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Efficient algorithms are presented for factoring polynomials in the skew-polynomial

ring F[x; σ], a non-commutative generalization of the usual ring of polynomials F[x],
where F is a finite field and σ: F→ F is an automorphism (iterated Frobenius map). Ap-

plications include fast functional decomposition algorithms for a class of polynomials in
F[x] whose decompositions are “wild” and previously thought to be difficult to compute.

A central problem in computer algebra is factoring polynomials in F[x], where x is an
indeterminate and F ∼= Fq is a finite field with q = pl for some prime p ∈ N. In this paper
we present efficient factorization algorithms in a natural non-commutative generalization
of the ring F[x], the skew-polynomial ring F[x; σ], where σ: F→ F is a field automorphism.
F[x; σ] is the ring of all polynomials in F[x] under the usual component-wise addition,
and multiplication defined by xa = σ(a)x for any a ∈ F. Moreover, since F ∼= Fq is finite,
σ(a) = ap

ξ

for some ξ ∈ N. For example, if

f =x2 + a1x+ a0 ∈ F[x; σ],
g =x+ b0 ∈ F[x; σ],

then
f + g =x2 + (a1 + 1)x+ (a0 + b0),
fg =x3 + (a1 + σ2(b0))x2 + (a1σ(b0) + a0)x+ a0b0,

gf =x3 + (σ(a1) + b0)x2 + (a1b0 + σ(a0))x+ a0b0,

where σ2(a) = σ(σ(a)) for any a ∈ F. When σ = id, the identity automorphism on F,
the ring F[x; σ] is the usual ring of polynomials F[x] with xa = ax for all a ∈ F.

Skew-polynomial rings (over more general fields) have been studied since Ore (1933)
and complete treatments are found in Jacobson (1943), McDonald (1974), and Cohn
(1985). Computationally such polynomials have appeared in the context of uncoupling
and solving systems of linear differential and difference equations in closed form (see
Grigoriev (1990), Bronstein & Petkovšek (1994, 1996), Singer (1996)). Skew-polynomial
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rings most generally allow both an automorphism σ of F and a derivation δ : F → F, a
linear function such that δ(ab) = σ(a)δ(b) + δ(a)b for any a, b ∈ F. The skew-polynomial
ring F[x; σ, δ] is then defined such that xa = σ(a)x+ δ(a) for any a ∈ F. In this paper we
only consider the case when δ = 0 and F is finite.

Assume throughout this paper that F has size pω, where p is a prime and ω ≥ 1. For
any f, g ∈ F[x; σ] we find that deg(fg) = deg f + deg g, where deg: F[x; σ] \ {0} → N
is the usual polynomial degree function. This implies F[x; σ] is integral (i.e., zero is
the only zero divisor), and while not in general a unique factorization domain, it is a
principal left ideal ring endowed with a right Euclidean algorithm (see Section 1). As
in the commutative case, a non-zero f ∈ F[x; σ] is irreducible if whenever f = gh for
some non-zero g, h ∈ F[x; σ], then either deg g = 0 or deg h = 0. It follows that any
f ∈ F[x; σ] can be written as f = f1 · · ·fk, where f1, . . . , fk ∈ F[x; σ] are irreducible.
This factorization may not be unique, and adjacent factors may not be interchangeable.
Consider two factoring problems:

(i) The complete factorization problem: given any non-constant f ∈ F[x; σ], find irre-
ducible f1, . . . , fk ∈ F[x; σ] such that f = f1 · · ·fk.

(ii) The bi-factorization problem: given any non-constant f ∈ F[x; σ]\{0} and a positive
integer s < deg f , determine if there exist g, h ∈ F[x; σ] with f = gh and degh = s,
and if so, find such g and h.

In a commutative unique factorization domain these two notions of factorizations are
computationally equivalent by polynomial-time reductions. However, when we have nei-
ther commutativity nor unique factorization (as is the case with skew-polynomial rings),
this separation of the factoring problem into two cases more completely captures the full
complexity of factoring.

In Sections 2 and 3 we give a reduction from the complete factorization problem
for f ∈ F[x; σ] to the problem of determining whether a finite dimensional associative
algebra A over a finite field possesses any non-zero zero divisors, and if so, finding a pair
multiplying to zero. This reduction is deterministic and requires a number of operations
in F which is polynomial in deg f and ω log p.

The bi-factorization problem in F[x; σ] is reduced in Section 4 to the complete factor-
ization problem: given f ∈ F[x; σ] and s < n = deg f , we can determine if there exist
g, h ∈ F[x; σ] such that f = gh and deg h = s with (nω logp)O(1) operations in F plus
the cost of completely factoring polynomials in F[x; σ] of total degree O(n). This yields
algorithms for bi-factorization which require (nωp)O(1) operations in F, and Las Vegas
type probabilistic algorithms which require (nω log p)O(1) operations in F.

In Section 5 we present a fast new algorithm for finding zero divisors in any finite
associative algebra. This algorithm is probabilistic of the Las Vegas type and, for an
algebra A of dimension ν over Fq , requires O(ν) multiplications in A plus about O(ν3 +
ν2 log q) operations in Fq to determine whether A is a field or to produce a zero divisor
in A. This yields algorithms for complete and bi-factorization in skew-polynomial rings
which require n4 · (ω log p logn)O(1) operations in F.

A paper containing some of this work (with many of the proofs omitted), first appeared
in the LATIN’92 conference (Giesbrecht, 1992).

Applications of Skew-Polynomial Rings

An application of skew-polynomials is to the problem of functionally decomposing a
class of polynomials which had previously defied polynomial-time decomposition algo-
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rithms. Algorithms which functionally decompose polynomials have received considerable
attention lately. Given f ∈ F[λ] in an indeterminate λ, the problem is to determine poly-
nomials g, h ∈ F[λ] of given degree such that f = g ◦ h = g(h(λ)). Kozen & Landau
(1989) and von zur Gathen et al. (1987) present polynomial-time (in deg f) solutions to
this problem in the “tame” case, when the characteristic p of F does not divide deg g (see
also von zur Gathen (1990a)). In the “wild” case, when p | deg g, no general algorithm is
known, though partial solutions are given in von zur Gathen (1990b) and Zippel (1991).
A very wild type of polynomial is the set of linearized polynomials over F, those of the
form

∑
0≤i≤n aiλ

pi (where a0, . . . , an ∈ F). It turns out that whenever g, h ∈ F[λ] are
such that f = g ◦ h then deg g = pr for some r ∈ N, i.e., all functional decomposi-
tions of linearized polynomials are wild. In Section 6 we present very fast algorithms for
the functional decomposition of linearized polynomials, which run in time polynomial in
log deg f .

Representing Skew-Polynomial Rings

We now characterize explicitly the skew-polynomial ring F[x; σ] over a finite field F.
The automorphism σ: F → F fixes some maximum subfield K of F, and if [K : Fp] = η
then K ∼= Fq where q = pη . The only automorphisms of F fixing K are iterates of the
Frobenius map τ : F → F of F/K, defined by τ(a) = aq for all a ∈ F. Thus σ must have
the form σ(a) = τκ(a) = aq

κ

for all a ∈ F, where κ < µ = [F : K]. Furthermore, since K
is the largest subfield of F fixed by σ, gcd(µ, κ) = 1.

Part of the input to our algorithms is some auxiliary information to describe F[x; σ]: a
prime p, the integers η and µ such that [F : K] = µ and [K : Fp ] = η, and a description of
the fields K and F. The description of K consists of a polynomial ΓK ∈ Fp[x] of degree η
which is irreducible over Fp. We identify K = Fp [x]/(ΓK) ∼= Fq , so that K has basis BK =
{1,ΘK,Θ2

K, . . . ,Θ
η−1
K } as an Fp-vector space, where ΘK = x mod ΓK and K = Fp[ΘK].

The field F is described as an extension of K by a polynomial ΓF ∈ K[x] of degree µ, which
is irreducible over K. Identify F = K[x]/(ΓF), so F has basis BF = {1,ΘF,Θ2

F, . . . ,Θ
µ−1
F }

as a K-vector space, where ΘF = x mod ΓF and F = K[ΘF]. We also require the element
Θq

F = τ(ΘF), represented with respect to this basis. This will allow us to make use of
von zur Gathen & Shoup’s (1992) algorithm to quickly compute all conjugates of an
element in F over K (see below). Such an element can be computed with log q operations
in K by repeated squaring, though for convenience we consider it pre-computation and
do not count this cost in algorithms using this technique. The cost of computing τ(ΘF) is
dominated by other costs in our algorithms for both complete and bi-factorization. Note
that F[x; σ] is an associative K-algebra with basis {Θi

Fx
j | 0 ≤ i < µ, j ≥ 0}. It is not in

general an F-algebra, since F is not, in general, in the centre of F[x; σ].
Input size is counted in terms of elements in K, and cost in terms of operations in

K. For convenience we sometimes use the “soft O” notation in summarizing results: for
any g, h:R>0 → R>0, g = O (̃h) if and only if there exists a constant k > 0 such that
g = O(h(logh)k). Multiplication in F can be done with O(M(µ)) operations in K, where
M(µ) = µ2 using the usual “school” method, or M(µ) = µ logµ log logµ with the al-
gorithms of Schönhage & Strassen (1971) and Schönhage (1977), or Cantor & Kaltofen
(1991). For convenience we assume throughout the paper that M(µ) = Ω(µ logµ). We
can also compute a−1 for any a ∈ F with O(M(µ) logµ) operations in K. Using an algo-
rithm of von zur Gathen & Shoup (1992), for any a ∈ F we can compute all conjugates
a, τ(a), τ2(a), . . . , τµ−1(a) of a with O(µM(µ) logµ) operations in K, assuming that we
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have computed τ(ΘF) as described above. Two n × n matrices over any field L can be
multiplied with O(MM(n)) operations in L, where MM(n) = n3 using the standard algo-
rithm, or MM(n) = n2.376 with the asymptotically best known algorithm of Coppersmith
& Winograd (1990). With O(MM(n)) operations in L we can also solve a system of n
linear equations in n unknowns over L.

