
Efficient Parallel Solution of Sparse Systems of Linear Diophantine Equations†

Mark Giesbrecht

Department of Computer Science
University of Manitoba

Winnipeg, Manitoba, Canada, R3T 2N2
Email: mwg@cs.umanitoba.ca

Abstract
We present a new iterative algorithm for solving large sparse
systems of linear Diophantine equations which is fast, prov-
ably exploits sparsity, and allows an efficient parallel im-
plementation. This is accomplished by reducing the prob-
lem of finding an integer solution to that of finding a very
small number of rational solutions of random Toeplitz pre-
conditionings of the original system. We then employ the
Block-Wiedemann algorithm to solve these preconditioned
systems efficiently in parallel. Solutions produced are small
and space required is essentially linear in the output size.

1 Introduction
Computing integer solutions to systems of linear Diophan-
tine equations is a classical mathematical problem with
many interesting applications in number theory (see, e.g.,
Cohen 1993), group theory (see, e.g., Newman 1972) and
combinatorics (see, e.g., Gibbons 1996). Given an input
matrix A ∈ Zn×n and vector w ∈ Zn×1, the problem is
to find integer vectors v ∈ Zn×1 such that Av = w. It
appears to be considerably harder to compute integer solu-
tions than solutions over Q or more general fields, the main
difficulty being controlling (potentially exponential) inter-
mediate expression swell. Moreover, in practice many of the
matrices encountered are sparse (lots of entries are zero) and
it is desirable to exploit this in our algorithms (see, e.g.,
Hafner & McCurley 1989). For matrices over fields this has
been accomplished admirably by the algorithms of Wiede-
mann (1986), Coppersmith (1994), Kaltofen (1995) and Vil-
lard (1997). The latter algorithms are also extremely well-
suited to a coarse-grained parallel implementation. In this
paper we show how to achieve similar success with sparse
integer matrices, producing integer solutions of small size
while eliminating intermediate expression swell and fill-in.
Our algorithm gives a substantial improvement for sparse

†Research was supported in part by Natural Sciences and Engi-
neering Research Council of Canada research grant OGP0155376.

Appears in the Proceedings of PASCO’97: ACM International
Symposium on Parallel Symbolic Computation, 1997,
pp. 1-10.

matrices, at least asymptotically, over the best known al-
gorithms (see below) in both sequential and coarse-grained
parallel implementations. The main result we demonstrate
is (summarized from Corollary 5.4):

Let A ∈ Zn×n with rank r and w ∈ Zn×1, and as-
sume a solution v ∈ Zn×1 to Av = w exists. Let
% = r log ‖A‖ + r log r + log ‖w‖ and suppose we are
computing on a network of N ≤ r% processors.

• We can find a v ∈Zn×1 such that Av = w with an
expected number of O (̃r%/N) matrix-vector prod-
ucts by A modulo primes with O(logn+log %) bits.

• The output v satisfies log ‖v‖ = O (̃r logn+ %).

• An additionalO (̃r2+rn%/N+nM(%)/min(n,N))
bit operations are executed simultaneously by each
processor.

• Each processor requires additional storage for
O (̃n + n%/min(n, N)) words (not including pos-
sibly shared images of A modulo single-word
primes).

Here ‖A‖ = maxij |Aij| (similarly for ‖v‖, ‖w‖).
The algorithm is probabilistic and solutions produced are
guaranteed correct; if a solution exists for a particular input,
any invocation of the algorithm on that input produces a so-
lution with probability at least 1/2. O(M(l)) bit operations
are required to multiply two integers with l bits (M(l) = l2

with standard arithmetic and M(l) = l log l log log l us-
ing FFT-based methods). For convenience we occasion-
ally use “soft-Oh” notation in our cost analyses: for any
f, g : Rl→ R, f = O (̃g) if and only if f = O(g · logc g) for
some constant c > 0.

Like the algorithms of Wiedemann (1986) and Copper-
smith (1994) which motivated this work, we employ the so-
called “black-box” paradigm, in which a matrix is defined
by its action on vectors by matrix-vector product. Individ-
ual entries of the input matrix are not manipulated directly.
Clearly a matrix with lots of zero entries will have a fast
black box. As in Giesbrecht (1996) we adapt this technique
to integer matrices by working with matrix-vector products
modulo word-sized primes. Our goal then is to demonstrate
comparable results with Diophantine linear systems as have
been obtained for systems over a field.

Early attempts at solving systems of linear Diophan-
tine equations go back at least to Blankinship (1966),
Borosh & Fraenkel (1966) and Bradley (1971), while the
first polynomial-time solution appears in Kannan & Bachem
(1979). Since then, there have been many improvements;
see, e.g., Chou & Collins (1982), Iliopolous (1989), Havas et

1

al. (1993), Havas & Majewski (1994), Storjohann & Labahn
(1996) and Storjohann (1996). Most of these methods
proceed by computing a triangular (Hermite) or diagonal
(Smith) form of A with multiplier matrices, from which the
space of solutions to the system is easily determined. Stor-
johann (1996) presents the asymptotically best solution to
date:

On input A ∈ Zm×n and w ∈ Zm×1, with m ≤ n, a
vector v ∈ Zn×1 such that Av = w can be found with
O (̃nm3 log2(‖A‖+ ‖w‖) +m4 log3(‖A‖+ ‖w‖)) bit op-
erations using standard integer and matrix arithmetic.
The output v ∈ Zn×1 satisfies log ‖v‖ = O(m log(m) ·
(log ‖A‖+ log ‖w‖)).

This is probably close to the best possible asymptotic cost
for dense matrices without resorting to non-standard matrix
arithmetic, and is very close to the cost of finding a rational
solution to the same system. By comparison, our new al-
gorithm, implemented sequentially (N = 1), performs com-
parably — even marginally better — on dense input, and
substantially better on sparse input:

On input A ∈ Zm×n with O(nmξ) non-zero elements
(for some 0 ≤ ξ ≤ 1) and w ∈ Zm×1, with m ≤ n,
a vector v ∈ Zn×1 such that Av = w can be found
with an expected number of O (̃nm2+ξ log(‖A‖+‖w‖)+
nm2 log2(‖A‖+‖w‖)) bit operations using standard in-
teger and matrix arithmetic. The output v ∈Zn×1 sat-
isfies log ‖v‖ = O (̃m logn+m log ‖A‖+ log ‖w‖).

The basic idea behind our algorithm is to solve the leading
r × r system (where r = rankA) of a small set of equiva-
lent, random Toeplitz preconditionings of the original sys-
tem over Q. Let U,L ∈ Zn×n be “random” unimodular
upper and lower triangular Toeplitz matrices respectively,
and consider solving the system UALv = Uw. Kaltofen &
Saunders (1991) showed that over a field the leading r × r
submatrix Br of UAL is strongly non-singular, and by solv-
ing this system we quickly obtain as solution v̂ ∈ Qn×1 to
Av̂ = w. In Section 2 we extend Kaltofen & Saunders’ re-
sult by noting that if d1, . . . , dr ∈ Zare the determinantal
divisors of A (where the kth determinantal divisor of A is
the GCD of all k× k minors of A), and p is a “large” prime
dividing dk, then the order of p in the leading k × k mi-
nor of B equals the order of p in dk with high probability
(where the order of a prime in an integer is the number of
times it divides that integer). Moreover, with high prob-
ability p does not divide the denominators of any of the
coefficients of the obtained solution v̂. This is proven by
examining the solution space of the preconditioned system
in the p-adic closure Qp of Q. By considering a very small
number (≈ log log(n + ‖A‖)) of preconditioned systems we
hopefully obtain a set of rational solutions whose denom-
inators are relatively prime, from which we can construct
an integer solution vector. We prove that using the above
technique we can efficiently find a solution whose coefficients
have “smooth” denominators, i.e., only divisible by primes
less than 2r(r+1). This method is realized in the algorithm
SmoothSolver in Section 3.

