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A b s t r a c t  

Efficient algorithms are presented for factoring polynomials in the skew-polynomial ring 
K[x; ~r], a non-commutative generalization of the usual ring of polynomials K[z], where 
K is a finite field and a: K --* K is an automorphism. Applications include fast func- 
tional decomposition algorithms for a class of polynomials in K[z] whose decompositions 
are "wild" and previously thought to be difficult to compute. Also presented is a fast 
probabilistic algorithm for finding zero divisors in any finite associative algebra over K. 

1 I n t r o d u c t i o n  

A central problem in computer algebra is factoring polynomials in K[z], where K is a finite 
field and z is an indeterminate. In this paper we present efficient factorization algorithms 
in a natural non-commutative generalization of the ring K[z], the skew-polynomial ring 
K[z; a], where a: K --* K is a field automorphism. K[z; ~r] is the ring of all polynomials in 
K[z] under the usual component-wise addition, and multiplication defined by z a  = a ( a ) z  
for any a G K. For example, if 

f --z 2 A- alz -4- a0 E K[z; tr], 

g =z  + b0 G K[z; ~r], 

then 

f + g = z  2 + (al + 1)z + (a0 + b0), 
f g  = z 3  + (al  + tr2(b0))z 2 + (al~r(bo) + ao)z  + aobo, 
gf =x + + b0)x 2 + (.lb0 + + .0b0, 

where o'S(a) = r  for any a e K. When a = id, the identity automorphism on 
K, the ring K[z; ~] is the usual ring of polynomials K[z] with z a  = a z  for all a E K. 
Skew-polynomial rings have been studied since Ore (1933) and complete treatments are 
found in Jacobson (1943), McDonald (1974), and Cohn (1985). 

Assume throughout that K has size pf, where p is a prime and ~ >_ 1. For any f,  g E 
K[x; a], deg(fg) -- deg f + deg g, where deg: K[x; ~] \ {0} --* N is the usual polynomial 
degree function. This implies K[z; a] is integral (zero is the only zero divisor), and while 
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not in general a unique factorization domain, it is a principal left ideal ring endowed 
with a right Euclidean algorithm. As in the commutative case, a non-zero f �9 K[x; a] is 
irreducible if whenever f = gh for some non-zero g,h �9 K[x;a], then either degg = 0 
or degh = 0. It follows that any f �9 K[x;a] can be written as f = f l - - - f k ,  where 
f l , . . - ,  fk �9 K[x; a] are irreducible. This factorization may not be unique, and adjacent 
factors may not be interchangeable. Consider two factoring problems: 

(i) The complete factorization problem: given any f �9 K[z;a], find irreducible 
f l , - . . , h  �9 K[x;a] such that f = f l ' " h .  

(ii) The bi-factorization problem: given f �9 K[x; c,] and s < deg f,  determine if there 
exist g, h �9 K[x; cr] with f = gh and deg h = s, and if so, find such g and h. 

This separation of the factoring problem into two cases more completely captures the 
full complexity of factoring in a non-commutative ring without unique factorization. We 
reduce the bi-factorization problem to the complete factorization problem. The complete 
factorization problem is in turn reduced to the problem of determining whether a fi- 
nite dimensional associative algebra A, over a finite extension field F of Fp, possesses a 
non-trivial zero divisor, and if so, finding one. Both these reductions are deterministic 
and polynomial-time. The problem of determining whether A has any non-trivial zero 
divisors, and producing one if it does, is shown by R6nyai (1987) to be reducible (in deter- 
ministic polynomial-time) to factoring polynomials in Fp [x]. Berlekamp's (1970) factoring 
algorithms for Fp[z] yield deterministic algorithms for complete and bi-factorization in 
K[z; a] requiring time (n~p) ~ and probabilistic algorithms requiring expected time 
(n~ logp) ~ on input f �9 K[z; a] of degree n. 

