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ABSTRACT
In this study we examine the performance and power ben-
efits resulting from many traditional and aggressive com-
piler optimizations. Examples of early and loop optimiza-
tions were translated from classic compiler textbooks into
PowerPC assembly and executed in the Dynamic Super-
Scalar Wattch simulation environment. Each optimization
was applied in an isolated manner which resulted in an
overall average improvement in performance of 4.8% and a
6.2% decrease in power consumption for the early optimiza-
tions. The loop optimizations yielded greater performance
and power improvements with an average speed-up of 17.0%
and a 15.3% reduction in power consumption. The decrease
in power consumption of the early optimizations was found
to correspond closely to the execution time. In contrast, the
improvements from the loop optimizations were found to
correspond to the number of instructions committed. The
average decrease in the number of instructions committed
was found to be 6.2% and 14.1% for the early and loop opti-
mizations, respectively. The results of this study should aid
a compiler writer in selecting which optimizations should be
applied at an early optimization phase inside of an adaptive
dynamic optimizer if power consumption is of importance.

1. INTRODUCTION
This study performs a comparison of the performance and
power benefits resulting from many traditional and aggres-
sive compiler optimizations. We translate representative ex-
amples from an extensive list of what are now standard static
compiler optimizations into PowerPC assembly code [7] (as
derived from [8]). The unoptimized and optimized assem-
bly code sequences are then executed in the Dynamic Su-
perScalar Wattch (DSSWattch) simulation environment to
capture their performance and power characteristics.

Previous studies [10, 4, 9] have examined the impact of
compiler optimizations on power consumption in resource-
constrained embedded devices. However, in general their
examinations focused on the sets of transformations applied
at various levels of optimization (for example, the optimiza-
tions applied by gcc at -O3). This paper presents a fine-
grained study of compiler optimizations in isolation that
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is achieved by hand programming various transformations
in PowerPC assembly. Specifically, we examine the results
obtained by the early optimizations of constant propaga-
tion, constant folding, copy propagation, dead-code elimi-
nation, if-simplification, inlining, and value numbering. Ad-
ditionally, the more aggressive loop optimizations of bounds-
checking elimination, loop-invariant code motion, unrolling,
unswitching, fusion, interchange, skewing, and tiling are also
studied. All optimizations are applied in isolation, except
constant folding, which is naturally performed after constant
propagation.

The focus of optimizing compilers targeting embedded pro-
cessors has traditionally been on improving performance and
minimizing the size of the binary. In the past, typically,
most applications were written in a mix of C and assem-
bly code upon which exhaustive optimization was applied
by a superoptimizer given unlimited time and computing
resources. The increased processing power and memory ca-
pacity of current generation embedded devices has coincided
with the coming of age of dynamic compilers, which has
fostered a shift toward Java as the language of choice for
application development targeting embedded devices.

The contribution of this study is that it serves as a met-
ric for deciding which optimizations should be performed at
different optimization levels if power is of equal concern as
performance. The selection of the appropriate optimizations
for the various levels is important in an adaptive dynamic
compilation environment such as [3] which applies increas-
ingly aggressive optimizations at each successive level. It
is feasible that static optimizing compilers which target the
embedded market will ship with power specific optimizations
which are enabled via a command line switch analogous to
performance optimizations (i.e., -P3).

The remainder of the paper is organized in the following
manner. In Section 2, we discuss related research that has
compared the impact of compiler optimizations on both per-
formance and power. Section 3 details the compiler opti-
mizations that are examined in this study. In Section 4, we
provide an outline of the simulation environment in which
the benchmarks are executed and simulation results are re-
ported and discussed. Finally, we conclude and point out
promising directions from this work in Section 5.



2. RELATEDWORK
Previous studies have found that compiling for performance
(i.e., fastest execution time) is equivalent to compiling for
the minimization of power consumption. In [10], Valluri et
al. used the Wattch simulation environment to compare
the performance and power benefits provided by the sets
of optimizations applied at the various levels of the DEC
Alpha C compiler (-O0 through -O4). Additionally, [10] ex-
amined the influences of the specific optimizations of in-
struction scheduling (both basic list and aggressive global
scheduling), inlining, and loop unrolling, all of which can be
enabled by a command line option to gcc.

In [9] a similar study was performed, however, the focus was
specifically on the power consumption of the Intel Pentium
4 processor. They examined the performance and power im-
provements resulting from -O0 to -O3 of Intel’s C++ com-
piler. Loop unrolling, loop vectorization and inlining were
also examined, as they too can be controlled via command
line switches.