Unfortunately our analysis fails for small primes dividing
dr (even if the algorithm does not seem to fail often in prac-
tice). The problem stems from the failure of the inequality
used to bound away from zero the probability of getting a
non-zero of a multi-variate polynomial (the so called Zippel-
Schwartz Lemma) in this case. To overcome this we consid-
erably extend a technique developed in Giesbrecht (1995)
and work in a very small number of orders of number fields
of small degree over Q such that each small prime dividing

dr remains inert in at least one of these orders (the number,
degree, and height of these orders is logarithmic in r). While
these orders are no longer principal ideal domains (and hence
much of the mathematical structure characterizing Diophan-
tine solutions no longer exists), their localizations at these
inert primes are PID’s and we think of our algorithms as
working in these p-adic closures (even when they really just
compute in a small number field). We prove that rational
solutions obtained by preconditioning with random Toeplitz
matrices over these orders, and solving over their quotient
number fields, are free of small primes dividing their denom-
inators with high probability.

The algorithms for generating these orders with specified
inert primes, and the theory for working with their localiza-
tions is presented in Section 4. Finally, in Section 5 we
present an algorithm RefineToDiophantine which takes a
smooth rational solution and produces a Diophantine solu-
tion. The structure of this algorithm is almost identical to
that of SmoothSolver except for the computation in number
fields; the cost is within a poly-logarithmic factor.

Definitions and Notation

We denote by Fp the finite field with p elements (not to be
confused with the p-adic integers Zp, to be introduced later).

We define a height function on Q as follows. For a, b ∈
Zwith gcd(a, b) = 1, we define the height of a/b ∈ Q as
H(a/b) = max{|a|, |b|}. The norm of a matrix B ∈ Qm×n

is defined as ‖B‖ = maxij H(Bij) and of a polynomial g =P
0≤i≤m bix

i ∈ Q[x] as ‖g‖ = maxiH(bi).

For integers n and k ≤ n, define Cnk = {(c1, . . . , ck) ∈
Nk : 1 ≤ c1 < · · · < ck ≤ n}. In a ring R, with B ∈ Rm×n,
σ = (b1, . . . , bk) ∈ Cmk and τ = (c1, . . . , ck) ∈ Cnk define the
submatrix B

�
σ
τ

�
:

B

"
σ

τ

#
=

0
B@
Bb1c1 · · · Bb1ck

...
...

Bbkc1 · · · Bbkck

1
CA ∈ Rk×k,

and the (k× k) minor B
�
σ
τ

�
= detB

�
σ
τ

�
∈ R.

2 Conditions for Diophantine solutions
In this section we present the necessary mathematical un-
derpinnings to our algorithm for solving Diophantine equa-
tions. Much of this section is presented abstractly for prin-
cipal ideal domains. We typically apply these theorems to
localizations of Zand more general orders of number fields.

Smith dominant matrices over PID’s

Let R be a principal ideal domain and K its field of fractions.
We write a ∼ b if there exists a µ ∈ R∗ such that a =
µb. Let B ∈ Rn×n of rank r with non-zero determinantal
divisors d1, . . . , dr ∈ R. We say that B is Smith dominant if
B
�

1...k
1...k

�
∼ dk for 1 ≤ i ≤ r. Note that if R is a field, Smith

dominant matrices are exactly those which are strongly non-
singular, that is, all leading minors are non-zero.

Theorem 2.1. Let B ∈ Rn×n be Smith dominant of rank
r with non-zero determinantal divisors d1, . . . , dr and w ∈
Rn×1. There exists a solution v ∈ Rn×1 such that Bv =
w if and only if there exist v1, . . . , vr ∈ R such that
B(v1, . . . , vr, 0, . . . , 0)t = w.

2

Remark 2.2. Since B
�
1...r
1...r

�
∼ dr 6= 0, (v1, . . . , vr)

t is the

unique solution in Kr×1 of

B

"
1 . . . r

1 . . . r

#0B@
v1

...
vr

1
CA =

0
B@
w1

...
wr

1
CA .

where w = (w1, . . . , wn)t.

Proof. Since B is Smith dominant, standard unimodular
row and column elimination on B (without pivoting) yields
the factorization B = XSY , where X ∈ Rn×n is lower trian-
gular with ones on the diagonal, Y is upper triangular with
ones on the diagonal and S = diag(s1, . . . , sr, 0, . . . , 0) ∈
Rn×n is the Smith form of B (that is s1 ∼ d1 and si ∼
di/di−1 for 2 ≤ i ≤ r). Then Bv = w ⇐⇒ XSY v =
w ⇐⇒ SY v = X−1w ⇐⇒ Sv̂ = ŵ, where v̂ = Y v and
ŵ = X−1w. Suppose there exists a solution v ∈ Rn×1 to
Bv = w. Then there exists a v̂ ∈ Rn×1 such that Sv̂ = ŵ,
and we can choose v̂ = (v̂1, . . . , v̂r, 0, . . . , 0)t ∈ Rn×1 (since
columns r+ 1 . . . n of S are all zeros). This yields v = Y −1v̂
as a solution to Av = w and v = (y1, . . . , yr, 0, . . . , 0) ∈
Rn×1 since Y −1 is also upper triangular. The converse is
trivial.

Toeplitz preconditioning into Smith dominant form

Let R be a principal ideal domain and K its field of quotients.
Define

U =

0
BBBBBB@

1 x2 x3 · · · xn

1 x2

. . .
...

. . .
. . .

...
1 x2

1

1
CCCCCCA
, L =

0
BBBBBB@

1
y2 1

y3 y2

. . .
...

. . .
. . .

. . .
yn · · · y3 y2 1

1
CCCCCCA

where Λ = {x2, . . . , xn−1, y2, . . . , yn−1} is a set of alge-
braically independent indeterminates over K.

Theorem 2.3. Let A ∈ Rn×n have rank r and B = UAL ∈
R[Λ]n×n. For 1 ≤ k ≤ r we have cont(B

�
1...k
1...k

�
) ∼ dk, where

dk is the kth determinantal divisor of A and cont(B
�
1...k
1...k

�
)

is the content (GCD of all non-zero coefficients) of B
�

1...k
1...k

�
.

Proof. Using a Binet-Cauchy minor expansion (see Gant-
macher 1990, p. 9), we have

B

1 . . . k

1 . . . k

!
=

X
σ,τ∈Cn

k

U

1 . . . k

σ

!
L

τ

1 . . . k

!
·A

σ

τ

!
.

Under the variable ordering x2 < · · · < xn and y2 < · · · <
yn, Kaltofen & Saunders (1991) show that the lexicographi-

cally smallest term of U
�
1...k
σ

�
and L

�
τ

1...k

�
are unique to this

choice of σ, τ . Thus the polynomials fσ,τ = U
�

1...k
σ

�
L
�
τ

1...k

�
∈

R[Λ] are linearly independent over K, and in fact over any
quotient field R/pR for any prime p ∈ R. Let p be a prime
in R and l = ordp(dk), the order of p in dk. Clearly,

pl | cont(B
�
1...k
1...k

�
). Suppose pl+1 | cont(B

�
1...k
1...k

�
). Then

X
σ,τ∈Cn

k

U

1 . . . k

σ

!
L

τ

1 . . . k

!
·A

σ

τ

!
/pl

=
X

σ,τ∈Cnk

fσ,τ ·A

σ

τ

!
/pl ≡ 0 mod p.

This implies the fσ,τ ’s are linearly dependent modulo p or
that A

�
σ
τ

�
≡ 0 mod pl+1 for all σ, τ ∈ Cnk . The latter state-

ment is false by our definition of l, and the former leads to
a contradiction. Thus ordp dk = ordp cont(B

�
1...k
1...k

�
) for all

p ∈ R, whence dk ∼ cont(B
�
1...k
1...k

�
).

We can use the above theorem to precondition a matrix
into Smith dominant form with high probability. We will
employ the “Zippel-Schwartz” lemma to bound the proba-
bility of obtaining a zero of a multi-variate polynomial:

Fact 2.4 (Zippel 1979, Schwartz 1980). Assume
f ∈ D[x1, . . . , xk] is non-zero, D an integral domain,
and V a finite subset of D. Suppose elements a1, . . . , ak
are randomly and uniformly chosen from V . Then
Prob{f(a1, . . . , ak) = 0 : a1, . . . , ak ∈ V} ≤ deg(f)/#V .

Theorem 2.5. Let A ∈ Rn×n with rank r and determinan-
tal divisors d1, . . . dr ∈ R. Let p ∈ R a prime in R and V a
finite subset of R whose elements are in distinct cosets mod-
ulo p. Suppose u2, . . . , un, l2, . . . , ln are chosen randomly
and uniformly from V and we construct B = UAL, where

U =

0
BBBBBB@

1 u2 u3 · · · un

1 u2

. . .
...