1. Basic Operations in F[x; σ]

A brief development of the theory of skew-polynomial rings follows, along with algo-
rithms implementing aspects of this theory when appropriate. We begin with an easy
observation on the costs of addition and multiplication in F[x; σ]. Let

f =
∑

0≤i≤n
aix

i, g =
∑

0≤j≤r
bjx

j, (1.1)

with a0, . . . , an, b0, . . . , br ∈ F and an, br 6= 0. Without loss of generality we can assume
that r ≤ n. Obviously f + g can be computed with O(n) operations in F or O(nµ)
operations in K. To compute fg we expand

fg =
∑

0≤i≤n

∑
0≤j≤r

aix
ibjx

j =
∑

0≤i≤n

∑
0≤j≤r

aiσ
i(bj)xi+j.

Compute σi(bj) for 0 ≤ i < µ and 0 ≤ j ≤ r with O(rµM(µ) logµ) operations in K, as
described in the introduction. Next compute the rn products in F to obtain fg.

Lemma 1.1. Given f, g ∈ F[x; σ], each of degree n and r respectively, we can compute
f+g with O(nµ) operations in K, and fg with O(rnM(µ)+rµM(µ) logµ) or O (̃rnµ+rµ2)
operations in K.

The skew-polynomial ring F[x; σ] has a right division algorithm and a (right) Euclidean
algorithm. The right division algorithm is analogous to the usual one in F[x]. Let f, g ∈
F[x; σ] be as in (1.1) with g 6= 0: we want to find Q,R ∈ F[x; σ] such that f = Qg+R and
degR < deg g or R = 0. The algorithm is trivial if n < r — we know Q = 0 and R = f
— so assume n ≥ r. Let f(n) = f , and for n ≥ i ≥ r define h(i) = (āi/σi−r(br)) · xi−r,
where āi is the coefficient of xi in f(i). Next define f(i−1) = f(i) − h(i)g ∈ F[x; σ],
whence f(i) = h(i)g + f(i−1) and deg f(i−1) < deg f(i). Computing h(n), f(n−1), h(n−1),
f(n−2), . . . , h(r), f(r−1) in sequence, we get f = Qg+R where Q = h(n)+h(n−1)+· · ·+h(r)

and R = f(r−1), with degR < deg g or R = 0. The Q and R obtained in the division
algorithm are unique, as they are in F[x].

Lemma 1.2. If f, g ∈ F[x; σ] with n = deg f, r = deg g, and g 6= 0, then computing
Q,R ∈ F[x; σ] such that f = Qg + R and degR < deg g or R = 0 requires O(r(n −
r)M(µ) + rµM(µ) logµ) or O (̃r(n − r)µ+ rµ2) operations in K when r ≤ n.

Proof. Start by computing σi(bj) for 0 ≤ i < µ and 0 ≤ j ≤ r. This requires
O(rµM(µ) logµ) operations in K. At stage i, computing f(i) − h(i)g requires r opera-
tions in F. There are at most n− r stages requiring a total of O(r(n− r)) operations in
F or O(r(n− r)M(µ)) operations in K. 2
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Using the above division algorithm, modular equivalence can be meaningfully defined:
Given f1, f2, g ∈ F[x; σ], we write f1 ≡ f2 mod g if and only if there exists a Q ∈ F[x; σ]
such that f1 − f2 = Qg. It is left as an exercise to the reader that “equivalence modulo
h” is indeed an equivalence relation in F[x; σ].

Ore (1933) proved the main structure theorem on complete factorizations in F[x; σ],
a somewhat simplified version of which is stated below (this can also be proven as a
consequence of the Jordan-Holder theorem — see Jacobson (1943)).

Theorem 1.3. (Ore) If f ∈ F[x; σ] factors completely as

f = f1f2 · · ·fk
= g1g2 · · ·gt,

where f1, . . . , fk, . . . , g1, . . . , gt ∈ F[x; σ] are irreducible, then k = t and there exists a
permutation ϕ of {1, . . . , k} such that for 1 ≤ i ≤ k, deg fi = deg gϕ(i).

2. Common Multiples and Divisors

From the existence of a right division algorithm in F[x; σ] follows the existence of a
right Euclidean scheme in the usual way (see van der Waerden (1970), pp. 55). This
implies the existence of greatest common right divisors and least common left multiples
(defined below), the non-commutative analogues of greatest common divisors and least
common multiples in a commutative Euclidean domain. It also gives a fast algorithm for
computing these.

The Greatest Common Right Divisor (GCRD) of f1 and f2, denoted gcrd(f1, f2),
is the unique monic polynomial w ∈ F[x; σ] of highest degree such that there exist
u1, u2 ∈ F[x; σ] with f1 = u1w and f2 = u2w. It’s existence and uniqueness is easily
derived from the algorithm presented below, and is demonstrated by Ore (1933). In the
usual polynomial ring F[x] = F[x; id] we have gcrd(f1, f2) = gcd(f1, f2), the usual greatest
common divisor of f1, f2 ∈ F[x].

The existence of a right Euclidean algorithm implies F[x; σ] is a principal left ideal
ring, that is, each left ideal is generated by a single polynomial in F[x; σ]. If F[x; σ]f and
F[x; σ]g are the two left ideals generated by f, g ∈ F[x; σ] respectively, then the ideal
F[x; σ] gcrd(f, g) = F[x; σ]f + F[x; σ]g (see Jacobson (1943), Chapter 3).

The set F[x; σ]f ∩ F[x; σ]g is also a left ideal, consisting of all polynomials in F[x; σ]
which are left multiples of both f and g. Since this left ideal is principal, it is generated
by a unique monic h = lclm(f, g) ∈ F[x; σ], the Least Common Left Multiple (LCLM) of
f and g. The LCLM h is the unique monic polynomial in F[x; σ] of lowest degree such
that there exist u1, u2 ∈ F[x; σ] with h = u1f and h = u2g. In F[x] = F[x; id] the LCLM
is simply the usual least common multiple in F[x].

Assume f1, f2 ∈ F[x; σ] \ {0} with δ1 := deg f1, δ2 := deg f2 and δ1 ≥ δ2. We can
compute an extended Euclidean scheme in F[x; σ] much as we can in F[x]. For 3 ≤ i ≤
k + 1, let fi, qi ∈ F[x; σ] be the quotient and remainder of fi−2 divided by fi−1,

fi = fi−2 − qifi−1, δi := deg(fi), δi−1 > δi for all i with 3 ≤ i ≤ k, fk+1 = 0.

Analogous to the commutative case we have fk = gcrd(f1, f2). Furthermore, let si, ti ∈
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F[x; σ] be the multipliers in the extended Euclidean scheme, i.e.,

s1 := 1; s2 := 0; si := si−2 − qisi−1;
t1 := 0; t2 := 1; ti := ti−2 − qiti−1;

sif1 + tif2 = fi,

for all i with 3 ≤ i ≤ k+ 1. It follows by an easy induction on i that for all 3 ≤ i ≤ k+ 1
deg(si) = δ2 − δi−1 and deg(ti) = δ1 − δi−1.

To obtain the LCLM, note that sk+1f1 + tk+1f2 = fk+1 = 0, hence v = sk+1f1 =
−tk+1f2 is a common multiple of f1 and f2. We see that deg v = (δ2 − δk) + δ1 =
deg f1 +deg f2−deg gcrd(f1, f2), which Ore (1933) shows to be the degree of the LCLM.
It must therefore be the case that v = lclm(f1, f2).

A similar presentation of the extended Euclidean scheme (and computation of GCRD’s
and LCLM’s) in skew-polynomial rings may be found in Bronstein & Petkovšek (1994),
Section 1.

Lemma 2.1. If f1, f2 ∈ F[x; σ] with n = deg f1 ≥ deg f2, then we can compute gcrd(f1, f2)
and lclm(f1, f2) with O(n2M(µ)µ logµ) or O (̃n2µ2) operations in K.

Proof. For 3 ≤ i ≤ k+1 we can compute fi withO((δi−2−δi−1)M(µ)+δi−1M(µ)µ logµ)
operations in K. The cost to compute all the fi’s is therefore∑

3≤i≤k
(δi−2 − δi−1) · δi−1M(µ)+δi−1M(µ)µ logµ

≤
∑

3≤i≤k
(δ2
i−2 − δ2

i−1)M(µ) +
∑

3≤i≤k
δi−1 M(µ)µ logµ

≤ δ2
1 M(µ) + δ2

2 M(µ)µ logµ.
We can compute all si, for 1 ≤ i ≤ k + 1, with∑

3≤i≤k
(δ2 − δi−3)µ+ (δi−2−δi−1)(δ2 − δi−2)M(µ) + (δ2 − δi−2)µM(µ) logµ

≤ δ2
2µ+ δ2

2µM(µ) logµ+ δ1δ2M(µ).

All ti’s, for 1 ≤ i ≤ k + 1 can be computed with similar cost. Therefore, in total, our
algorithm requires O(n2µM(µ) logµ) operations in K. 2

A polynomial can also be “decomposed” with respect to LCLM’s as follows. Two
polynomials f1, f2 ∈ F[x; σ] are co-prime if gcrd(f1, f2) = 1. Extending this to more
polynomials, say f1, . . . , fl ∈ F[x; σ] are mutually co-prime if

gcrd(fi, lclm(f1, . . . , fi−1, fi+1, . . . , fl)) = 1

for 1 ≤ i ≤ l, i.e., each fi is co-prime to the LCLM of the remaining components. This is
stronger than the usual pairwise co-primality often seen for F[x], though the two notions
are equivalent in a commutative domain. An LCLM-decomposition of f ∈ F[x; σ] is a list
(f1, . . . , fl) ∈ F[x; σ]l of mutually co-prime polynomials such that f = lclm(f1, . . . , fl); f
is LCLM-indecomposable if it admits no non-trivial LCLM-decompositions. If f1, . . . , fl
are also all irreducible if F[x; σ], then f is said to be completely irreducible (see Ore
(1933) – he refers to “LCLM-indecomposable” polynomials as simply “indecomposable”
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polynomials). The following result of Ore (1933) captures the uniqueness of polynomial
decompositions in any skew-polynomial ring.

Theorem 2.2. (Ore, 1933) Let f ∈ F[x; σ] be monic such that f = lclm(f1, . . . , fl),
where f1, . . . , fl ∈ F[x; σ] are LCLM-indecomposable and mutually co-prime.