A categorization of compiler optimizations in respect to their
effect on power consumption was proposed in [4]. They de-
fined Class A optimizations as those which yield an improve-
ment in power consumption that is directly attributable to
the decreased execution time. Optimizations categorized as
Class B either slow down or have no effect on execution
time, yet they decrease power consumption. Class C opti-
mizations increase the amount of power consumed irrespec-
tive of the impact on performance (however, in general, the
increased power consumption is in conjunction with an in-
crease in execution time)[4].

3. BENCHMARKS
This section briefly describes each of the early and loop
optimizations examined and the resulting performance and
power benefits. The examples from [8] were selected since
they represent the prototypical application of an optimiza-
tion and therefore achieve a close approximation of the deriv-
able benefit. Tables 1 and 2 highlight the key benefits to
execution time and power consumption of the early and loop
optimizations, respectively.

4. EXPERIMENTAL RESULTS
The primary goal of this study is to perform a fine-grained
comparison of the effects of individual optimizations on resource-
constrained devices. To this end, we first carefully describe
the simulation environment in which our experiments were
performed. The performance and power measurements cap-
tured by the simulation environment for each of the op-
timizations described in the previous section are then re-
ported. Finally, we conclude with an analysis of the find-
ings.

4.1 Methodology
The performance and power profiles reported in this study
were captured using the DSSWattch [5] simulation environ-
ment. DSSWattch is the most recent layer on top of a sophis-
ticated and established set of research tools for computer
architecture simulation. At the base of this environment
is SimpleScalar [2], a cycle accurate out-of-order simulator
for the Alpha and PISA architectures. Wattch [1] intro-

duced the ability to track the power consumption of pro-
grams executed in the SimpleScalar environment. Dynamic
SimpleScalar (DSS) [6] is a PowerPC port of SimpleScalar
(specifically, the PowerPC 750) that also added the capabil-
ity to simulate programs which are dynamically compiled.
Finally, DSSWattch is an extension of the original Wattch
power module which adds floating-point support and allows
for the mixed 32 and 64-bit modes present in the PowerPC
architecture.

Wattch incorporates four different power models:

1. Unconditional Clocking: Full power is consumed by
every unit each cycle.

2. Simple Conditional Clocking (CC1): A unit which is
idle for a given cycle consumes no power.

3. Ideal Conditional Clocking (CC2): Accounts for the
number of ports that are accessed on a unit and power
is scaled linearly with the number of ports.

4. Non-Ideal Conditional Clocking (CC3): Models power
leakage by assuming that an idle unit consumes only
10% of its maximum power for a cycle in which it is
inactive.

All of the tests were performed on a 1.9GHz dual-processor
AMD Opteron, running Gentoo GNU/Linux with 2GB of
main memory. However, the simulation environment is that
of a PowerPC 750 running GNU/Linux using the default
DSSWattch configuration. Under this configuration, DSS-
Wattch was found to be capable of simulating an average of
approximately 470K instructions per second in single user
mode.

4.2 Results
Our findings for the loop optimizations indicate that the im-
provements in power consumption are directly linked to the
speed-ups attained. We found an average performance im-
provement of 17.0%, with a range from 5.3% to 44.5% and
an average decrease in power consumption of 15.3%, ranging
from 7.6% to 31.0% under the non-ideal power model (CC3).
However, the power benefits resulting from the early opti-
mizations displayed a closer linkage to the reduction in the
number of instructions committed than the speed-up. The
average decrease in execution time resulting from the early
optimization was 4.8%, ranging from 15.8% to a slow down
of 0.9% and the average decrease in power consumption was
6.2% with a range from 16.1% to an increase of 0.5% (CC3).

Note that the performance numbers reported in [10, 4, 9]
are as a result of applying an entire set of optimizations,
such as all of those that are examined in this study. Our
results, in contrast, are obtained from a single application
of each optimization in isolation. Each benchmark from [8]
was placed inside a test harness where the code was executed
1000 times.

Figures 1 and 2 display a comparison of the normalized
execution time, number of instructions committed, and the
amount of power consumed between the original and opti-
mized code sequences for the early and loop optimizations,



Optimization Performance/Power Benefits
Constant Folding Fewer instructions executed
Constant Propagation Decreased register pressure, use of immediate instructions
Copy Propagation Decreased register pressure and memory traffic
Dead-Code Elimination Fewer instructions executed, decreased code size
If-Simplification Fewer instructions executed, less work for branch predictor
Inlining Elimination of call overhead, increased register pressure
Value Numbering Fewer instructions executed, reduced register pressure

Table 1: Overview of the performance and power benefits arising from the early optimizations examined.