. . .
. . .

...
1 u2

1

1
CCCCCCA
, L =

0
BBBBBB@

1
l2 1

l3 l2
. . .

...
. . .

. . .
. . .

ln · · · l3 l2 1

1
CCCCCCA

(2.1)

Then

Prob
n

ordpB

1 . . . k

1 . . . k

!
= ordp dk ∀k : 1 ≤ k ≤ r

o

≥ 1− r(r + 1)

#V .

Proof. For any k,

B

1 . . . k

1 . . . k

!
= dk · fk(u2, . . . , un, l2, . . . , ln)

for some fk ∈ R[x2, . . . , xn, y2, . . . , yn] with content
1 and degree 2k by Theorem 2.3. Thus p has
the same order in B

�
1...k
1...k

�
as in dk if and only

if fk(u2, . . . , un, l2, . . . , ln) 6≡ 0 mod p. Since all ele-
ments of V are in distinct cosets modulo p, by Fact
2.4, fk(u2, . . . , un, l2, . . . , ln) ≡ 0 mod p with prob-
ability at most 2k/#V . Thus the probability of
fk(u2, . . . , un, l2, . . . , ln) ≡ 0 mod p for any 1 ≤ k ≤ r is
at most

P
1≤k≤r(2k)/#V = r(r + 1)/#V .

The following simple lemma allows us to solve a precon-
ditioned system to obtain a solution to the original system.

Lemma 2.6. Let A ∈ Rn×n and w ∈ Rn×1. Let U,L ∈ Rn×n

with detU,detL ∈ R∗ and B = UAL. Then v̄ ∈ Rn×1 is a
solution to Bv̄ = Uw if an only if v = Lv̄ is a solution to
Av = w.

Proof. For the forward direction, assume v̄ is a solution
to Bv̄ = Uw. Then

Bv̄ = Uw =⇒ UALv̄ = Uw =⇒ ALv̄ = w =⇒ Av = w,

since U is invertible in Rn×n. Conversely, if ALv̄ = w then
UALv̄ = UALv̄ = Bv̄ = Uw.

3

Localizations of Zand Q

It will be convenient to consider the localizations of Q and
algebraic number fields at a prime p. We identify the p-
adic integers Zp and p-adic rationals Qp with the (infinite)
Laurent series

Zp =

8<
:
X

0≤i<∞
aip

i : ai ∈ {0, . . . , p− 1}

9=
; ,

Qp =

8<
:

X
m≤i<∞

aip
i : ai ∈ {0, . . . , p− 1}, m ∈Z

9=
;,

under the usual arithmetic. A useful reference for general lo-
calizations is Lang (1986), and for p-adic numbers and anal-
ysis is Cassels (1986). Clearly Zp ⊆ Qp and Z⊆ Zp. Also,
if v ∈Zis relatively prime with p then 1/v ∈Zp by Hensel’s
Lemma (essentially p-adic Newton iteration – see Cassels
(1986), Lemma 3.1). Since any element in Q can be writ-
ten as peu/v, where e ∈ Z, u, v ∈ Zand gcd(v, p) = 1,
we see that Q ⊆ Qp. If a =

P
m≤i<∞ aip

i ∈ Qp for

ai ∈ {0, . . . , p− 1} and am 6= 0, we define the p-adic order
of a as ordp(a) = m and the p-adic norm of a as |a|p = p−m

with |0|p = 0. Thus Zp = {a ∈ Qp : |a|p ≤ 1}.

Parallel modular computation over Q

We next summarize for convenience a standard homomor-
phic scheme for parallel computing over Q (see Wang et al.
1982, Collins & Encarnación 1995). Let Ψ : Qs→ Qt be a
function we wish to compute and suppose that we know a
quickly computable (“upper bound”) function τ : Qs → R
such that τ(x̄) ≥ max{‖x̄‖, ‖Ψ(x̄)‖}; the cost of computing
τ is assumed to be dominated by that of other computa-
tions. Suppose also that for all primes p ∈ Z, except for
those in a finite set B ⊂ Z, we can compute Ψ(x̄) mod p
from input (x̄ mod p) with O(ψ(s)) operations in Fp; when
p ∈ B we can report this fact in the same amount of time.
For convenience we will assume that #B = (log(τ(x̄))O(1).

Following standard practice, we first construct a set
P ⊆ Zof sufficiently many small primes. We then com-
pute Ψ(x̄) mod p for randomly chosen p ∈ P, rejecting bad
primes as we encounter them. Finally, when the product of
the good primes chosen is at least 2τ(x̄)2, we recover the so-
lution by the Chinese remainder theorem and integer Padé
approximation (this is sufficiently many to recover numer-
ator, denominator and sign). See Wang et al. (1982). We
crudely estimate that at least ρ ≤ log2(2τ(x̄)2) good primes
are required, though much better estimates are easily com-
puted at run-time.

It is also convenient to allow for an n-point FFT to be
performed efficiently (so we may practically multiply poly-
nomials of degree up to n with O(n logn) operations). To

facilitate this, we choose primes p such that 2l | (p−1), where
l ≥ dlog2 ne. By Dirichlet’s density theorem on primes in
an arithmetic progression, it is easily derived that we can
efficiently construct a set P with #P ≥ 2(#B)+ρ such that
log p = O(logn+ log(#B) + log log τ(x̄)) for all p ∈ P (see,
e.g., Giesbrecht 1996, Section 3.2). For notational conve-

nience we assume that n = sO(1). From a practical point of
view, primes of this size should fit into a single (32-bit or
64-bit) machine word, and operations modulo such a prime
will have constant cost.

A randomly chosen prime (without replacement) will
be bad with probability at most 1/2. Thus we expect to
compute Ψ(x̄) mod p for 2ρ = O(log(τ(x̄))) primes p, and
the computation in Fp requires O(ψ(s) · (logn+ log(#B) +
log log τ(x̄))2) bit operations. Reduction of x̄ mod p for the
used primes p ∈ P requires O (̃s log ‖x̄‖ · log(τ(x̄))) bit op-
erations and recovery of the final integer solution require
O (̃t ·M(log τ(x̄))) bit operations; see Wang et al. (1982).

We summarize the sequential cost in the following theo-
rem.

Theorem 2.7. We can construct a probabilistic algorithm
which on any input x̄ ∈ Qs computes Ψ(x̄) ∈ Qt. The algo-
rithm requires an expected number of O (̃ψ(s) · log(τ(x̄)) +
s log(‖x̄‖) log(τ(x̄)) + t ·M(log(τ(x̄)))) bit operations. We
may assume in our cost function ψ the availability of a prac-
tical n-point FFT at cost O(n logn), where n = sO(1).

The computation modulo individual primes is indepen-
dent and hence can be parallelized in a straightforward man-
ner. The three stages of the algorithm, (i) reduction modulo
the prime base, (ii) local computation, and (iii) recovery of
global solutions, are analysed separately.

Theorem 2.8. We can construct a probabilistic algorithm
which on any input x̄ ∈ Qs computes Ψ(x̄) ∈ Qt which runs
in parallel on N processors:

(i) for N ≤ sρ, we can reduce x̄ mod p for the expected
number of ρ primes used from P with O (̃sρ log ‖x̄‖/N)
bit operations carried out simultaneously by each pro-
cessor;

(ii) for N ≤ ρ, we can compute Ψ(x̄ mod p) for the ex-
pected number of ρ primes p from P in an expected
number of O (̃φ(s) · ρ/N) bit operations carried out si-
multaneously by each processor;

(iii) for N ≤ t we can recover the solutions in Qt from im-
ages modulo ρ good primes in an expected number of
O (̃t·M(log(τ(x̄)))/N) bit operations carried out simul-
taneously by each processor;

where ρ = log(τ(x̄)). We may assume in our cost function ψ
the availability of a practical n-point FFT at cost O(n logn),

where n = sO(1).

3 Finding rational solutions with smooth
denominators

We present our algorithm for finding integer solutions to
systems of integer equations in two parts. The first part
is the basic algorithm and finds a rational solution whose
denominators are λ-smooth, that is, only primes less than
or equal to λ divide the denominators of the coefficients.
This algorithm appears to work well even with λ = 1 (and
hence obtains integer solutions), but unfortunately we can
only prove it for λ ≥ 2r(r + 1), where r is the rank of the
input matrix. A modification is then presented in Sections
5 to deal with the remaining case in a theoretically sound
way at an additional logarithmic factor in the cost.