(i) If f = lclm(g1, . . . , gm), where g1, . . . , gm ∈ F[x; σ] are LCLM-indecomposable and
mutually co-prime, then l = m and there exists a permutation ϕ of {1, . . . , l} such
that deg fi = deg gϕ(i) for 1 ≤ i ≤ l.

(ii) If, for 1 ≤ i ≤ l, fi = fi,1fi,2 · · ·fi,si , where each fi,j ∈ F[x; σ] is irreducible for
1 ≤ j ≤ si, and f = h1h2 · · ·hk, where h1, . . . , hk ∈ F[x; σ] are irreducible, then
there exists a bijection ϕ from {1, . . . , k} to {(i, j) | 1 ≤ i ≤ l, 1 ≤ j ≤ si} such that
deg he = deg fϕ(e) for 1 ≤ e ≤ k.

3. Finding Complete Factorizations

To completely factor any non-constant f ∈ F[x; σ], we construct a small finite asso-
ciative algebra A over K with the property that each non-zero zero divisor in A yields
a non-zero factorization of f . An associative algebra A over K is a K-vector space with
a product ×:A → A such that A is a ring under + and × (we write ab for a × b for
a, b ∈ A). A candidate for A is the quotient F[x; σ]/F[x;σ]f , but it is in general only a
F[x; σ]-module, and not an algebra. It is only an algebra when F[x; σ]f is a two-sided ideal
in F[x; σ]. To regain some of the desirable structure of finite algebras, we follow Cohn
(1985), Section 0.7, and introduce the concept of an eigenring. For notational brevity,
let S = F[x; σ] throughout this section. Define I(Sf) = {u ∈ S | fu ≡ 0 mod f}, the
idealizer of Sf . The set I(Sf) is the largest subalgebra of S in which Sf is a two-sided
ideal. The eigenring E(Sf) of Sf is defined as the quotient E(Sf) = I(Sf)/Sf , a finite
K-algebra since S is an K-algebra and Sf a two-sided ideal in I(Sf). If deg f = n, the
eigenring E(Sf) is isomorphic to the K-algebra

A = {u ∈ I(Sf) | deg u < n} = {u ∈ S | fu ≡ 0 mod f and deg u < n},

under addition in S and multiplication in S reduced modulo f (i.e., each element in
E(Sf) is represented by its unique residue modulo f). The key facts about E(Sf),
which we shall prove in the sequel, are that it is a field if and only if f is irreducible, and
that non-zero zero divisors in E(Sf) allow us to compute non-zero factors of f efficiently.

To prove the desired properties of the eigenring we need to characterize the centre C of
S, and the two-sided ideals in S. McDonald (1974), pages 24-25, shows C = K[xµ; σ] ⊆ S,
the polynomials in xµ with coefficients in K. This follows since the subset of S commuting
with ΘF is F[xµ], while the subset of S commuting with x is K[x]. The elements ΘF and
x generate S as a K-algebra, whence K[xµ] = F[xµ] ∩ K[x] is the centre of S. Letting
y = xµ, we identify C = K[y], the usual ring of polynomials over K in the indeterminate
y, so in particular, C is a commutative unique factorization domain. The degree (in x) of
any element in C will always be a multiple of µ. Clearly, any f̂ ∈ K[y] generates a two-
sided ideal Sf̂ . In fact, the two-sided ideals in S are exactly those of the form S(f̂xs)
for some f̂ ∈ K[y] and s ∈ N. The maximal (non-zero) two-sided ideals in S are Sx, and
Sû, where û ∈ K[y] \{y} is irreducible as a polynomial in y. An important characteristic
of the left ideal Sf is the largest two sided ideal o it contains, called the bound for Sf
(see Jacobson (1943), Chapter 3, Sections 5 and 6). Closely related to the bound for Sf
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is the minimal central left multiple f̂ ∈ K[y] of f , the polynomial in K[y] of minimal
degree which is a left multiple of f . Such a polynomial always exists (we show how to
construct it efficiently in Lemma 4.2), and if gcrd(f, x) = 1 then o = Sf̂ . More generally,
if f = lclm(f0, x

s) for some s ≥ 0 and some f0 ∈ S co-prime with x and with minimal
central left multiple f̂0 ∈ K[y], then o = S · f̂0x

s.
We recall some basic facts about associative algebras before we proceed. An algebra

A is simple if its only two-sided ideals are {0} and A, and is semi-simple if it is a direct
sum of simple algebras. Next, we summarize some well known facts about finite simple
algebras (see for example Lang (1984), Chapter 17).

Fact 3.1. Let A be a finite, simple algebra of dimension d over K, and let L be a left
ideal in A.

(i) A is isomorphic to Em×m, where m ≥ 1, E is the centre of A and a finite extension
field of degree r over K, and d = m2r.

(ii) There exist minimal left ideals L1, . . . , Lm ⊆ A and l ≤ m such that L = L1⊕· · ·⊕Ll
and A = L1⊕ · · ·⊕Lm. Furthermore, each minimal left ideal has dimension rm as
an K-vector space.

(iii) There exist maximal left ideals M1, . . . ,Mm ⊆ A and k ≤ m such that L = M1 ∩
· · ·∩Mk, M1 ∩ · · ·∩Mm = {0}, and Mi+(M1 ∩ · · ·∩Mi−1 ∩Mi+1 ∩ · · ·∩Mm) = A

for 1 ≤ i ≤ m. Furthermore, each maximal left ideal has dimension rm2 − rm as a
K-vector space.

A K-algebra of particular interest is A = S/Sf̂ , where f̂ ∈ K[y] \ {y} is irreducible as
a polynomial in y. Since Sf̂ is a maximal two-sided ideal in S, A is a simple algebra.
From S, A inherits the property of being a left principal ideal ring. Suppose g1 + Sf̂
and g2 +Sf̂ are in some left ideal J ⊆ A, where g1, g2 ∈ S. Then there exist h1, h2 ∈ S
such that h1g1 + h2g2 = gcrd(g1, g2) and

(h1 +Sf̂)(g1 +Sf̂) + (h2 +Sf̂ )(g2 +Sf̂) = gcrd(g1, g2) +Sf̂ ∈ J.

Thus, left ideals are closed under GCRD’s (of their pre-images in S) and each left ideal
J in A is generated by some unique g + Sf̂ , where g ∈ S is monic of minimal degree.
Since gcrd(g, f̂) + Sf̂ ∈ J and g has minimal degree, g is a right factor of f̂ . We call
such a g the minimal modular generator of J . The following lemma relates left ideals in
A with the left ideals in S generated by their minimal modular generators.

Lemma 3.2. Let J1, J2 ⊆ A be non-zero left ideals in A, with respective minimal modular
generators g1, g2 ∈ S.

(i) The left ideal J3 = J1 ∩ J2 in A has minimal modular generator g3 = lclm(g1, g2)
if J3 6= {0}. Otherwise J3 = {0} and f̂ = lclm(g1, g2).

(ii) The left ideal J4 = J1 + J2 in A has minimal modular generator g4 = gcrd(g1, g2).

Proof. To prove (i) we note that lclm(g1, g2) + Sf̂ ∈ J3, so we must show that
lclm(g1, g2) is the minimal modular generator of J3. Suppose h + Sf̂ ∈ J3 for some
h ∈ S. Then h ≡ w1g1 ≡ w2g2 mod f̂ for some w1, w2 ∈ S. It follows that since
both g1 and g2 are right factors of f̂ , they are also both right factors of h as well. Thus
h ≡ 0 mod lclm(g1, g2), so the pre-image in S of every element in J3 is in S lclm(g1, g2). If
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lclm(g1, g2) 6= f̂ then lclm(g1, g2) is the minimal modular generator of J3. If lclm(g1, g2) =
f̂ then J3 = {0}.

To prove (ii), we note

J1 + J2 = (Sg1 mod Sf̂ ) + (Sg2 mod Sf̂) = (Sg1 +Sg2) mod f̂ = Su mod Sf̂ ,

where u = gcrd(g1, g2). Thus u + Sf̂ generates J4 and f̂ ≡ 0 mod u since both g1 and
g2 are right factors of f̂ . For any h ∈ S such that h+Sf̂ ∈ J4, h ≡ Qu mod f̂ for some
Q ∈ S, and since u is a right factor of f̂ and Qu, u is a right factor of h. It follows that
u is the polynomial in S of smallest degree such that u + S generates J4, that is, u is
the minimal modular generator of J4. 2

The next theorem characterizes the LCLM-decompositions of those f ∈ S whose
minimal central left multiples are irreducible as polynomials in y.

Theorem 3.3. For f ∈ S, the eigenring E(Sf) is a (finite) field if and only if f is
irreducible in S.

Proof. If f is irreducible McDonald (1974), Exercise 2.24, shows E(Sf) is a finite field.
We now show that if f is reducible then E(Sf) possesses zero divisors. If f is reducible

and LCLM-decomposable, then f = lclm(f1, f2), where f1, f2 ∈ S\F and g1f1 +g2f2 = 1
for some g1, g2 ∈ S. Note that if h ≡ 0 mod f1 and h ≡ 0 mod f2 for any h ∈ S, then
h ≡ 0 mod f . We now construct a pair of non-zero zero divisors in E(Sf). Let h1 = g1f1

and h2 = g2f2, neither of which are equivalent to zero modulo f . Then

fh1 = f(1 − g2f2) ≡ 0 mod f2 and fh1 = fg1f1 ≡ 0 mod f1,

so fh1 ≡ 0 mod f . Similarly fh2 ≡ 0 mod f , so h1, h2 ∈ I(Sf). Moreover, h1h2 =
h1−h2

1 = h2−h2
2, which is equivalent to zero modulo both f1 and f2, and hence modulo

f . Thus (h1 + Sf)(h2 + Sf) ≡ 0 mod f and h1 + Sf and h2 + Sf are non-zero zero
divisors in E(Sf).