Optimization Performance/Power Benefits
Bounds-Check Elimination Fewer comparisons, less work for branch predictor
Fusion Improved D-Cache and register usage
Interchange Improved D-Cache and register usage
Loop-Invariant Code Motion Fewer instructions executed, decreased register pressure
Skewing Improved D-Cache and register usage
Tiling Improved D-Cache and register usage
Unrolling Fewer comparisons, branch predictor, increased register pressure
Unswitching Fewer comparisons, branch predictor

Table 2: Overview of the performance and power benefits arising from the loop optimizations examined.
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Figure 1: A comparison of the normalized execution time (optimized version divided by baseline version), the
normalized power consumption (CC1,CC2, and CC3), and the normalized number of instructions committed
as a result of applying each of the early optimizations.
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Figure 2: A comparison of the normalized execution time, the normalized power consumption (CC1,CC2,
and CC3), and the normalized number of instructions committed as a result of applying each of the loop
optimizations.

respectively. Power consumption for the CC1, CC2, and
CC3 models is reported, however, discussion of the results
is focused on the non-ideal model (CC3), since it is the most
realistic incorporating the power leakage of idle units.

Out of all the early optimizations considered, the appli-
cation of constant folding after constant propagation was
found to have the greatest impact on performance and power
providing improvements of 15.8% and 16.1%, respectively.
Copy propagation and value numbering also resulted in sub-
stantial improvements, yielding a 5% minimum decrease in
power consumption. Given the benefits in both performance
and power, the set of early optimizations definitely per-
formed by an adaptive dynamic optimizer should include
constant propagation, constant folding, copy propagation,
and value numbering. Optimizations such as dead-code elim-
ination, if-simplification, and inlining did not contribute sig-
nificantly on their own, and their applicability to a specific
code segment should be guided by heuristics. It should be
noted that the results obtained for function inlining do not
represent the full impact that it can have. Many of the op-
timizations enabled after inlining has been performed were
not taken into account and therefore the results understate
the importance of inlining.

The elimination of bounds-checking was found to provide the
greatest improvement in both performance and power con-
sumption of the loop optimizations. DSSWattch measured

a speed-up of 44.5% and power savings of 31.0%. As ex-
pected, all of the loop optimizations significantly improved
execution time and power usage, with a minimum return of
8.0% for each. Loop nests must always be the first place
that a compiler attempts to optimize and ideally a dynamic
compiler should be capable of applying all of the loop trans-
formations examined in this study.

The variance from execution time to power consumption
for the early optimizations was found to have a high corre-
spondence. Specifically, the average variance between per-
formance and power consumption was 0.000016%, while the
variance between the number of instructions committed and
power consumption was 0.002% (with standard deviations
of 0.004 and 0.05, respectively). Conversely, changes in the
number of instructions committed for the loop optimiza-
tions correspond more closely to power consumption than
execution time, with variances of 0.002% and 0.005% and
standard deviations of 0.03 and 0.05, respectively.

Tables 3 and 4 display the amount of energy consumed by
each of component that DSSWattch is able to track (only
the results for the CC3 power module are reported). The
power savings in the load/store queue and the L2 cache were
each found to be the most significant in two of the early op-
timizations examined, whereas, for the loop optimizations,
the branch prediction unit dominated in four of the eight op-
timizations and the register file was the largest contributor



CP CF Copy Prop DCE IF Inlining VN
Rename Unit -6.87 -14.84 -13.99 -0.29 0.14 -1.37 -8.34
Br Pred -4.69 -18.05 -3.30 -0.12 0.52 -1.15 -2.42
Ins Window -9.93 -13.55 -17.00 -0.49 0.04 -1.52 -9.31
LD/ST Queue -14.11 -17.86 -17.39 -0.58 0.48 -1.98 -10.73
Reg File -8.38 -13.64 -8.37 -0.30 0.85 -1.00 -5.94
Int Reg File -9.33 -9.73 469.40 -0.40 0.69 -0.67 -9.39
FP Reg File -7.86 -15.77 -5.54 -0.24 0.94 -1.21 -3.90
L1 I-Cache -16.83 -15.61 -20.53 -0.72 0.25 -1.60 -7.20
L1 D-Cache -7.43 -6.24 -28.84 -1.17 0.41 -0.76 4.65
L2 Cache -7.21 -14.38 -5.07 -0.22 0.89 -1.09 -3.57
ALU -7.65 -15.28 -8.63 -0.34 0.74 -1.29 -5.65
Result Bus -11.76 -14.72 -13.94 -0.66 0.29 -1.83 -4.80

Table 3: The percentage change in power consumed by each component under DSSWattch’s CC3 power
model resulting from the early optimizations examined.