For v ∈ Qn×1 we define the denominator of v to be
denom(v) = min{d ∈ Z>0 : dv ∈ Zn×1}, the least common
multiple of all the denominators of the coefficients (in lowest
terms) of v. For any λ > 0, we say that an integer b is λ-
smooth if all prime factors of b are less than or equal to λ
(or b = ±1 if λ = 1).

Our algorithm also has two additional parameters aside
from A and w:

4

• λ > 0: the returned solution should have a denomina-
tor which is λ-smooth. By setting λ = 1 we achieve
integer solutions.

• ε > 0: an error tolerance. If it is reported that “No In-
teger Solution Exists” then this is correct with proba-
bility at least 1−ε. If a solution is returned, it is always
correct. The need for such an error tolerance parame-
ter ε is also present in the underlying Wiedemann and
Block-Wiedemann algorithms for solving sparse singu-
lar systems over a field.

Algorithm: SmoothSolver

Input: – A ∈Zn×n and w ∈Zn×1;
– a smoothness bound λ > 0;
– an error tolerance ε > 0;

Output: – v ∈ Qn×1 where denom(v) is λ-smooth, or a re-
port “No Integer Solution Exists”;

(1) Compute r := rank(A), correct with probability at least
1− ε/2;

(2) β := 2r(r + 1); V := {−β/2, . . . , β/2} ⊆Z;
g := 0;

(3) For b := 1 to d1 + log2(1/ε)e Do
(4) For i := 0 to s :=

�
1 + log2(logλ(n2β2‖A‖))

�
Do

(5) Choose random u2, . . . , un, l2, . . . , ln ∈ V ;
“Build” a black box for B = UAL where U,L are as
in (2.1); Let Br = B

�
1...r
1...r

�
;

w̄ := Uw = (w̄1, . . . , w̄n)t ∈Zn×1;
(6) Solve Brv̄ = (w̄1, . . . , w̄r)

t for v̄ = (v̄1, . . . , v̄r) ∈
Qr×1 with black box for B
If Br is singular, goto (5);

(7) v(i) := L(v̄1, . . . , v̄r, 0, . . . , 0)t ∈ Qn×1;

δi := denom(v(i));

IfAv(i) 6= w then report “No solution to Diophantine
system exists”;

(8) g := gcd(g, δi);
End For;

End For;
If g is λ-smooth Then

(9) Find γ0, . . . , γs ∈Zsuch that
P

0≤i≤s γiδi = g;

(10) Return v := (1/g) ·
P

0≤i≤s γiδi · v
(i);

Else Report “No solution to Diophantine system exists”.
End If;

Theorem 3.1. The algorithm SmoothSolver works as spec-
ified. Suppose the input matrix A ∈ Zn×1 has (unknown)
rank r.

(i) If a solution v ∈ Qn×1 is returned, it is always correct;

(ii) log ‖v‖ = O (̃r logn+ r log ‖A‖+ log ‖w‖);
(iii) if λ ≥ 2r(r + 1) and a λ-smooth solution exists to the

system, a λ-smooth solution is found with probability
at least 1− ε.

Proof. The rank of A is obtained with probability at least
1− ε/2 via the algorithm of Kaltofen & Saunders (1991) as
generalized to integer matrices in Giesbrecht (1996).

For part (i), we note that A(δiv
(i)) = δiw for 0 ≤ i ≤ s.

Thus

Av = A

0
@(1/g)

X
1≤i≤s

γiδiv
(i)

1
A =

0
@(1/g)

X
1≤i≤s

γiδi

1
Aw = w

and denom(v) = g, which is λ-smooth by construction.
For parts (ii) and (iii), first consider an iteration of the

inner loop (4)-(8). We have

‖B‖ ≤ n2‖U‖ · ‖A‖ · ‖L‖ ≤ n2β2‖A‖ = O(n2r4‖A‖),
‖Uw‖ ≤ n‖U‖ · ‖w‖ ≤ nβ‖w‖ = O(nr2‖w‖).

Applying Hadamard’s bound and Cramer’s rule we find

log2 |δi| = O(r logn+ r log ‖A‖),
log ‖v̄‖ = O(r log r + r log ‖Br‖+ log ‖w̄‖)

= O(r logn+ r log ‖A‖+ log ‖w‖),
log ‖v(i)‖ = O(r logn+ r log ‖A‖+ log ‖w‖),

for 0 ≤ i ≤ s. Also, logλ δi ≤ logλ(n2β2‖A‖) is a (crude)
upper bound on the number of primes greater than λ which
can divide δi.

Assume that the rank r is calculated correctly in step
(1). Since B

�
1...r
1...r

�
is a non-zero polynomial in u2, . . . , un,

l2, . . . , ln of degree 2r, Br is non-singular with probability
at least 1 − 2r/(2r(r + 1)) = r/(r + 1) by Fact 2.4. Thus
we expect to execute steps (5) and (6) a constant number
of times for each iteration of the inner For loop. If a so-
lution to Av = w exists over Zit certainly exists over Q,
and by Lemma 2.6 v(i) will be such a solution (since Q is
a PID). Once the GCD of the denominators is λ-smooth,
we execute steps (9) and (10). Step (9) is probably best
done in practice by the algorithm of Majewski & Havas
(1995), but for a simpler analysis here we employ the al-
gorithm Iliopolous (1989) which finds γ0, . . . , γs ∈ Zsuch
that log |γi| = O(log max0≤i≤s |δi| · log s). The constructed
v thus satisfies

log ‖v‖ = log

0
@max

8<
:|g|,

X
0≤i≤s

γi‖δiv(i)‖

9=
;
1
A

= O((r logn+ r log ‖A‖)
· (log log logn+ log log log ‖A‖) + log ‖w‖)

or O (̃r logn+ r log ‖A‖+ log ‖w‖), which proves (ii).
To prove (iii) assume that an λ-smooth solution does

indeed exist. We show that with each iteration of the outer
For loop, the algorithm finds such a solution with probability
at least 1/2. Let p > λ be a prime dividing δ0. Since
#(V mod p) ≥ 2r(r + 1), by Theorem 2.5,

Prob

(
ordp B

1 . . . k

1 . . . k

!
= ordp dk ∀k : 1 ≤ k ≤ r

)
≥ 1/2.

If indeed ordp B
�
1...k
1...k

�
= ordp dk for all k (1 ≤ k ≤ r), the

image of B in Zn×np is Smith dominant. Thus by Theorem

2.1, the image of v̄ in Qr×1
p lies in Zr×1

p and the image of

v(i) in Qn×1
p lies in Zn×1

p , whence p - denom(v(i)). Thus,

the probability that p | denom(v(i)) for all 1 ≤ i ≤ s =
1+log2(logλ(n2β2‖A‖)) is at most (1/2) ·1/ logλ(n2β2‖A‖).
The probability this is true for any prime p ≥ λ dividing δ0
is thus at most 1/2, since there are at most logλ(n2β2‖A‖)
such primes. By executing the outer For loop 1 + log2(1/ε)
times we ensure that if a solution exists (and we obtained
the rank correctly), we will find a solution with probability
at least 1 − ε/2. Since the rank is correct with probability
1− ε/2, the theorem follows.

5

We will employ the Wiedemann and Block-Wiedemann
linear equation solvers over a finite field, as developed in
Wiedemann (1986), Kaltofen & Saunders (1991) and Cop-
persmith (1994), and analysed in Kaltofen (1995).

Fact 3.2. Suppose we are given a black box for a non-
singular matrix B ∈ Kr×r and vector w̄ ∈ Kr×1 over a field
K with at least 16r2 elements. On a network of N ≤ r
processors we can solve Bv̄ = w̄ for v̄ ∈ Kr×1 with an ex-
pected O(r/N) matrix-vector products by B and O(r2 log r)
operations in K, executed simultaneously on each processor
(assuming an r-point FFT is available in K). Each proces-
sor requires additional storage for O(r) elements of K (not
including a possibly shared image of B).

This algorithm can be applied to non-singular rational
matrices as a direct application of the techniques of The-
orem 2.8. See Kaltofen & Saunders (1991) for a different
approach.