If f is reducible but indecomposable then Jacobson (1943), Theorem 3.13, shows f̂ =
ĝe ∈ K[y] is the minimal central left multiple of f , where ĝ ∈ K[y] is irreducible as a
polynomial in y and e ≥ 1. If ĝ = y then f = xd for some d ≥ 2, and Sf is a two-sided
ideal in S. Thus E(S/Sf) = S/Sf and x + Sf is a zero divisor in E(S/Sf). Now
assume that ĝ 6= y. The set f + Sf̂ generates a left ideal L in A = S/Sf̂ . We now
show that e > 1 by contradiction. Suppose that e = 1 so that A is simple. Then by
Fact 3.1, there exist maximal left ideals M1, . . . ,Mm ⊆ A such that M1 ∩ · · · ∩Mk = L
and Mi + (M1 ∩ · · · ∩Mi−1 ∩Mi+1 ∩ · · · ∩Mm) = A. Since f is reducible we know L is
not maximal so k ≥ 2. Each maximal left ideal Mi has an irreducible minimal modular
generator hi ∈ S, for 1 ≤ i ≤ k. By Lemma 3.2, f = lclm(h1, . . . , hk). Moreover, since
Mi + (M1 ∩ · · · ∩Mi−1 ∩Mi+1 ∩ · · · ∩Mm) = A for 1 ≤ i ≤ m, we know Mi + (M1 ∩
· · · ∩ Mi−1 ∩ Mi+1 ∩ · · · ∩Mk) = A for 1 ≤ i ≤ k, and by Lemma 3.2 it follows that
gcrd(hi, lclm(h1, . . . , hi−1, hi+1, . . . , hk)) = 1 for 1 ≤ i ≤ k. Thus, h1, . . . , hk are pairwise
co-prime. In particular, since k ≥ 2, f is decomposable, which is a contradiction. Assume
then that e ≥ 2. Note that ĝ ∈ I(Sf) and ĝ 6≡ 0 mod f , so the image ĝ+Sf ∈ E(Sf) of ĝ
in E(Sf) is non-zero. Since ĝe ≡ 0 mod f , we see that (ĝ+Sf)(ĝe−1 +Sf) ≡ 0 mod Sf
and E(Sf) is not a field. 2

Next we show that left zero divisors in A ∼= E(Sf) allow us to split f .
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Theorem 3.4. For f ∈ S, if u, v ∈ A \ {0} with uv ≡ 0 mod f, then gcrd(f, u) 6= 1.

Proof. Suppose gcrd(f, u) = 1. There exist s, t ∈ S such that sf + tu = 1 and sfv +
tuv = v. But fv ≡ 0 mod f and uv ≡ 0 mod f so v ≡ 0 mod f , a contradiction. 2

The problem of finding complete factorizations in F[x; σ] is reduced to the problem of
finding zero divisors in finite algebras by the following algorithm.

Algorithm: Complete-Factorization
Input: f ∈ F[x; σ] of degree n;
Output: f1, . . . , fk ∈ F[x; σ] irreducible, with f = f1 · · ·fk.

(1) Compute a basis for A (above) as a K-algebra;
(2) If A is a field Then Return f ;

Else
(3) Find a non-zero left zero divisor u ∈ A;
(4) Compute h = gcrd(f, u) and g ∈ F[x; σ] with f = gh;
(5) Recursively factor g = g1 · · · gr and h = h1 · · ·hs

with g1, . . . , gr, h1, . . . , hs ∈ F[x; σ] irreducible;
(6) Return g1, . . . , gr, h1, . . . hs;

End.

The polynomial f ∈ F[x; σ] is irreducible if and only if A is a field, and the algorithm
halts correctly in this case. If f ∈ S is reducible then Theorem 3.3 implies A is not
a field, and therefore possesses non-zero zero divisors (Wedderburn’s Theorem implies
every finite algebra, whose only zero divisor is zero, is a field). By Theorem 3.4 any left
zero divisor has a non-zero GCRD with f , yielding a proper factorization in step 4. The
algorithm recurses on g and h, each of which has degree less than n. Since there is no
recursion when f is irreducible, the procedure Complete-Factorization will be called
at most n times, each time on a polynomial of degree at most n.

The number of operations in K required by each step is now determined:

Step 1. A basis for A can be found as follows. Let W ⊆ F[x; σ] be the set of all g ∈ F[x; σ]
with deg g < n. As a K-vector space W is isomorphic to F[x; σ]/F[x;σ]f , with basis

{Θi
Fx

j | 0 ≤ i < µ, 0 ≤ j < n},

and dimension nµ. Multiplication on the left by f induces an K-linear map T :W →
W : if u ∈ W then T (u) = v ≡ fu mod f , for some v ∈ W . The elements of A are
exactly those elements in the null space of T , a basis which is found by constructing
a matrix for T (an nµ×nµ matrix over K) and then using linear algebra techniques
to compute a basis for the null space. This matrix is computed by evaluating T
at each of the basis elements of W , i.e., finding fΘi

Fx
j mod f for 0 ≤ i < µ and

0 ≤ j < n, requiring a total of O(n3µM(µ) + n2µ2M(µ) logµ) operations in K.
The linear algebra to find a basis for the null space of T , and hence for A, requires
O(MM(nµ)) additional operations in K.

Steps 2–3. We have not yet shown how to determine if A is a field, and if it is not,
produce a non-zero zero divisor in A. In Rónyai (1987) it is shown that this prob-
lem is reducible, with (nµ log q)O(1) operations in K, to factoring polynomials in
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Fp [x] of degree (nω)O(1) (recall [F : Fp] = ω). A faster Las Vegas type probabilis-
tic algorithm for this problem is presented in Section 5, and requires O(nµχ +
MM(nµ) + M(nµ) log(nµ) log q) operations in K, where χ operations in K are re-
quired to multiply two elements of A. A multiplication in A can be done with
O(n2M(µ)+nµM(µ) logµ) operations in K, so we can determine if A is a field, and
if not, find a zero divisor in A, with O(n3µM(µ) + n2µ2M(µ) logµ + MM(nµ) +
M(nµ) log(nµ) log q) or O (̃n3µ2 + n2µ3 + MM(nµ) + nµ log q) operations in K.

Step 4. The polynomials g and h can be computed with O(n2M(µ)µ logµ) operations
in K by Lemma 2.1.

As noted above, there are at most n recursive calls, each on a polynomial of degree less
than n. This yields the following theorem:

Theorem 3.5. Let f ∈ F[x; σ] have degree n. The algorithm Complete-
Factorization correctly finds a complete factorization of f in F[x; σ], and proves:

(i) the complete factorization problem is deterministically reducible, with
(nµ log q)O(1) operations in K, to the problem of factoring polynomials in Fp [x]
of degree (nω)O(1), and is solvable by a deterministic algorithm requiring (nωp)O(1)

operations in K.
(ii) the complete factorization problem is solvable by a Las Vegas type algorithm with

O(n4µM(µ) + n3µ2M(µ) logµ + nMM(nµ) + nM(nµ) log(nµ) log q) or O (̃n4µ2 +
n3µ3 + nMM(nµ) + n2µ log q) operations in K.

4. Bi-Factorization With Two-Sided Ideals

Finding the minimal central left multiple f̂ ∈ F[y] of an f ∈ F[x; σ] provides the key
to bi-factorization. The following theorem demonstrates how the factorization over K[y]
of f̂ yields a partial factorization of f . Once again, we let S = F[x; σ] throughout this
section.

Theorem 4.1. Let f ∈ F[x; σ] and f̂ ∈ K[y] \ {0} be such that f̂ ≡ 0 mod f. If f̂ =
f̂1 · · · f̂l for pairwise co-prime f̂1, . . . , f̂l ∈ K[y], then f = lclm(h1, . . . , hl), where hi =
gcrd(f̂i, f) for 1 ≤ i ≤ l, and h1, . . . , hl are pairwise co-prime.

Proof. From the definitions of GCRD and LCLM in Section 2, this theorem can be
restated in terms of ideals: Sf = L1 ∩ · · · ∩ Ll and

Li + (L1 ∩ · · · ∩ Li−1 ∩ Li+1 ∩ · · · ∩ Ll) = S,

for 1 ≤ i ≤ l, where Li = Sf +Sf̂i = Shi.
We start by showing that L1 ∩ · · · ∩ Ll = Sf . For any u ∈ Sf , we know u ≡ 0 mod f

and hence u ≡ 0 mod hi and u ∈ Li for 1 ≤ i ≤ l. Thus Sf ⊆ L1 ∩ · · · ∩ Ll. To show
L1 ∩ · · · ∩ Ll ⊆ Sf assume u ∈ L1 ∩ · · · ∩ Ll. Thus u = vif + wif̂i for some vi, wi ∈ S,
and u ≡ vif mod f̂i, for 1 ≤ i ≤ l. We know that S/Sf̂ is isomorphic as a ring to
S/Sf̂1 ⊕ · · ·⊕S/Sf̂l. By the Chinese remainder theorem, since u is a left multiple of f
modulo each f̂i, u is a left multiple of f modulo f̂ , i.e., u ≡ vf mod f̂ for some v ∈ S.
From this and the fact that f̂ ≡ 0 mod f we see u ≡ 0 mod f , and therefore that u ∈ Sf
and L1 ∩ · · · ∩ Ll = Sf .
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To show that
Li + (L1 ∩ · · · ∩ Li−1 ∩ Li+1 ∩ · · · ∩ Ll) = S,

for 1 ≤ i ≤ l, we observe that Sf̂ = Sf̂1 ∩ · · · ∩Sf̂l, where

Sf̂i + (Sf̂1 ∩ · · · ∩Sf̂i−1 ∩Sf̂i+1 ∩ · · · ∩Sf̂l) = S.

This follows since K[y] is a unique factorization domain. Thus, for 1 ≤ i ≤ l, there exists
ui ∈ Sf̂i and vi ∈ Sf̂1 ∩ · · · ∩Sf̂l such that ui + vi = 1. Since Li ⊇ Sf̂i for 1 ≤ i ≤ l,
we know ui ∈ Li and vi ∈ L1 ∩ · · · ∩ Li−1 ∩ Li+1 ∩ · · · ∩ Ll, so

1 ∈ Li + (L1 ∩ · · · ∩ Li−1 ∩ Li+1 ∩ · · · ∩ Ll) = S

for 1 ≤ i ≤ l. 2

The above theorem is used to get a partial decomposition of f by factoring its minimal
central left multiple f̂ ∈ K[y], as a polynomial in y, into pairwise co-prime polynomials
in K[y] and then taking GCRD’s between f and each of these factors. We now address
the question of finding f̂ .

Lemma 4.2. Given f ∈ F[x; σ] of degree n, we can find the minimal central left multiple
of f with O(n3µM(µ) + n2µ2M(µ) logµ + MM(nµ)) or O (̃n3µ2 + n2µ3 + MM(nµ))
operations in K.