BCE LICM Unrolling Unswitching Fusion Interchange Skewing Tiling
Rename Unit -28.36 -9.26 -10.85 -19.15 -16.61 -14.54 -5.40 -16.61
Br Pred -44.16 -19.42 -16.54 -28.00 -27.98 -6.16 -8.51 -3.69
Ins Window -16.73 -3.25 -10.84 -14.93 -14.91 -9.95 -8.37 -19.52
LD/ST Queue -21.44 -0.52 -16.48 -5.83 -23.38 -6.25 -6.34 -4.76
Reg File -38.30 -6.98 -6.99 -20.69 -14.41 -11.60 -6.71 -20.24
Int Reg File -26.17 -3.99 -9.30 -10.57 -9.22 -16.79 -4.10 -21.46
FP Reg File -44.48 -8.54 -5.31 -25.29 -17.48 -8.30 -8.51 -19.53
L1 I-Cache -19.11 -8.03 -8.95 -9.84 -16.07 2.15 -23.03 -21.08
L1 D-Cache -41.28 -3.95 -5.54 -18.79 -13.92 -16.29 -9.62 -17.56
L2 Cache -44.46 -8.12 -5.30 -25.22 -17.30 -8.66 -8.49 -17.75
ALU -36.86 -6.93 -8.44 -21.52 -15.99 -9.80 -8.17 -20.90
Result Bus -18.23 1.97 -8.38 -12.35 -15.08 -10.97 -7.60 -21.38

Table 4: The percentage change in power consumed by each component under DSSWattch’s CC3 power
model resulting from the loop optimizations examined.
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Figure 3: A comparison of the change in instructions per cycle, to the change in power consumed per cycle
measured by the CC1, CC2, and CC3 power models for early optimizations.
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Figure 4: A comparison of the change in instructions per cycle, to the change in power consumed per cycle
measured by the CC1, CC2, and CC3 power models for loop optimizations.

in two of the remaining optimizations.

Although this study did not directly focus on the effects
of instruction scheduling, it is interesting to examine the
change in the number of instructions committed per cycle
(IPC), in comparison to the change in power consumed per
cycle (PPC), as displayed in Figures 3 and 4. The amount
of instruction-level parallelism increased in almost all of the
loop benchmarks and accordingly, so did the PPC, given
that more functional units were utilized per cycle. The num-
ber of IPC were unaffected in most of the early optimizations
except for copy propagation and value numbering, where
the IPC was reduced by 0.14 and 0.08, respectively. In fu-
ture work we intend on examining the effects of instruction
scheduling in conjunction with each optimization.

5. CONCLUSION
This study examined the effects of a substantial collection
of early and loop compiler optimizations on both the execu-
tion time and power consumption in the DSSWattch simu-
lation environment. Examples of each of the optimizations
were translated from [8] into PowerPC assembly and simu-
lated by DSSWattch. Application of each optimization in
isolation resulted in an overall average improvement in per-
formance of 4.8% and a 6.2% decrease in power consump-
tion for the early optimizations, and an average speed-up
of 17.0% and average power savings of 15.3% for the loop
optimizations. The improvements resulting from the loop
optimizations were found to be closely tied to the decrease
in the number of instructions committed, which on average

was 14.1%. As a result of these findings, the earliest opti-
mization level of an adaptive dynamic optimizer should at
least include constant propagation, constant folding, copy
propagation, and value numbering. Additionally, the com-
piler should be sufficiently sophisticated such that it can
carry out the analysis required to perform all of the loop
transformations examined in this study.

Unfortunately, although DSSWattch does differentiate be-
tween the amount of power consumed by integer and floating-
point operations, it does not assign a cost to individual in-
structions. This precluded the examination of optimizations
such as strength reduction, which often replaces a complex
instruction sequence with a longer sequence consisting of
simpler instructions. The application of strength reduction
may have resulted in a performance increase, however, under
DSSWattch’s current power model it would have incorrectly
reported an increase in power consumption, as a result of
the increased instruction count. In future work the amount
of power consumed by various instructions will be scaled in
order to capture more accurate results.

If the findings of this study are to be applied as a criteria
for the selection of the optimizations which are appropriate
at each optimization level in an adaptive dynamic optimiz-
ing compiler, then the cost of performing each optimization
must be studied further. In conjunction with this paper, the
performance, and power impacts of applying each transfor-
mation at run-time must be factored into the level formation
process. For example, if this study found that a specific op-



timization provided a 3% performance improvement and a
2% savings in power, however, performing the optimizations
is expensive in terms of both time and power, then it may
be more suitable for inclusion at a higher optimization level
such as -O3 rather than -O1.
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