Theorem 3.3. Suppose we are given a black box for a non-
singular matrix B ∈Zr×r and vector w̄ ∈Zr×1 and wish to
solve Bv̄ = w̄ for v̄ ∈ Qr×1. Let % = r log ‖B‖ + r log r +
log ‖w̄‖. On a network of N ≤ r% processors we can solve
for v̄ with an expected O (̃r%/N) matrix-vector products by
B modulo (single-word) primes with O(log r+log log(‖B‖+
‖w̄‖)) bits. An additional O (̃r2 +rM(%)/min(r,N)) bit op-
erations is executed simultaneously by each processor. Each
processor requires additional storage for O(r%/min(r,N))
words (not including possibly shared images of B modulo
single-word primes).

Proof. To apply Theorem 2.8, we need only note that the
only bad primes are those which divide the determinant of
B, and there are at most O(r(log r+log ‖B‖)). It is also gen-
erally convenient to eliminate small primes (say those less
than 16r2) to allow the Wiedemann and Block-Wiedemann
algorithms to (provably) work without the use of field ex-
tensions.

We are parallelizing the linear solver in two different
ways. First, we break the problem into an expected % in-
dependent problems modulo % distinct primes. Second, for
each prime we use up to r processors to solve a non-singular
system over a finite field via the Block-Wiedemann algo-
rithm. Here % is a crude upper bound on the logarithm of
the absolute value of the coefficients in the unique solution.

A potential bottleneck is the recovery of rational solu-
tions: each of the r entries in the solution vectors is re-
covered independently from its modular images on up to r
processors. If M(%) = %2 then the recovery phase potentially
dominates the overall cost, at least in theory.

Theorem 3.4. Let A ∈ Zn×n of (unknown) rank r ≤ m,
w ∈ Zn×1, λ > 0 and ε > 0 be as in the input to
SmoothSolver. Let % = r log ‖A‖ + r log r + log ‖w‖ and
suppose we are computing on a network of N ≤ r% proces-
sors.

(i) If a λ-smooth solution v ∈ Qn×1 to Av = w ex-
ists, SmoothSolver finds one with an expected num-
ber of O (̃r%/N) matrix-vector products by A mod-
ulo primes with O(logn + log %) bits. An additional
O (̃r2 + rn%/N + nM(%)/min(n, N)) bit operations is
executed simultaneously by each processor.

(ii) If no λ-smooth solution v ∈ Qn×1 to Av = w ex-
ists, SmoothSolver requires an expected number of

O (̃(r%/N)·log(1/ε)) matrix-vector products by A mod-
ulo primes with O(logn + log %) bits. An additional
O (̃(r2 +rn%/N +nM(%)/min(n,N)) · log(1/ε)) bit op-
erations is executed simultaneously by each processor.

Each processor requires storage for an additional O(n +
n%/min(n,N)) words (not including possibly shared images
of A modulo single-word primes).

Proof. The inner For loop iterates O(log logn +
log log ‖A‖) times. If a solution exists, we expect the outer
loop to iterate twice. If no solution exists, the outer For
loop iterates O(log(1/ε)) times.

Each evaluation of the black box for y 7→ Bry where
y = (y1, . . . , yr)

t ∈ Zr×1 is performed by evaluating
UAL(y1, . . . , yr, 0, . . . , 0)t = (z1, . . . , zn)t, and returning
(z1, . . . , zr)

t = Bry. Pre-multiplication by a unit triangular
Toeplitz matrix takes O(n logn) operations in the ground
field assuming an n-point FFT (see Kailath 1980). Thus
each matrix-vector product by Br requires one black box
evaluation of A modulo primes with O(log r+ log log(‖B‖+
‖w̄‖)) or O(logn + log %) bits, plus O(n logn) additional
operations modulo primes of this same size. The linear sys-
tem Br v̄ = w̄ in step (6) is then solved using the Block-
Wiedemann method described in Theorem 3.3. The algo-
rithm Iliopolous (1989), which finds γ0, . . . , γc ∈Z, requires
O((log logn+ log log ‖A‖) · (log r + log logn+ log log ‖A‖) ·
M(r logn + r log ‖A‖)) or O (̃M(r log ‖A‖)) bit operations,
which we will execute on a single processor. Finally, to re-
cover the solutions in Zn×1 requires O (̃nM(%)) for the Chi-
nese remainder algorithm and integer Padé approximation
on each coefficient (see Bach & Shallit 1996).

4 Constructing orders of number fields
with selected inert primes

The main theoretical hurdle to be overcome in finding Dio-
phantine solutions (instead of just solutions with smooth
denominators) is that the Zippel-Schwartz lemma fails us
for small primes dividing the determinantal divisors. Our
solution is to work in a collection of small extension rings
overZ. Recall that an order of a number field is a submodule
of the ring of integers of a number field (see, e.g., Cassels
(1986), Chapter 10) and contains Zas a subring. In this
section we describe how to construct orders of number fields
such that certain primes remain inert (i.e., the ideals they
generate remain prime) of some prescribed degree. We also
discuss some useful properties of the p-adic integral closures
of these orders which will be important in the next section.

For any η ∈ N, and s ∈ R>0 define M(η; s) = {g ∈
Z[z] : g monic,deg g = η, ‖g‖ ≤ s}.

Algorithm: BuildOrders

Input: – η ∈Zand primes p1, . . . , pκ ∈ {2, . . . , τ};
Output: – a set G ⊆ M(η; ητ) such that for each i ∈

{1, . . . , κ}, there exists a Γi ∈ G with Γi mod pi
irreducible in Fpi [z].

(1) Repeat
(2) Let P := {1, . . . , κ}; G := {};
(3) Let l := 8η log(2κ);
(4) For j := 1 to l do
(5) Choose a random hj ∈M(η; ητ);
(6) For all i ∈ P do
(7) If hj mod pi ∈ Fpi [z] is irreducible in Fpi [z]

Then P := P \ {i}; G := G ∪ {hj};

6

End For;
End For;

Until P = {};
(8) Return G.

Theorem 4.1. The algorithm BuildOrders always pro-
duces the correct results as described and requires an ex-
pected number of O((η3 + η2 log τ) · κη log κ · log2 τ) bit op-
erations. Also, #G = O(η log κ) and for all g ∈ G, ‖g‖ ≤ ητ .

Proof. First, for any prime p and η ∈ N, define

Mp(η) = {g ∈ Fp[z] : g monic,deg g = η} =M(η; ητ) mod p.

For a randomly chosen h ∈ Mp(η) and η ≥ 3, the probabil-
ity that h is irreducible in Fp[z] is at least

1

η

X
d | η

µ(d)qη/d ≥ pη

η
− p(pη/2 − 1)

η(p− 1)
≥ 3pη

4η

by Lidl & Niederreiter (1983), Exercise 3.27. If we choose h
randomly and uniformly from M(η; ητ), h mod p falls into
any particular residue class in Mp(η) with probability at
least (b(2ητ + 1)/pc/(2ητ + 1))η ≥ (1/p − 1/(2ητ + 1))η.
The probability that h mod p is irreducible in Fp[z] is at
least �

1

p
− 1

2ητ + 1

�η
· 3pη

4η
=

3

4η
·
�

1− p

2ητ + 1

�η

>
3

4η
·
�

1− 1

2η

�η
≥ 3

8η
.

For any fixed prime pi ∈ {p1, . . . , pκ}, the probability
that in a single iteration of the outer loop steps (2)-(7),
for all random choices in step (5), we do not choose an hj ∈
M(η; ητ) with hj mod pi irreducible in Fpi [z] is at most (1−
3/(8η))l. The probability that there exists any prime pi ∈
{p1, . . . , pκ} for which we do not choose such an hj is thus at

most κ · (1− 3/(8η))l < 1/2 by our choice of l = 8η log(2κ).
For each random choice of hi ∈ M(η; ητ) the inner

loop of steps (6)–(7) can be accomplished with an expected
number of O((η3 + η2 log τ) · κ · log2 τ) bit operations us-
ing Berlekamp’s (1970) factoring algorithm, and this loop
is executed l = 8η log(2κ) times per iteration of the outer
loop.