Proof. First, compute the sequence xiµ = Qif + Ri for 0 ≤ i ≤ nµ, where Qi, Ri ∈
F[x; σ] and degRi < deg f = n. The set of all polynomials in F[x; σ] of degree less than
n forms a K-vector space of dimension nµ, where each coefficient in F is expanded with
respect to the given basis of F/K. For 1 ≤ i ≤ nµ, if

Ri =
∑

0≤j<n

∑
0≤l<µ

wjlΘl
Fx

j, let R̄i = (w0,0, w0,1, . . . , wn−1,µ−1)t ∈ Knµ×1.

Since there are nµ + 1 polynomials R0, . . . , Rnµ, there exists a minimal t ≤ nµ and
α0, . . . , αt ∈ K, not all zero, such that

∑
0≤i≤t αiRi = 0 and hence that

∑
0≤i≤tαiR̄i = 0.

The minimal central left multiple f̂ of f is then f̂ = α−1
t

∑
0≤i≤t αix

µi.
Let B be the nµ×(nµ+1) matrix over K whose ith column is R̄i−1. Since Rt is linearly

dependent (over K) on R0, . . . , Rt−1, and Rt+i ≡ xµRt+i−1 mod f , it follows that Rt+i
is also linearly dependent (over K) on R0, . . . , Rt−1, for i ≥ 0. Thus t = rankB, and if

v = (α0, . . . , αt, 0, . . . , 0) ∈ Knµ,

then Bv = 0. Conversely, any non-zero v ∈ Knµ of the form

v = (β0, . . . , βt, 0, . . . , 0) ∈ Knµ,

and in the null space of B, yields a scalar multiple
∑

0≤i≤t βix
i of the minimal central

left multiple of f̂ . Hence we can now solve for the minimal central left multiple of f̂ with
linear algebra over K.

To determine the cost of this algorithm, start by computing Xi ≡ xi mod f with
degXi < deg f , for 0 ≤ i ≤ n + µ − 1; this can be accomplished with O(n2µM(µ) +
nµ2M(µ) logµ) operations in K. Now for any

g =
∑

0≤i<n
bix

i
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with b0, . . . , bn−1 ∈ F, we know

xµg =
∑

0≤i<n
bix

i+µ ≡
∑

0≤i<n
biXi+µ mod f.

Using the fact that Ri ≡ xµRi−1 mod f for i > 0, we can compute Ri from Ri−1

as an F-linear combination of Xµ, . . . , Xµ+n−1, with O(n2µ) operations in F. Finding
R0, . . . , Rnµ then takes O(n3µM(µ)) operations in K, and the linear algebra to compute
f̂ from R̄0, . . . , R̄nµ requires an additional O(MM(nµ)) operations in K. 2

The next lemma characterizes the LCLM-decompositions of those f ∈ F[x; σ] whose
minimal central left multiples are irreducible as polynomials in y.

Theorem 4.3. Let f ∈ F[x; σ] and f̂ ∈ K[y] the minimal central left multiple of f with
deg f̂ = nµ. If f̂ is irreducible as a polynomial in y and f = gh for some irreducible
h ∈ F[x; σ], then deg h = n.

Proof. If f̂ = y = xµ then n = 1. The only irreducible right factor of f̂ in this case is
x, which has degree 1.

Assume then that f̂ 6= y. The quotient A = S/Sf̂ is a simple algebra (since Sf̂ is
a maximal left ideal in S) of dimension nµ2 over K. By Fact 3.1, for some m ≥ 1, A
is isomorphic to the ring of all m ×m matrices over the centre E of A, where E is an
extension field of K. If [E : K] = r, then nµ2 = rm2.

The centre E of A is simply the image of K[y] in A. To see this, let g ∈ S and ḡ its
image in A. If g ∈ K[y] then ḡ is certainly in E. Conversely, if ḡ ∈ E, then we may assume
deg g < degx f̂ , i.e., we choose the polynomial of least degree in S which is equivalent
to ḡ modulo f̂ . Now gΘF − ΘFg ≡ 0 mod f̂ and gx − xg ≡ 0 mod f̂ , since g is in the
centre of A. The degrees of gΘF and ΘFg are both less than degx f̂ , so gΘF −ΘFg = 0,
which is only true if g ∈ F[xµ]. Assume now that µ ≥ 2 (if µ = 1 then S = F[x] and the
theorem is trivially true). Since g ∈ F[xµ] it has degree less than nµ−1 and both gx and
xg have degrees less than nµ, whence gx− xg = 0. The elements x and ΘF generate S
as a K-algebra, and since g commutes with both of them, g must be in the centre of S.
Therefore the centre E of A is the image of K[y] in A, and has degree n over K. It follows
that r = [E : K] = n, m = µ, and A ∼= Eµ×µ.

Maximal left ideals in A are exactly those whose minimal modular generators are
irreducible in S. In particular, the left ideal generated by h + S is maximal. By Fact
3.1, each maximal left ideal in A has dimension nµ2 − nµ as a K-vector space. Since the
left ideal in A generated by h+S is equal to the set of left multiples of h of degree less
than nµ, reduced modulo f̂ , it has dimension nµ2 − n degh as a K-vector space. Thus
degh = n. 2

A distinct degree factorization (in K[y]), of the minimal central left multiple f̂ of
f ∈ F[x; σ], yields the degrees of all factors in any complete factorization of f as shown
in the next theorem and its corollary.

Theorem 4.4. Let f ∈ F[x; σ] and f̂ ∈ K[y]\{0} be such that f̂ ≡ 0 mod f. Furthermore,
suppose f̂ = ĝe for some ĝ ∈ K[y]\{0} and e ≥ 1, where ĝ is irreducible as a polynomial in
K[y], and degx ĝ = dµ. Then for all complete factorizations f = f1 · · ·fl, with f1, . . . , fl ∈
F[x; σ] irreducible in F[x; σ], we have deg fi = d.
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Proof. Suppose f = f1 · · ·fk, where f1, . . . , fk ∈ F[x; σ] are irreducible. We proceed
by induction on k. If k = 1, then Jacobson (1943), Chapter 12, Theorem 13 shows
e = 1, and by Theorem 4.3, deg f1 = d. Assume that the theorem is true for complete
factorizations with fewer than k irreducible factors. The minimal central left multiple of
fk must be irreducible as a polynomial in y and must divide ĝe, whence ĝ ≡ 0 mod fk.
By Theorem 4.3, deg fk = d. Moreover, by Jacobson (1943), Chapter 12, Theorem 12,
ĝe ≡ 0 mod f1 · · · fk−1, so by induction then deg f1 = · · · = deg fk−1 = d. 2

Corollary 4.5. Let f ∈ F[x; σ] and f̂ ∈ K[y] \ {0} be such that f̂ ≡ 0 mod f. Further-
more, suppose f̂ = ĝe11 ĝ

e2
2 · · · ĝell where e1, . . . , el ≥ 1 and ĝ1, . . . , ĝl ∈ K[y] are distinct and

irreducible as polynomials in K[y], all with the same degree dµ in x. Then for any complete
factorization f = f1 · · ·fk, with f1, . . . , fk ∈ F[x; σ] irreducible, we have deg fi = d.

Proof. By Theorem 4.1 we know f = lclm(h1, . . . , hl), where hi = gcrd(f̂eii , f) for
1 ≤ i ≤ l. Since f̂eii ≡ 0 mod hi for 1 ≤ i ≤ l, we know by Theorem 4.3 that every
complete factorization

hi = hi,1hi,2 · · ·hi,si ,

where each hi,j ∈ S is irreducible, is such that deg hi,j = d for 1 ≤ j ≤ si and 1 ≤ i ≤ l.
Theorem 2.2 implies that if

f = f1f2 · · · fk,

where f1, . . . , fk ∈ S are irreducible, then deg fi = d for 1 ≤ i ≤ k. 2

Corollary 4.5 yields an efficient reduction from the bi-factorization problem to the
complete factorization problem.

Algorithm: Bi-Factorization
Input: f ∈ F[x; σ] and s ≤ deg f = n;
Output: g, h ∈ F[x; σ] with degh = s, and f = gh, or a message that no such h exists;

(1) Compute the minimal central left multiple f̂ ∈ K[y] of f ;
(2) Find a distinct degree factorization of f̂ as f̂ = f̂1f̂2 · · · f̂n, where f̂i ∈ K[y] is

such that if ĝ ∈ K[y] divides f̂i, and ĝ is irreducible as a polynomial in K[y], then
degy ĝ = i, for 1 ≤ i ≤ n (some fi’s may have degree zero).

(3) Find hi = gcrd(f̂i, f) ∈ F[x; σ] for 1 ≤ i ≤ n. Assume deg hi = iei for some ei ∈ N;
(4) Factor each hi completely in F[x; σ] as hi = hi,1hi,2 · · ·hi,ei , where deghi,j = i for

1 ≤ j ≤ ei, and 1 ≤ i ≤ n;
(5) Determine if there exists a set d1, . . . , dn ∈ N with di ≤ ei for 1 ≤ i ≤ n, such that∑

0≤i≤n idi = s;

If such d1, . . . , dn exist then return g, h ∈ F[x; σ], where h = lclm(h̄1, h̄2, . . . , h̄n),
and h̄i = hi,ei−di+1hi,ei−di+2 · · ·hi,ei for 1 ≤ i ≤ n, and g ∈ F[x; σ] is such that
f = gh;
Otherwise, return “f has no right factor of degree s in F[x; σ]”;

End.

Any pair g, h ∈ F[x; σ] produced by the algorithm has deg h = s and f = gh, and if
such a bi-factorization exists, this algorithm produces one. To see the former, we note
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that by Theorem 4.1, f = lclm(h1, . . . , hn), where hi = gcrd(f̂i, f) as computed in step 3.
By Corollary 4.5, all complete factorizations of hi = hi,1hi,2 · · ·hi,ei into irreducible hi,j ∈
F[x; σ], are such that deg hi,j = i for 1 ≤ j ≤ ei and 1 ≤ i ≤ n. If h = lclm(h̄1, . . . , h̄n),
then Theorem 2.2 implies deg h = s. The computed h is a right factor of f since each h̄i
is a right factor of hi and each hi is a right factor of f for 1 ≤ i ≤ n.

