv-finder is described in [21] which

uses the output of objdump to gather global symbol in-

formation. We chose to extract the data ourselves since we

already had an existing infrastructure for analyzing ELF ob-

ject files and also to improve efficiency.

Schach et al. [15] and later Yu et al. [23] examined

global variable usage in the Linux kernel. Their initial work

in [15] discovered that slightly more than half of all modules

examined suffered from some form of clandestine coupling.

The latter work in [23] continued the examination of clan-

destine coupling between kernel and non-kernel modules in

Linux. Applying definition-use analysis from compiler the-

ory [13], they identified all modules which defined (wrote) a

global variable and the others which referenced (read) each

global. They found that a large number of global variables

are defined in non-kernel modules and are referenced in a

kernel module. Given the lack of control over non-kernel

modules by kernel developers [15, 23] raised concerns over

the longevity of Linux, suggesting that maintainability is-

sues might arise given the common coupling found to exist

between kernel and non-kernel modules. However, the anal-

ysis based simply on the bulk number of definitions and uses

might be misleading. A more conclusive examination could

use definition-use chains [13]. Def-use chains connect uses

of a variable with their exact point of definition. Using a

code analysis tool to construct the def-use chains, we could

then identify the chains which are formed from the defini-

tion of a variable in a non-kernel module and then later used

in a kernel module.

The application of data mining to various artifacts of the

software development process to discover and direct evolu-

tion patterns has recently received extensive treatment, most

notably in [4, 6, 5, 24]. A common measure of software

change throughout much of this research is based upon the

number of CVS updates to a file (CVS release numbers) and

the total lines of code changed between releases.

Epping et al. [3] examined the connection between ver-

tical (specification) and horizontal (inter-module) design

complexities and maintainability (change) effort during the

acceptance and maintenance phases of two FORTRAN sys-

tems. Specifically, in regards to global variable usage they

examined the number of globals defined, the actual number

of globals referenced and maintainability, which is charac-

terized by change effort. The change effort metric was fur-

ther categorized as being isolation effort (identifying which

modules require modification), implementation effort (de-

velop, program and test the change) or locality (the number

of modules also requiring modification). Additionally, the

subset of all the tasks performed during the maintenance

phase which were bug fixes was identified. Results for all

changes (bug and enhancement) in the maintenance phase

indicated a correlation between change isolation and to both

the number of global variables and the amount of references

to globals. However, no link was found to exist in imple-

mentation effort or locality. When focusing strictly upon

maintenance phase bug fixes, both change isolation and im-

plementation effort were found to correlate to the usage of



global variables.

Harrison and Walton [7] applied a similar metric for

maintainability as in this study to a large number of small

legacy FORTRAN programsmining three years of CVS data.

The measures examined included lines of code and struc-

tural complexity (number of GOTO statements and cyclo-

matic complexity). Their findings indicated that lines of

code offered only minor insight into future maintenance

costs while no correlation between any of the structural

characteristics of the programs and maintenance costs were

found to exist. In contrast to [3] and [7], our analysis is

based upon a much larger data set encompassing many re-

leases of seven large systems, different measures of main-

tainability effort are used and also the differing semantics

of global data in FORTRAN compared to C.

Zimmermann et al. [24] applied data mining to CVS

repositories in order to determine various source compo-

nents (for example, files, functions and variables) which are

consistently changed in unison. Integration of their tool into

an IDE enabled them to suggest, with a reasonable degree

of accuracy, other parts of the code which might need to be

modified given a change to an element in which it has been

determined to have been changed together in the past. Simi-

lar work appeared in [6], however their work focused on the

higher-level granularity of classes.

It is commonly believed that by employing automatic

code generators and packaged libraries, the initial software

development costs could be decreased and this reduction of

effort would continue into the latter maintenance phase of a

project. Banker, Davis and Slaughter [1] examined how the

use of these affected software complexity, which in turn in-

creases the difficulty in performing maintenance tasks. This

perception was confirmed for the use of packaged libraries

for their sample (they examined the application of 29 per-

fective maintenance tasks to 23 COBOL programs). How-

ever, contrary to intuition, the use of automatic code gen-

erators actually lead to an increase in the amount of time

spent on maintenance tasks. This is an interesting result

in consideration of the projects that were examined in this

study. The data collected for cc1 was limited to the “hand

written” code rather than the extensive amount of automat-

ically generated code. Comparison of the usage of global

variables in the auto-generated code to that of hand-written

code and isolation of which part of the code is modified

could be another approach to investigating this contrary re-

sult.