Heights and localizations of orders of number fields

Let Γ =
P

0≤i≤η γiz
i ∈ Z[z] be monic and irreducible of

degree η and θ = z mod Γ, so Z[θ] = Z[z]/(Γ) is an order
in Q(θ) and a sub-order of the maximal order O (the ring
of algebraic integers) in Q(θ). Computationally we repre-
sent Z[θ] with respect to the power basis {1, z, z2, . . . , zη−1},
where elements are uniquely represented by an integer poly-
nomial of degree less than η (under standard addition and
multiplication of polynomials, reduced modulo Γ).

We define a Height function H : Q(θ) → N as follows.
Let Θ ∈ Zη×η be the companion matrix of Γ. For a =P

0≤i<η aiθ
i ∈ Z[θ], define H(a) = ‖

P
0≤i<η aiΘ

i‖∞. It is

easily verified that

H(a) ≤
(
|a| if a ∈Z,

(max
0≤i<η

|ai|) · η(1 + ‖Γ‖)η−1 otherwise,

and that for a, b ∈Z[θ],H(ab) ≤ H(a) ·H(b) and H(a+ b) ≤
H(a) +H(b). Moreover, a can be represented as an integer
polynomial of degree less than η with O(logH(a)) bits.

We represent an element α ∈ Q(θ) by α = a/b, where
a ∈ Z[θ] as above and b ∈ Z is relatively prime to
gcd(a0, . . . , aη−1). Define H(α) = max{|b|,H(a)}. It is eas-
ily verified that for α ∈ Q, H(1/α) = H(α), while for gen-
eral α ∈ Q(θ),H(1/α) ≤ ηηH(a)η. We similarly extend ‖ · ‖
to matrices and polynomials over Q(θ): for B ∈ Q(θ)m×n,
‖B‖ = maxij H(Bij) and for g =

P
0≤i≤m bix

i ∈ Q(θ)[x],

‖g‖ = maxiH(bi).
Next suppose p ∈ Zis a prime such that Γ mod p is

irreducible in Fp[z]. The prime p remains inert in the ring
of integers O of Q(θ), that is, the ideal pO is prime in O.
This also implies that Z[z]/(p,Γ) ∼= Fpη , the finite field with
pη elements. We can adjoin a root θ = (z mod Γ) of Γ(z)
to Qp to obtain an extension field Qp(θ) ⊇ Qp, called the
localization of Q(θ) at p. Similarly, we have Zp[θ], a ring
extension of Zp containing Z[θ]. Zp[θ] is easily shown to be
a principal ideal domain (see Lang (1986), Section 2.1). It
is also easily verified that Zp[θ]/(p,Γ) ∼= Fpη (the residue
class field of Qp(θ)). Thus [Zp[θ] : Zp] = [Qp(θ) : Qp] = η
and {1, θ, θ2, . . . , θη−1} forms a Zp-basis for Zp[θ] and a Qp

basis for Qp(θ). We can extend the p-adic order and p-
adic norm to Qp(θ) by letting ordp(a) = min{ordp(ai) :
0 ≤ i < η} ∈ Zand |a|p = max{|ai|p : 0 ≤ i < η} ∈
R≥0 for a =

P
0≤i≤η aiθ

i ∈ Qp(θ) (where ai ∈ Qp). These
definitions agree with the p-adic norm and order on Qp on
its embedding in Qp(θ). We then identify Zp[θ] = {a ∈
Qp(θ) : |a|p ≤ 1}.

In the language of p-adic analysis, Qp(θ) is the unique
unramified extension field of degree η over Qp. Zp[θ] is the
integral closure ofZp inQp(θ), that is, the elements ofQp(θ)
which are roots of monic polynomials in Zp[z]. All this is in
some sense made possible because p (or rather the principal
ideal generated by p) remains prime in the ring of integers
of Q(θ). We obtain the following diagram of inclusions:

Q(θ) −−−−→ Qp(θ)

�
↗

x?? x?? @@
↖

Q Z[θ] −−−−→ Zp[θ] Qp

@@
↖ x?? x?? �

↗

Z −−−−→ Zp

The utility in these definitions is in the following ob-
servation. Suppose we wish to evaluate a rational function
Ψ ∈Z(x1, . . . , xn) (a quotient of integer polynomials) at a
point ā = (a1, . . . , an) ∈Z[θ]n, say b = Ψ(ā) ∈ Q(θ). Com-
putationally b is represented by a polynomial

P
0≤i<η biz

i ∈
Q[z]. To show that a prime p does not divide any of the
denominators of the bi’s, we can show that b ∈Zp[θ]. Since
Ψ ∈ Z(x1, . . . , xn) ⊆ Zp(x1, . . . , xn) and ā ∈ Zn ⊆ Znp, we
can view the computation as taking place over Zp[θ], which,
unlike Z[θ], is a PID. Obviously, this does not change the
algorithm, only our perception of the space on which it op-
erates.

7

5 Refining smooth solutions to Diophan-
tine solutions

We can now present our algorithm RefineToDiophantine to
refine a λ = 2r(r + 1)-smooth solution into a Diophantine
solution. The algorithm is very similar to SmoothSolver,
but works in a series of orders of number fields of very small
degree over Z.

Algorithm: RefineToDiophantine

Input: – A ∈Zn×n, r = rankA and w ∈Zn×1;

– v(0) ∈ Qn×1 such that Av(0) = w and
δ0 = denom(v(0)) is 2r(r + 1)-smooth;

– an error tolerance ε > 0;
Output: – v ∈ Zn×1 such that Av = w or a report “No

Integer Solution Exists”;
(1) Let p1, . . . , pκ ≤ 2r(r + 1) be the primes dividing δ0;
(2) Using BuildOrders on inputs η = dlog2(2r(r + 1))e and

p1, . . . , pκ, find a set G = {Γ1, . . . ,Γl} ⊆ Z[z] of monic
polynomials of degree η such that for each pi there exists
a Γj ∈ G such that Γj mod pi is irreducible in Fp[z];
Let θj = (z mod Γj);

(3) Let g := δ0;
(4) For c := 1 to d1 + log2(1/ε)e While g 6= 1 Do
(5) For i := 1 to s := d1 + log2(κ)e Do
(6) For j := 1 to l Do

(7) Let Vj = {
P

0≤k<η akθ
k
j : ak ∈ {0, 1}} ⊆Z[θj];

(8) Choose random u2, . . . , un, l2, . . . , ln ∈ Vj;
“Build” a black box for B = UAL with U,L as in
(2.1); Let Br = B

�
1...r
1...r

�
;

Let w̄ := Uw = (w̄1, . . . , w̄n)t ∈Z[θj]
n×1;

(9) Solve Br v̄ = (w̄1, . . . , w̄r)
t

for v̄ = (v̄1, . . . , v̄r)
t ∈ Q(θj)

r×1;
If Br is singular, goto (8);

(10) Let
P

0≤k<η v
(i,j)
k θk := L(v̄1, . . . , v̄r, 0, . . . , 0)t,

where v
(i,j)
k ∈ Qn×1 for 0 ≤ k < η;

Let v(i,j) := v
(i,j)
0 ∈ Qn×1

δi,j := denom(v(i,j));

If Av(i,j) 6= w then report “No solution to Dio-
phantine system exists”;

(11) Let g := gcd(g, δi,j);
End For;

End For;
End For;
If g = 1 Then

(12) Find γ0, γi,j ∈Zfor 1 ≤ i ≤ s and 1 ≤ j ≤ l such that
γ0δ0 +

P
γi,jδi,j = 1;

(13) Return v := γ0δ0v
(0) +

P
γi,jδi,jv

(i,j) ∈Zn×1;
Else Report “No solution to Diophantine system exists”.
End If;

Theorem 5.1. The algorithm RefineToDiophantine works
as specified.

(i) If a solution v ∈Zn×1 is returned, it is always correct;

(ii) log ‖v‖ = O (̃r logn + r log ‖A‖ + log ‖w‖) when

log ‖v(0)‖ is of this same order of size;

(iii) If an integer solution exists to the system, a solution is
found with probability at least 1− ε.