If f = uv for some u, v ∈ F[x; σ] and deg v = s, this algorithm finds some right factor
h of f of degree s. Suppose v = v1v2 · · ·vt, with v1, . . . , vt ∈ F[x; σ] irreducible. If exactly
di of the factors v1, . . . , vt have degree i for 1 ≤ i ≤ n, then di ≤ ei by Theorem 2.2.
Hence h = lclm(h̄1, . . . , h̄n), computed in step 5, has degree s.

The the number of operations required by the algorithm Bi-factorization is now
determined.

Step 1. Computing the minimal central left multiple of f requires O(n3µM(µ)+MM(nµ))
operations in K by Lemma 4.2.

Step 2. Distinct degree factorization can be computed withO(M(nµ)·M(
√
nµ)·√nµ logn

+M(nµ) log q) operations in K, using the algorithm of von zur Gathen & Shoup
(1992).

Step 3. Use the fact that if u ≡ v mod f then gcrd(f, u) = gcrd(f, v), for any u, v ∈
F[x; σ]. During the computation of the minimal central left multiple f̂ in step 1
we found Rj ≡ xµj mod f , where degRj < deg f for 1 ≤ j ≤ nµ. Each polyno-
mial f̂i mod f is then just a linear combination of the Rj’s, so we can compute
f̂1 mod f, f̂2 mod f, . . . , f̂n mod f within the time required for step 1. The required
GCRD’s can now be computed with O(n3M(µ)µ logµ) operations in K.

Step 4. Completely factoring n polynomials in F[x; σ] of total degree n is accomplished
by the algorithm Complete-Factorization of Section 3. The cost of completely
factoring n polynomials in F[x; σ] of total degree n is at most the cost of com-
pletely factoring a single polynomial in F[x; σ] of degree n. By Theorem 3.5 this
can be done with a (Las Vegas) probabilistic algorithm requiring O(n4µM(µ) +
n3µ2M(µ) logµ+ nMM(nµ) + nM(nµ) log(nµ) log q) operations in K. By the same
theorem, this problem is deterministically reducible, with (nµ logp)O(1) operations
in K, to the problem of factoring univariate polynomials in Fp [x] of degree (nµ)O(1).

Step 5. Determining if d1, . . . , dn exist, and finding them if they do, while not performed
with K-operations (and hence not really “counted” in our model of computation),
can be accomplished efficiently with a simple dynamic programming algorithm. The
LCLM can be performed with O(n2M(µ)µ logµ) operations in K.

Theorem 4.6. Let f ∈ F[x; σ] have degree n and s < n. The algorithm bi-factorization
above correctly solves the problem of determining if there exist g, h ∈ F[x; σ] with f = gh,
and deg h = s, and if so, find such g, h, and proves:

(i) the bi-factorization problem is deterministically reducible, with (nµ log q)O(1) oper-
ations in K, to the problem of factoring polynomials in Fp[x] of degree (nω)O(1),
and is solvable with a deterministic algorithm requiring (nωp)O(1) operations in K;

(ii) the bi-factorization problem is solvable by a probabilistic algorithm with
O(n4µM(µ) + n3µ2M(µ) logµ + nMM(nµ) + nM(nµ) log(nµ) log q) operations in
K.
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5. A Fast Algorithm for Finding Zero Divisors

Let A be any finite dimensional associative algebra (with identity) of dimension ν over
a finite field K ∼= Fq , where q is a power of a prime p. A is described computationally
as a K-vector space with a basis B = {w1, . . . , wν} ⊆ A. A representation of 1 ∈ A is
assumed to be supplied. Addition in A is component-wise and a “black box” algorithm
for multiplication in A, which requires χ operations in K, is assumed to be provided.

Our algorithm is based on finding and factoring the minimal polynomial of a randomly
selected element a ∈ A, then evaluating one of these factors at a. Recall that the minimal
polynomial minK(b) ∈ K[x] of b ∈ A is the monic polynomial f ∈ K[x] of minimal degree
such that f(b) = 0. It does not depend on how A is represented as an extension of K,
and has degree at most dimA = ν.

Algorithm: FindZeroDivisor
Input: an algebra A of dimension ν over K (see above);
Output: b1, b2 ∈ A \ {0} with b1b2 = 0, or a report that A is a field, or failure;

(1) Choose random a1, a2 ∈ A;
For b ∈ {a1, a2, a1a2 − a2a1} \ {0} Do

(2) Compute f = minK(b) ∈ K[x];
(3) Factor f in K[x];

If f is reducible with f = gh for g, h ∈ K[x] \ {0}
(4) Return g(b), h(b);

Else if deg f = ν (and f is irreducible)
(5) Return “A is a field (and has no zero divisors)”;

End For;
(6) Return “Failure”;

End.

To see that the algorithm is correct, examine two cases: when A has non-trivial zero
divisors, and when A is a (finite) field. These cases are sufficient by Wedderburn’s The-
orem (see Lidl & Niederreiter (1983), Section 2.6) which shows any finite algebra whose
only zero divisor is zero, is a (commutative) field. If A is not a field, let b ∈ A have a re-
ducible minimal polynomial f ∈ K[x] (we shall show that there are many such elements).
Factoring f = gh, for some g, h ∈ K[x] \K, yields f(b) = 0 = g(b)h(b), and g(b), h(b) are
non-zero since f is the minimal polynomial of b. If some b ∈ A has a minimal polynomial
f ∈ K[x] which is irreducible of degree ν, then A = K[b] and K[b] is isomorphic to the
finite field K[x]/(f) ∼= Kqν under the isomorphism mapping b to x mod f .

While determining the complexity of this algorithm, assume failure probability % < 1.
In Theorems 5.2 and 5.3 and 5.9 below, we show that in fact % ≤ 8/9. Computing f in
step 2 can be accomplished by first computing the sequence 1, b, b2, . . . , bν ∈ A, requiring
O(νχ) operations in K. Using linear algebra f can then be found with O(MM(ν)) addi-
tional operations in K. Factoring f can be done using the Las Vegas type probabilistic
algorithm of Berlekamp (1970), with O(MM(ν)+ M(ν) logν log q) operations in K. Eval-
uating g(b) and h(b) in step 4 can be done with O(ν2) operations in K, using the powers
of b computed in step 2. We have shown the following.
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Theorem 5.1. Let A be an algebra with dimension ν over K = Fq . The algorithm
FindZeroDivisor requires O(νχ+ MM(ν) + M(ν) logν log q) operations in K to deter-
mine whether A is a field extension of K, or to produce b1, b2 ∈ A \ {0} with b1b2 = 0. It
requires as additional input (to the description of A) two randomly selected elements of
A and fails with probability % < 1.

The proof that the probability of failure % satisfies % ≤ 8/9 for any algebra A is quite
involved, the hardest case being when A has a non-trivial zero divisor. In the course of
the proofs that follow, we will need both upper and lower bounds for the number of
irreducible polynomials of a fixed degree over a finite field. Let ∆ ∈ N be a prime power
and I∆(n) ⊆ F∆ [x] the set of monic irreducible polynomials in F∆ [x] of degree n, and
N∆(n) = #I∆(n). By Lidl & Niederreiter (1983), Exercises 3.27 and 3.28,

∆n

n
− ∆

∆− 1
· ∆n/2 − 1

n
≤ N∆(n) ≤ ∆n −∆

n
. (5.1)

First, consider the case when A is a field extension of K.

Theorem 5.2. Let A be field of dimension ν over K. The algorithm FindZeroDivisor
with input A reports that A is a field with probability at least 1/4 and reports “failure”
with probability at most 3/4.

Proof. An element b ∈ N always has a minimal polynomial of degree dividing ν, since
K[b] is a subfield of A, and [K[b] : K] divides [A : K]. The elements b ∈ A such that
deg minK(b) = ν are exactly those that satisfy an irreducible polynomial in K[x] of degree
ν, and ν distinct elements of A satisfy each such polynomial. Applying (5.1),

Nq(ν) ≥ qν

ν
− q

q − 1
· q

ν/2 − 1
ν

=
qν

2ν
·
(

2− 2 · qν/2 − 1
(q − 1)qν−1

)
≥ qν

2ν
,

where it is easily verified that (qν/2 − 1)/((q − 1)qν−1) ≤ 1/2. The number of b ∈ A

satisfying irreducible polynomials in K[x] of degree ν is νNq(ν) ≥ ν · qν/(2ν) = qν/2.
Thus, the number of b ∈ A with deg minK(b) < ν must be less than qν/2, so % ≤ 1/4
since we choose two elements b ∈ A independently and test each of them. 2

Now let A be an algebra with at least one non-trivial zero divisor, i.e., A is not a local
algebra. We call an element b ∈ A reducible over K if its minimal polynomial in K[x] is
reducible, and irreducible over K otherwise. Define

Λ(A) = #{b ∈ A | b is irreducible over K},

The failure probability of FindZeroDivisor is at most (Λ(A)/qν)2, ignoring for now the
possibility that b = b1b2 − b2b1 yields a zero divisor of A (this is only used when A is
a local algebra over A, that is, when A/rad(A) is a (finite) field, where rad(A) is the
Jacobson radical of A – see Theorem 5.9 below).

Theorem 5.3. Let A be an algebra of dimension ν over K which is not local and possess
a non-trivial zero divisor. The probability % that the algorithm FindZeroDivisor fails to
find a non-trivial zero divisor in A is at most 8/9.
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We begin by proving two theorems dealing with significant special cases. In Theorem
5.7 we bound % for A simple, and in Theorem 5.8 for A semi-simple.

For now, assume that A is simple and therefore isomorphic to a full matrix algebra
Er×r of all r × r matrices over some algebraic extension field E ⊇ K (see Lang 1984,
Chapter 17). We set µ = [E : K], so E ∼= Fqµ and ν = µr2.