6. Conclusions

In this paper we examined the link between the use of

global variables and software maintenance effort. Harness-

ing information extracted from CVS repositories, we ex-

amined this link for seven large open source projects. We

proposed two measures of software maintenance; specifi-

cally, the number of revisions made to a file and the total

lines of code changed between two releases. Examination

of the graphs illustrated that at almost all points both the

number of revisions and the total number of lines of code

changed were higher for the subset of files which contained

a greater number of references to global variables. Further

investigation using statistical analysis revealed a strong cor-

relation between both the number of revisions to global vari-

able references and lines of code changed to global variable

references. However, in all cases the correlation between

the number of revisions and global variable references was

stronger. Although this does not establish a cause and ef-

fect relationship, it does provide evidence that a strong re-

lationship exists between the usage of global variables and

both the number and scope of changes applied to file be-

tween product releases. Furthermore, the resulting correla-

tions offer support for our hypotheses that global variable

usage reduces maintainability and impairs comprehension.

These results suggest that the use of global variables should

be avoided when possible, thereby improving the ability of

software to age and successfully evolve over time.

References

[1] R. D. Banker, G. B. Davis, and S. A. Slaughter. Soft-

ware development practices, software complexity, and soft-

ware maintenance performance: a field study. Manage. Sci.,

44(4):433–450, 1998.
[2] P. Cederqvist. Version Management with CVS, 2005. Avail-

able at http://ximbiot.com/cvs/manual.
[3] A. Epping and C. Lott. Does software design complexity af-

fect maintenance effort? In Proceedings of the NASA/GSFC

19th Annual Software Engineering Workshop. Software En-

gineering Laboratory: NASA Goddard Space Flight Center,

1994.
[4] M. Fischer and H. Gall. Visualizing feature evolution of

large-scale software based on problem and modification re-

port data. Journal of Software Maintenance and Evolution:

Research and Practice, 16:385–403, November 2004.
[5] M. Fischer, J. Oberleitner, J. Ratzinger, and H. Gall. Mining

evolution data of a product family. SIGSOFT Softw. Eng.

Notes, 30(4):1–5, 2005.
[6] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history

data for detecting logical couplings. In IWPSE ’03: Pro-

ceedings of the 6th International Workshop on Principles of

Software Evolution, page 13, Washington, DC, USA, 2003.

IEEE Computer Society.
[7] M. S. Harrison and G. H. Walton. Identifying high main-

tenance legacy software. Journal of Software Maintenance,

14(6):429–446, 2002.
[8] A. Hunt and D. Thomas. The pragmatic programmer: from

journeyman to master. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 1999.
[9] C. F. Kemerer and S. A. Slaughter. Determinants of software

maintenance profiles: an empirical investigation. Journal of

Software Maintenance, 9(4):235–251, 1997.



[10] B. P. Lientz and E. B. Swanson. Software Maintenance Man-

agement. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1980.
[11] J. Martin and C. L. McClure. Software Maintenance: The

Problems and Its Solutions. Prentice Hall Professional Tech-

nical Reference, 1983.
[12] S. McConnell. Code complete: a practical handbook of soft-

ware construction. Microsoft Press, Redmond, WA, USA,

second edition, 2004.
[13] S. S. Muchnick. Advanced compiler design and implementa-

tion. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1997.
[14] F. P. Ruffell and J. W. A. Selby. The pervasiveness of

global data in evolving software systems. In L. Baresi and

R. Heckel, editors, FASE, volume 3922 of Lecture Notes in

Computer Science, pages 396–410. Springer, 2006.
[15] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and J. Offutt.

Quality impacts of clandestine common coupling. Software

Quality Control, 11(3):211–218, 2003.
[16] S. R. Schach and A. J. Offutt. On the non-maintainability of

open-source software position paper. 2nd Workshop on Open

Source Software Engineering, May 2002.
[17] R. M. Stallman. GNU EMACS Manual. Free Software Foun-

dation, 2000.
[18] R. M. Stallman, R. McGrath, and P. D. Smith. GNUMake: A

Program for Directing Recompilation. Free Software Foun-

dation, 2004.
[19] R. M. Stallman, R. Pesch, and S. Shebs. Debugging with

GDB:The GNU Source-Level Debugger. Free Software

Foundation, 2002.
[20] R. M. Stallman and the GCC Developer Community. Us-

ing GCC: The GNU Compiler Collection Reference Manual.

Free Software Foundation, 2003.
[21] H. S. Teoh and D. B. Wortman. Tools for extracting software

structure from compiled programs. In ICSM ’04: Proceed-

ings of the 20th IEEE International Conference on Software

Maintenance, page 526, Washington, DC, USA, 2004. IEEE

Computer Society.
[22] J. v. Vliet. Software Engineering – Principles and Practice.

JohnWiley & Sons, NewYork, NewYork, USA, 2nd edition,

2000.
[23] L. Yu and K. Chen. Categorization of common coupling

and its application to the maintainability of the Linux ker-

nel. IEEE Trans. Software Eng., 30(10):694–706, 2004.
[24] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. Min-

ing version histories to guide software changes. In ICSE ’04:

Proceedings of the 26th International Conference on Soft-

ware Engineering, pages 563–572, Washington, DC, USA,

2004. IEEE Computer Society.