Proof. The proof follows in much the same way as Theo-
rem 3.1. For part (i), we note that A(δi,jv

(i,j)) = δi,jw for

1 ≤ i ≤ s and 1 ≤ j ≤ l. Thus

Av = A

0
BB@ X

1≤i≤s
1≤j≤l

γi,jδi,j · v(i,j)

1
CCA =

0
BB@ X

1≤i≤s
1≤j≤l

γi,jδi,j

1
CCA · w = w

and v ∈Zn×1

For parts (ii) and (iii), first consider an iteration of the
inner loop (7)-(11). We have

‖B‖ ≤ n2‖U‖ · ‖A‖ · ‖L‖ = O(n2 · ‖A‖ · (η(1 + ‖Γ‖)η−1)2)

‖Uw‖ ≤ n‖U‖ · ‖w‖ = O(n‖w‖ · η(1 + ‖Γ‖)η−1).

Applying Hadamard’s bound and Cramer’s rule we find

log ‖det(Br)‖ = O(r logn+ r log ‖A‖+ rη log ‖Γ‖),
log |δi,j | ≤ log ‖1/ det(Br)‖

= O(rη logn+ rη log ‖A‖+ rη2 log ‖Γ‖),
log ‖det(Br)v̄‖ = O(r logn+ r log ‖A‖+ log ‖w‖

+ rη log ‖Γ‖),
log ‖v(i,j)‖ = O(rη logn+ rη log ‖A‖+ log ‖w‖

+ rη2 log ‖Γ‖),

for 1 ≤ i ≤ s and 1 ≤ j ≤ l.
Since B

�
1...r
1...r

�
is a non-zero polynomial in u2, . . . , un,

l2, . . . , ln of degree 2r, Br is non-singular with probabil-
ity at least 1 − 2r/(2r(r + 1)) = r/(r + 1) by Fact 2.4.
Thus we expect to execute steps (8) and (9) a constant
number of times for each iteration of the inner For loop.
If a solution to Av = w exists over Zit certainly exists
over Q(θj), and by Lemma 2.6 v(i,j) will be such a solu-
tion (since Q(θj) is a field and PID). Once the GCD of the
denominators is one, we execute steps (12) and (13), as in
SmoothSolver. Iliopolous’s (1989) algorithm finds γij ∈ Z
such that log |γi,j| = O(log maxi,j |δi,j | · log(sl)). The con-
structed v satisfies

log ‖v‖ = log

0
BB@ X

1≤i≤s
1≤j≤l

γi,j‖δi,jv(i,j)‖

1
CCA

= O((rη logn+ rη log ‖A‖+ rη2 log ‖Γ‖) · log(rl)

+ log ‖w‖).

Since η = O(log r), l = O(log2 r) and log ‖Γ‖ = O(log2 r)
by Theorem 4.1, log ‖v‖ = O (̃r logn+ r log ‖A‖+ log ‖w‖)
which proves (ii).

To prove (iii) assume that a Diophantine solution does
indeed exist. We show that with each iteration of the outer
For loop, the algorithm finds such a solution with probability
at least 1/2. Let p ∈ {p1, . . . , pκ} and suppose that Γj ∈ G
is irreducible modulo p and θj = (z mod Γj). Let Bp be the
image of B in Zp(θj)

r×r . Since #(Vj mod p) ≥ 2r(r + 1),
by Theorem 2.5,

Prob

(
ordpBp

1 . . . k

1 . . . k

!
= ordp dk ∀k : 1 ≤ k ≤ r

)
≥ 1/2.

If indeed ordpBp
�
1...k
1...k

�
= ordp dk for all k (1 ≤ k ≤ r),

Bp is Smith dominant. Thus by Theorem 2.1, the image

8

of v̄ in Qp(θj)
r×1 lies in Zp[θj]

r×1, and the image of v(i,j)

in Qp(θj)
n×1 lies in Zp[θj]

n×1, whence p - denom(v(i,j)).

Since A ∈ Zn×n and w ∈ Zn×1, Av(i,j) = Av
(i,j)
0 = w and

Av
(i,j)
k = 0 for 1 ≤ k < η. Thus, the probability that

p | denom(v(i,j)) for all 1 ≤ i ≤ s is at most 1/(2κ) and the
probability this is true for any prime p ∈ {p1, . . . , pκ} is thus
at most 1/2. By executing the outer For loop d1 + log2(1/ε)e
times we ensure that if a solution exists, we will find one with
probability at least 1− ε.

Like SmoothSolver, RefineToDiophantine can be ap-
plied to rational matrices as a direct application of the tech-
niques of Theorem 2.8. We first examine the cost of solving
non-singular systems over a number field using the Block-
Wiedemann algorithm.

Theorem 5.2. Let Γ ∈ Z[z] be irreducible of degree η =
O(log r) with logH(Γ) = O(log2 r) and θ = (z mod Γ). Sup-
pose we are given a black box for a non-singular matrix B ∈
Z[θ]r×r and vector w̄ ∈ Z[θ]r×1 and wish to solve Bv̄ = w̄
for v̄ ∈ Q(θ)r×1. Let % = r log ‖B‖ + r log r + log ‖w̄‖. On
a network of N ≤ r% processors we can solve for v̄ with
an expected O (̃r%/N) matrix-vector products by B modulo
(single word) primes with O(log r + log %) bits. An addi-
tional O (̃r2 + rM(%)/min(r,N)) bit operations is executed
simultaneously by each processor. Each processor requires
additional storage for O (̃r%/min(r, N)) words (not includ-
ing possibly shared images of B modulo single-word primes).

Proof. We will apply Theorem 2.8 in a somewhat more
complicated way than in Theorem 3.3. The set B of bad
primes will consist of those primes p which either (i) divide
the discriminant of Γ (so Γ mod p is not squarefree; there
are O(η log η + η log ‖Γ‖) such primes), (ii) are such that
(detB mod p) is not a unit in the finite ring Z[z]/(Γ,p) (so
B is not invertible modulo p; there are O(η log η+ ηr log r+
ηr log ‖B‖) of these), or (iii) are less than 16r2 (there are
O(r2/ log(r)) of these). Thus #B is polynomial in the loga-
rithm of the output height O(r log r + r log ‖B‖).

After constructing a set of small primes P as in Theorem
2.8 (immediately eliminating those bad primes falling into
cases (i) and (iii) above), the computation proceeds by com-

pletely factoring (Γ mod p) ≡ Γ
(p)
1 · · ·Γ

(p)
k , where Γi ∈ Fp[z].

We then apply the block-Wiedemann algorithm over the fi-

nite fields Γ[z]/(Γ
(p)
i , p) for 1 ≤ i ≤ k (see Fact 3.2). The so-

lution is first recovered by the Chinese remainder algorithm
to get a solution in (Fp[z]/(Γ, p))r×1 and finally a solution
in Q(θ)r×1.

The execution costs can now be estimated as in Theorem
3.3.

Theorem 5.3. The algorithm RefineToDiophantine works

as stated on input A ∈Zn×n with rank r, w ∈Zn×1, v(0) ∈
Qn×1 with δ0 = denom(v(0)) being 2r(r + 1)-smooth, and
ε > 0. Let % = r log ‖A‖+ r log r + log ‖w‖ and suppose we
are computing on a network of N ≤ r% processors.

(i) If a Diophantine solution v ∈ Zn×1 to Av = w ex-
ists, RefineToDiophantine finds one with an expected
number of O (̃r%/N) matrix-vector products by A mod-
ulo primes with O(logn + log %) bits. An additional
O (̃r2 + rn%/N + nM(%)/min(n, N)) bit operations is
executed simultaneously by each processor.

(ii) If no Diophantine solution exists,
RefineToDiophantine requires an expected num-
ber of O (̃(r%/N) · log(1/ε)) matrix-vector products by
A modulo primes with O(logn+ log %) bits. An addi-
tional O (̃(r2 + rn%/N + nM(%)/min(n,N)) · log(1/ε))
bit operations is executed simultaneously by each
processor.

Each processor requires additional storage for O (̃n +
n%/min(n,N)) words (not including possibly shared images
of A modulo single-word primes).

Proof. The number of elements in G governs the number
l of iterations of the innermost For loop; by Theorem 4.1
l = O(log2 r). Thus we execute (7)-(11) an expected number
2ls = O(log3 r) times if a solution exists and O(log3(r) ·
log(1/ε)) times otherwise.