Let a ∈ A and B ∈ Er×r its image in Er×r . The minimal polynomial in K[x] of
a ∈ A is the monic f ∈ K[x] \ {0} of minimal degree such that f(B) = 0. This minimal
polynomial is intimately related to the minimal polynomial g ∈ E[x] of the matrix B:
f is the monic polynomial of smallest degree in K[x] \ {0} such that g | f . We write
f = minK(B) ∈ K[x] and g = minE(B) ∈ E[x]. Theorem 5.7 is proved by showing that
for at most a constant fraction of matrices B ∈ Er×r that minK(B) is irreducible in K[x].
First, we show that every matrix in Er×r similar to a companion matrix is similar to at
least qµr

2−µr(1−q−µ)q
µ/(qµ−1) distinct matrices. This implies that a substantial fraction

of all matrices in Er×r are similar to companion matrices in Er×r . We then show that for
most matrices similar to companion matrices that their minimal polynomials in K[x] are
products of at least two distinct irreducible factors.

Lemma 5.4. Let r ≥ 2 and B ∈ Er×r be such that g = minE(B) and deg g = r. Then B

is similar to at least qµr
2−µr · (1 − q−µ)q

µ/(qµ−1) distinct matrices in Er×r, exactly one
of which is a companion matrix.

Proof. Matrices in Er×r whose minimal polynomials in E[x] have degree r are exactly
those similar to the companion matrix of their minimal polynomial. Since the minimal
polynomial is the only invariant factor if it has degree r, it completely characterizes the
similarity class. Since no two distinct companion matrices are similar, we know that B
is similar to exactly one companion matrix.

It is well known (see, for example, Hodges 1958) that the number of matrices similar
to a given matrix B ∈ Er×r is the total number L(E, r) of non-singular matrices in Er×r

divided by the number of non-singular matrices in Er×r which commute with B. In the
case of a B ∈ Er×r with deg minE(B) = r, it is shown by Gantmacher (1990), Section
8.2, that the only matrices commuting with B are in E[B], whence there are qµr of them.
From (Dickson 1901, Part II, Chapter 1), we have

L(E, r) =
∏

0≤i<r
(qµr − qµi) = qµr

2 ∏
1≤i≤r

(1− 1/qµi).

We bound
∏

1≤i≤r(1− q−µi) from below by considering its logarithm

log
∏

1≤i≤r
(1− q−µi) = −

∑
1≤i≤r

∑
j≥1

1
jqµij

= −
∑
j≥1

1
j
· 1
qµj − 1

(
1− 1

qµjr

)

≥ −
∑
j≥1

1
jqµj

qµj

qµj − 1
≥ log

(
1− 1

qµ

)qµ/(qµ−1)

.

2

Lemma 5.5. The number of monic g ∈ E[x] of degree r ≥ 2 such that the f ∈ K[x] \ {0}
of smallest degree with g | f is irreducible in K[x], is less than (3/4) · qµr.

Proof. The proof is broken into two parts: when r ≥ 3 and when r = 2.
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Assume r ≥ 3. We prove that the number of monic g ∈ E[x] of degree r ≥ 3 such that
g = g1g2 where g1 is monic, irreducible and r/2 < deg g1 < r is greater than qµr/4. Since
any g ∈ E[x] has at most one such factor g1, f is reducible for such g (f has roots in two
distinct extension fields of E). The exact number of such g is

qµr−µl
∑

r/2<l<r

Nqµ (l) > qµr
∑

r/2<l<r

(
1
l
− qµ

qµ − 1
· 1
l · qµl/2

)

≥ qµr ·

 ∑
r/2<l<r

1
l
− 2
r
· qµ

qµ − 1
·
∑

r/2<l<r

1
qµl/2


≥ qµr ·

(
log(2) + log

(
r − 1
r

)
+

1
r − 1

− 2
r

− 2
r
· qµ

qµ − 1
· qµ/2

qµ/2 − 1
· q

µr/4−µ/2 − 1
qµr/2

)
≥ qµr/4,

except possibly when 3 ≤ r ≤ 14. We use the Euler summation formula and (5.1). The
lemma is easily verified when 3 ≤ r ≤ 14 by explicitly expanding qµr−µl

∑
r/2<l<r Nqµ(l)

as a polynomial in qµ.
When r = 2 the above approach does not work since no such factors g1 exist in the

desired degree range. In this case, g is either irreducible in E[x] or it factors into two
linear factors. When g is irreducible then f is irreducible and there are Nqµ (2) such g.
Suppose g factors, and each of these factors divides an irreducible f ∈ K[x]. It must be
the case that f factors completely in E[x], thus s = deg f divides µ. Moreover, for each
irreducible f ∈ K[x] of degree s, there are

(
s
2

)
distinct ways of choosing 2 factors of f in

E[x] to form a g ∈ E[x] with this (irreducible) minimal degree multiple f ∈ K[x]. Thus,
the total number of g ∈ E[x] of degree 2, such that the minimal degree f ∈ K[x] with
g | f is irreducible in K[x] is

Nqµ(2)+
∑
s |µ

Nq(s) ·
s(s − 1)

2
≤ q2µ

2
+
∑
s |µ

qs(s− 1)
2

=
q2µ

2
+
qµ(µ− 1)

2
+

∑
s |µ

1≤s≤µ/2

qs(s− 1)
2

≤ q2µ

2
+
qµ(µ − 1)

2
+

∑
1≤s≤µ/2

qs(s− 1)
2

=
q2µ

2
+
qµ(µ− 1)

2
+

q

(q − 1)2
· q

µ/2+1µ− 2qµ/2+1 − qµ/2µ+ 2q
4

≤ 3q2µ

4
,

using (5.1) and elementary calculus. 2

We combine Lemmas 5.4 and 5.5 to count the number of matrices in Er×r whose
minimal polynomials in K[x] are irreducible in K[x].

Theorem 5.6. The number of matrices in Er×r whose minimal polynomials in K[x] are
reducible is greater than qµr

2
/16.

Proof. By Lemma 5.5 there are at most 3qµr/4 polynomials g ∈ E[x] of degree r such
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that the f ∈ K[x] \ {0} of least degree with g | f is irreducible in K[x]. Hence there are
greater than qµr/4 such that f is reducible. A matrix in Er×r similar to a companion
matrix of such an g will have a reducible minimal polynomial in K[x]. By Lemma 5.4 a
companion matrix Cg ∈ Er×r of such a g is similar to at least qµr

2−µr(1− 1/qµ)q
µ/(qµ−1)

distinct matrices in En×n, of which Cg is the only companion matrix. Thus there are at
least

qµr
2

4
·
(

1− 1
qµ

)qµ/(qµ−1)

≥ 1/16

matrices in Er×r with reducible minimal polynomials in K[x]. 2

Theorem 5.7. If A is a simple algebra of dimension ν over K which is not a field. Then
Λ(A) ≤ (15/16) · qν .

Proof. The number of irreducible a ∈ A is equal to the number of B ∈ Er×r with
minK(B) ∈ K[x] irreducible in K[x]. By Theorem 5.6 this is at most 15/16 · qµr2 . 2

Theorem 5.8. If A is a semi-simple algebra of dimension ν over K which is not local,
then Λ(A) ≤ 15/16 · qν .

Proof. If A is simple then Theorem 5.7 implies that this theorem is true, so assume A
is not simple. The Wedderburn Decomposition Theorem (see Pierce 1982, Section 3.5)
yields a decomposition of A as

A ∼= A1 ⊕ A2 ⊕ . . .⊕Ak,

where Ai is a simple algebra of dimension νi ≥ 1 for 1 ≤ i ≤ k. This is also a decomposi-
tion of A as an K-vector space, so ν = ν1 +ν2 + · · ·+νk, with k ≥ 2 since A is not simple.
Each simple component Ai is isomorphic to Eri×rii , where Ei is a finite extension field of
K. Under this isomorphism, each b ∈ A has an image (b1, . . . , bk) ∈ A1⊕A2⊕. . .⊕Ak, and
minK(b) = lcm(minK(b1), . . . ,minK(bk)). It is clear that Λ(A) ≤ Λ(A1)Λ(A2) · · ·Λ(Ak),
since the minimal polynomial of an element of A is a power of an irreducible only if
the minimal polynomial of each of its components in A1,A2, . . . ,Ak is a power of an
irreducible (in fact, each component must be a power of the same irreducible, which is
not reflected in this inequality). We consider two cases in this proof:

Case (i): A1,A2, . . . ,Ak are all fields. Here r1 = r2 = . . . = rk = 1, and the minimal
polynomials of all elements in A will be squarefree. Hence, we need only consider
the case when the minimal polynomial is irreducible. We consider A1

∼= Fqν1 and
A2
∼= Fqν2 , and show that at most half the elements of A1⊕A2 have an irreducible

minimal polynomial.
Start by determining the number of elements of A1⊕A2 annihilated by a single

irreducible polynomial in K[x]. If b ∈ A and minK(b) is irreducible over K, then
minK(b1) = minK(b2), since the minimal polynomial of a field element is always
irreducible. Thus K(b1) and K(b2) are isomorphic as fields, and d = deg minK(b) di-
vides both ν1 and ν2 since K(b1) ⊆ A1 and K(b2) ⊆ A2. In particular d | gcd(ν1, ν2).
Any one irreducible f ∈ K[x] of degree d has d2 roots in A1 ⊕ A2.
We now count the number of elements a ∈ A1 ⊕A2 for which there exists a monic
irreducible f ∈ K[x] with f(a) = 0. If d ∈ N divides gcd(ν1, ν2), exactly d2Nq(d)
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elements in A1⊕A2 are annihilated by polynomials in IK(d). On the other hand, if
d - gcd(ν1, ν2) then no element of A1⊕A2 is annihilated by an irreducible polynomial
of degree d in K[x]. Making use of the fact that

∑
d | t dNq(d) = qt for any t ≥ 1

(see Lidl & Niederreiter 1983 Corollary 3.21),

Λ(A1 ⊕ A2) =
∑

d | gcd(ν1,ν2)

d2Nq(d) ≤ min(ν1, ν2)
∑

d | min(ν1,ν2)

dNq(d)

≤ min(ν1, ν2)qmin(ν1,ν2) ≤ 15/16 · q2 min(ν1,ν2) ≤ 15/16 · qν1+ν2 ,

using the easily proven fact that z ≤ 15/16 · qz for all z ≥ 1. Finally,

Λ(A) ≤ Λ(A1 ⊕ A2)Λ(A3 ⊕ . . .⊕Ak) ≤ Λ(A1 ⊕A2)qν−ν1−ν2

≤ 15/16 · (qν1+ν2) · qν−ν1−ν2 = 15/16 · qν .