Each evaluation of the black box for y 7→ Bry where
y = (y1, . . . , yr)

t ∈ Z[θj]
r×1 is performed by evaluating

UAL(y1, . . . , yr, 0, . . . , 0)t = (z1, . . . , zn)t, and returning
(z1, . . . , zr)

t = Bry. Thus each matrix-vector product by
Br requires one black box evaluation of A modulo primes
with O(log r + log log(‖B‖+ ‖w̄‖)) or O(log n+ log %) bits,
plus O(n logn · η log η) additional operations in Z[z]/(p,Γ)
for primes p of this same size. The linear system Brv̄ = w̄ in
step (6) is then solved using the Block-Wiedemann method
described in Theorem 5.2. The remaining cost analysis fol-
lows in the same manner as Theorem 3.4.

Given A ∈Zn×n and w ∈Zn×1, a complete algorithm for
finding a Diophantine solution v ∈Zn×1 such that Av = w
is obtained by first applying SmoothSolverwith smoothness
bound λ = 2r(r + 1) (to get a solution with λ-smooth de-
nominator) followed by RefineToDiophantine (using the λ-

smooth solution as additional input v(0)). We immediately
obtain the following corollary.

Corollary 5.4. Let A ∈Zn×n with rank r, w ∈Zn×1 and
ε > 0. Let % = r log ‖A‖+ r log r + log ‖w‖ and suppose we
are computing on a network of N ≤ r% processors.

(i) If a Diophantine solution v ∈ Zn×1 to Av = w ex-
ists, we can find one with an expected number of
O (̃r%/N) matrix-vector products by A modulo primes
with O(logn + log %) bits. An additional O (̃r2 +
rn%/N +nM(%)/min(n,N)) bit operations is executed
simultaneously by each processor. The returned v ∈
Zn×1 satisfies log ‖v‖ = O (̃r logn+r log ‖A‖+log ‖w‖).

(ii) If no Diophantine solution exists, we can determine
this with an expected number of O (̃(r%/N) · log(1/ε))
matrix-vector products by A modulo primes with
O(logn + log %) bits; an additional O (̃(r2 + rn%/N +
nM(%)/min(n,N))·log(1/ε)) bit operations is executed
simultaneously by each processor.

An incorrect solution is never returned. If any solution ex-
ists, one is found with probability at least 1− ε. Each pro-
cessor requires additional storage for O (̃n+nρ/min(n,N))
words (not including possibly shared images of A modulo
single-word primes).

9

6 Open Questions
A number of important questions remain unresolved and
extensions remain unexplored.

Random generation of Diophantine solutions.
While the solutions we generate are in some sense
random, it has not been proven that they in any
way sample uniformly from the solution space. It
is generally not possible to write down a complete
basis for the solution space within the amount of time
and space allowed. Still, Kaltofen & Saunders (1991)
showed how to randomly sample from the solution
manifold for singular systems of linear equations over
a field. Such a result should be obtainable in the
current context.

Proving SmoothSolver yields Diophantine solutions.
SmoothSolver is currently only shown to give so-
lutions whose denominators are 2r(r + 1)-smooth.
These are later refined to integer solutions by
RefineToDiophantine. It seems quite possible that
SmoothSolver finds Diophantine solutions quickly as
well, but this appears difficult to prove. The problem
seems akin to showing Coppersmith’s (1994) algorithm
works over F2; see Kaltofen (1995).

Implementation. The algorithms discussed here are cur-
rently being implemented using the LiDIA library for
computational number theory.

References
E. Bach and J. Shallit. Algorithmic Number Theory, Volume
1: Efficient Algorithms. MIT Press (Cambridge, MA), 1996.

E. R. Berlekamp. Factoring polynomials over large finite
fields. Math. Comp. 24, pp. 713–735, 1970.

W. A. Blankinship. Algorithm 288, solution of simultane-
ous linear diophantine equations. Comm. ACM 9, pp. 514,
1966.

I. Borosh and A. S. Fraenkel. Exact solutions of linear equa-
tions with rational coefficients by congruence techniques.
Mathematics of Computation 20, pp. 107–112, 1966.

G. Bradley. Algorithms for Hermite and Smith normal
matrices and linear diophantine equations. Math. Comp
25(116), pp. 897–907, 1971.

J.W.S. Cassels. Local Fields, vol. 3 of London Mathematical
Society Student Texts. Cambridge University Press, 1986.

T. J. Chou and G. E. Collins. Algorithms for the solution of
systems of linear Diophantine equations. SIAM J. of Com-
puting 11, pp. 687–708, 1982.

H. Cohen. A Course in Computational Number Theory.
Springer, 1993.

G. Collins and M. Encarnación. Efficient rational number
reconstructions. Journal of Symbolic Computation 20, pp.
287–297, 1995.

D. Coppersmith. Solving homogeneous linear equations over
GF(2) via block Wiedemann algorithm. Mathematics of
Computation 62(205), pp. 333–350, 1994.

F. R. Gantmacher. The Theory of Matrices, Vol. I. Chelsea
Publishing Co. (New York NY), 1990.

P. Gibbons. Computational methods in design theory. In
The CRC Handbook of Combinatorial Designs, ed. C. Col-
bourn and J. Dinitz, pp. 725–728. CRC Press, 1996.

M. Giesbrecht. Nearly optimal algorithms for canonical ma-
trix forms. SIAM J. Comp. 24, pp. 948–969, 1995.

M. Giesbrecht. Fast computation of the Smith form of a
sparse integer matrix. Computational Complexity , 1996.
Submitted.

J. L. Hafner and K. S. McCurley. A rigorous subexponential
algorithm for computation of class groups. J. Amer. Math.
Soc. 2, pp. 837–850, 1989.

G. Havas and B.S. Majewski. Hermite normal form compu-
tation for integer matrices. Congressus Numerantium 105,
pp. 184–193, 1994.

G. Havas, D. Holt, and S. Rees. Recognizing badly presented
Z-modules. Linear algebra and its applications 192, pp.
137–163, 1993.

C. Iliopolous. Worst-case complexity bounds on algorithms
for computing the canonical structure of finite abelian
groups and the Hermite and Smith normal forms of an in-
teger matrix. SIAM J. Computing 18, pp. 658–669, 1989.

T. Kailath. Linear systems. Prentice-Hall (Englewood Cliffs,
New Jersey), 1980.

E. Kaltofen. Analysis of Coppersmith’s block Wiedemann
algorithm for the parallel solution of sparse linear systems.
Mathematics of Computation 64(210), pp. 777–806, 1995.

E. Kaltofen and B. D. Saunders. On Wiedemann’s method
of solving sparse linear systems. In Proc. AAECC-9, vol.
539 of Springer Lecture Notes in Comp. Sci., 1991. 29-38.

R. Kannan and A. Bachem. Polynomial algorithms for com-
puting the Smith and Hermite normal forms of an integer
matrix. SIAM J. Comp. 8, pp. 499–507, 1979.

S. Lang. Algebraic Number Theory. Springer-Verlag (New
York), 1986.

R. Lidl and H. Niederreiter. Finite Fields, vol. 20 of En-
cyclopedia of Mathematics and its Applications. Addison-
Wesley (Reading MA), 1983.

B. Majewski and G. Havas. A solution to the extended
gcd problem. In Proc. ISSAC’95, pp. 248–253, Montreal,
Canada, 1995.

M. Newman. Integral Matrices. Academic Press (New York),
1972.

J. T. Schwartz. Fast probabilistic algorithms for verification
of polynomial identities. J. Assoc. Computing Machinery
27, pp. 701–717, 1980.

A. Storjohann. A fast+practical+deterministic algorithm
for triangularizing integer matrices. Preprint, 1996.

A. Storjohann and G. Labahn. Asymptotically fast com-
putation of Hermite normal forms of integer matrices. In
Proceedings of ISSAC’96, pp. 259–266, Zurich, Switzerland,
1996.

G. Villard. Further analysis of Coppersmith’s block Wiede-
mann algorithm for the solution of sparse linear systems. In
Proceedings of ISSAC’97, 1997. To appear.

P. Wang, M. Guy, and J. Davenport. P -adic reconstruction
of rational numbers. SIGSAM Bulletin 16(2), pp. 2–3, 1982.

D. Wiedemann. Solving sparse linear equations over finite
fields. IEEE Transactions on Information Theory IT-32,
pp. 54–62, 1986.

R. Zippel. Probabilistic algorithms for sparse polynomials.
In Proc. EUROSAM 79, pp. 216–226, Marseille, 1979.

10