Case (ii): At least one of A1,A2, . . . ,Ak is not a field. Without loss of generality
we can assume that A1 is not a field. Thus A1

∼= Er1×r11 , where r1 ≥ 2, and E1 is
an extension field of K. By Theorem 5.7, Λ(A1) ≤ 15/16 · qν1 , and

Λ(A) ≤ Λ(A1)Λ(A2) · · ·Λ(Ak) ≤ Λ(A1)qν−ν1 ≤ 15/16 · qν · qν−ν1 = 15/16 · qν.

2

The proof of Theorem 5.3 is completed by showing its validity when A is not semi-
simple or local.

Proof. [of Theorem 5.3] If A is semi-simple, Theorem 5.8 implies that the theorem is
true, so assume A is not semi-simple, i.e., radA 6= {0}.

The Jacobson radical of A is a nilpotent subalgebra of A; that is, for all c ∈ radA the
minimal polynomial of c in K[x] is a power of x. By the Wedderburn-Malcev Principal
Theorem (see McDonald 1974, Theorem 8.28) A = S + radA, where S ∼= A/radA is a
semi-simple subalgebra of A, and S ∩ radA = {0}. Thus, every a ∈ A can be written
uniquely as a = b+ c, where b ∈ S and c ∈ radA. If a has minimal polynomial f ∈ K[x],
observe that

0 = f(a) = f(b + c) = f(b) + [f(b + c)− f(b)] ,

and since every term in the expansion of (b+ c)i − bi for i ≥ 1 contains a positive power
of c, so too does every term in the expansion of f(b+ c)− f(b). Since radA is an ideal in
A and c ∈ radA, f(b + c) − f(b) ∈ radA. Thus f(b) = 0.

If S has dimension τ > 0 over K, and is not a field, then the number of elements of
S whose minimal polynomial over K is irreducible is at most 15/16 · qτ by Theorem 5.8.
The minimal polynomial of an a ∈ A is irreducible in K[x] only if the minimal polynomial
of its component in S is as well, whence

Λ(A) ≤ 15/16 · qτ · qν−τ = 15/16 · qν .

The probability % of failure is then at most (15/16)2 < 8/9. 2

Now consider the case when A is a local algebra over K, of dimension ν.
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Theorem 5.9. Let A be a local algebra of dimension ν over K which is not a field. If A
is commutative then the probability % that the algorithm FindZeroDivisor fails is less
than 1/4. If A is non-commutative then % ≤ 3/4.

Proof. First we prove Λ(A) ≤ qν/2 when A is commutative. The Wedderburn-Malcev
Principal Theorem gives a decomposition A = S + rad(A), where S is a subalgebra of
A isomorphic to A/rad(A), and S ∩ rad(A) = {0}. Since A is local, S is a finite field of
dimension τ over K, say S ∼= Fqτ for some τ ≥ 1. The algebra A possesses a non-trivial
zero divisor, so it is not a field and rad(A) 6= {0}. Let k > 1 be the nullity of rad(A), the
smallest integer k such that rad(A)k = {0}.

For any a ∈ A, suppose f = minK(a) ∈ K[x] is irreducible of degree n. We prove
this implies a ∈ S. Consider the subalgebra K[a] ( A. The minimal polynomial of a
is irreducible so K[a] ∼= Fqn is a field extension of K, and by Fermat’s Little Theorem
aq
n

= a. Let
t = min

t0>0

{
qt0 ≥ k and t0 ≡ 0 mod n

}
,

and consider the K-linear ring morphism φ : A→ A defined by φ(z) = zq
t

for any z ∈ A.
Since t ≡ 0 mod n, we know φ(a) = aq

t

= aq
n

= a. Suppose a = b + c with b ∈ S and
c ∈ rad(A). Then

a = φ(a) = φ(b+ c) = φ(b) + φ(c) = bq
t

+ cq
t

= bq
t

,

since qt is greater than the nullity of rad(A) so cq
t

= 0. This implies a ∈ S since a = bq
t

and S is a subalgebra of A. Thus, the only elements of A with irreducible polynomials
are those in S. Since S ( A it follows that Λ(A) ≤ qν−1 ≤ qν/2.

When A is non-commutative we note b = a1a2 − a2a1 ∈ rad(A) since A/rad(A) is a
(commutative) field. Hence the minimal polynomial of b is xi for some i ≥ 1, and i ≥ 2
if b 6= 0. We must show that at least q2ν/4 pairs a1, a2 ∈ A satisfy a1a2 − a2a1 6= 0.
The centre C of A is a subalgebra of A with at most qν−1 elements since A is non-
commutative. For every a1 ∈ A \ C, the nullspace of the linear map ϕ:A → A defined
by ϕ(x) = a1x − xa1 has at most qν−1 elements since a1 6= C. Thus there are at least
(qν − qν−1)2 pairs a1, a2 ∈ A with a1a2 − a2a1 6= 0, and (qν − qν−1)2/q2ν ≥ 1/4, so the
probability % of the algorithm failing is at most 3/4. 2

For any algebra A, the failure probability % of the algorithm FindZeroDivisor is
bounded by % ≤ 8/9, using Theorem 5.2 when A is a field and Theorems 5.3 and 5.9
when it is not. This yields the following corollary to Theorem 5.1.

Corollary 5.10. (to Theorem 5.1) Let A be an algebra of dimension ν over K = Fq .
The algorithm FindZeroDivisor requires O(νχ+ MM(ν) + M(ν) logν log q) operations
in K to determine whether A is a field extension of K, or to produce b1, b2 ∈ A \ {0} with
b1b2 = 0 (where χ is the number of operations in K required for a single multiplication
in A), or to fail with probability at most 8/9.

6. Application to the Functional Decomposition of Polynomials

The problem of functionally decomposing polynomials has received considerable atten-
tion recently, and there exist a number of classes of polynomials for which no polynomial-
time solution has been found. We consider such a class — the linearized or additive
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polynomials — and show that it is isomorphic (in a computationally trivial way) to
a skew-polynomial ring. This allows us to employ our algorithms for complete and bi-
factorization in skew-polynomial rings to obtain very fast algorithms for the functional
decomposition of linearized polynomials.

The linearized polynomials over F, in an indeterminate λ, are those of the form∑
0≤i≤n aiλ

pi (where a0, . . . , an ∈ F). The set A F of all linearized polynomials in F[λ]
forms a ring under the usual polynomial addition (+), and functional composition (◦) —
if f, g ∈ A F with

f =
∑

0≤i≤n
aiλ

pi , and g =
∑

0≤j≤r
bjλ

pj , then f ◦ g = f(g(λ)) =
∑

0≤i≤n

∑
0≤j≤r

aib
pi

j λ
pi+j .

Now consider the skew-polynomial ring F[x;ψ], where ψ(a) = ap for any a ∈ F and
xa = apx for all a ∈ F. This skew-polynomial ring is isomorphic to the ring A F under the
map Φ: A F → F[x;ψ], which acts as the identity on F and sends λp

i

to xi for i ≥ 0 (see
McDonald (1974), Theorem 2.13). Note that if f ∈ A F , then deg Φ(f) = logp(deg f), so
this isomorphism removes some of the “sparseness” of linearized polynomials. Computa-
tionally, Φ just maps between two interpretations of the input, and is free of charge.

The functional decomposition problem for general polynomials in F[λ] comes in two
flavours analogous to our complete factorization and bi-factorization problems for F[x; σ].
Given a polynomial f ∈ F[λ] of degree N, the (functional) complete decomposition prob-
lem asks for functionally indecomposable f1, . . . , fk ∈ F[λ] such that f = f1 ◦ · · ·◦fk (any
h ∈ F[λ] \ F is functionally indecomposable if all its bi-decompositions contain a linear
composition factor). When p - N, the so-called “tame” case for complete decomposition,
fast deterministic algorithms for complete decomposition are presented in von zur Ga-
then et al. (1987). When p |N, the “wild” case, an algorithm of Zippel (1991) apparently
solves the complete decomposition problem in time (deg f)O(1), although the exact run-
ning time is not calculated. All polynomials f ∈ A F have degree pn for some n ∈ N, so
the complete decomposition problem for linearized polynomials is certainly in the wild
case. Given f ∈ F[λ] and S ∈ N, the (functional) bi-decomposition problem asks if there
exist g, h ∈ F[λ] such that f = g ◦ h and deg h = S, and if so, find such g, h. The tame
case, when p - (N/S), is solved efficiently in von zur Gathen et al. (1987). When p | (N/S),
the wild case, no algorithm is known to solve this problem in time (deg f)O(1), though a
partial solution is provided in von zur Gathen (1990b). All non-trivial bi-decompositions
of linearized polynomials fall into the wild case, since, if f ∈ A F and f = g ◦ h for
g, h ∈ F[λ], then Dorey & Whaples (1974) show that deg g = pr for some r ∈ N.

When f ∈ A F , we can solve both the bi-decomposition and complete decomposition
problems using our algorithms for complete factorization and bi-factorization in F[x;ψ].
The key observation is that we need only consider decompositions of f ∈ A F into lin-
earized polynomials: Dorey & Whaples (1974) show that if f = f̄1 ◦ · · · ◦ f̄k for any
f̄1, . . . , f̄k ∈ F[λ], then there exist f1, . . . , fk ∈ A F such that f = f1 ◦ · · · ◦ fk and
deg fi = deg f̄i for 1 ≤ i ≤ k. A complete decomposition of any f ∈ A F of degree pn

can be found by finding a complete factorization of Φ(f) in F[x;ψ]. Similarly, the bi-
decomposition problem on input f ∈ A F of degree pn and S ∈ N, is equivalent to the
bi-factorization problem in F[x;ψ] on inputs Φ(f) ∈ F[x;ψ] and logp S.

Theorem 6.1. Let f ∈ A F have degree N = pn and S = ps < N, where F = Fpω for
some prime p ∈ N and ω ≥ 1. We can produce a complete decomposition of f in A F , and
determine if there exist g, h ∈ A F such that degh = S and f = g ◦ h, and if so, find such
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g, h, with a deterministic algorithm requiring (nωp)O(1) operations in Fp or a probabilistic
algorithm requiring O(n4ωM(ω) + n3ω2M(ω) logω+ nMM(nω) + nM(nω) log(nω) log p)
operations in Fp.
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