Our faster algorithm for finding zero divisors in any associative algebra A yields a 
faster probabilistic algorithm for factoring in skew-polynomial rings. R6nyai's methbd for 
finding zero divisors in A is an application of his more general algorithm for computing 
an explicit decomposition of A, a considerably more complicated problem. His algorithm 
is quite involved, and R6nyai only shows it to be polynomial-time and does not calculate 
the running time explicitly. In Section 5 we present a simple, fast, and practical prob- 
abilistic solution to the problem of determining whether or not A has any non:trivial 
zero divisors, and producing a pair multiplying to zero if it does. The algorithm relies 
on an upper bound on the density of elements in A whose minimal polynomials are irre- 
ducible. This algorithm for finding zero divisors yields faster probabilistic algorithms for 
complete and bi-factorizations of f �9 K[x; ~,] of degree n, which require expected time 
n 4 �9 (~logplogn) ~ R6nyai (1990) also presents a number of applications of finding 
zero divisors in finite associative algebras to problems in computational linear algebra 
and group theory. 

Applications of Skew-Polynomial Rings 
Linearized polynomials represent a difficult or "wild" case for algorithms which function- 
ally decompose polynomials, for which no general algorithms are known (Zippel (1991) 
presents recent progress on this problem, which we discuss below). We present very fast 
algorithms for the functional decomposition of linearized polynomials. 

The linearized polynomials over K, in an indeterminate A, are those of the form 
~0<i<n ai )~p' (where a0 , . . . ,  an E K). The set Pt K of all linearized polynomials in K[k] 
forn~s-a ring under the usual polynomial addition (+), and functional composition (o) - -  
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if f,  g �9 Pt K with 

i , ~ l~i pi- l- . i  
f =  ~ a,,V', a n d g =  ~ bjA pr then fog=f(g(A))= ~ ~ aio~A . 

o<i_<n o_.j_<r o_<i_<,~ o_<j_<r 

The ring K[x; r where r  = a p for any a E K, is a skew-polynomial ring with za = aPz 
for all a E K. It is isomorphic to the ring Pt K under the map ~: Pt K --* K[z; r which 

acts as the identity on K and sends A f to x i for i _> 0 (see McDonald (1974), Theorem 
2.13). Note that if f E Pt K, then deg ~( f )  = logp(deg f) .  Computationally, �9 just maps 
between two interpretations of the input, and is free of charge. 

The functional decomposition problem for general polynomials in K[A] comes in two 
flavours analogous to our complete factorization and bi-factorization problems for K[x; ~]. 
Given a polynomial f E K[A] of degree N, the (functional) complete decomposition prob- 
lem asks for functionally indecomposable f l , . . - ,  fk E K[A] such that f = f l  o . . . o fk  (any 
h E K[A] \ K is functionally indecomposable if all its bi-decompositions contain a linear 
composition factor). When p J( N, the so-called "tame" case for complete decomposition, 
fast deterministic algorithms for complete decomposition are presented in von zur Gathen 
et al. (1987). When p I N, the "wild" case, a recent algorithm of Zippel (1991) apparently 
solves the complete decomposition problem in time (deg f)oo), though the exact running 
time is not calculated. All polynomials f E Pt K have degree pn for some n E N, so the 
complete decomposition problem for linearized polynomials is certainly in the wild case. 
Given f E K[A] and s E N, the (functional) bi-decomposition problem asks if there exist 
g, h E K[A] such that f = g o h and deg h = s, and if so, find such g, h. The tame case, 
when p J((N/S), is solved efficiently in von zur Gathen et hi. (1987). When Pl (N/S), the 
wild case, no algorithm is known to solve this problem in time (deg f)oo), though a 
partial solution is provided in yon zur Gathen (1990). All non-trivial bi-decompositions 
of linearized polynomials fall into the wild case, since, if f E Pt K and f = g o h for 
g, h E K[A], then Dorey & Whaples (1974) show that degg = pr for some r e Nl. 

When f E Pt K, we can solve both the bi-decomposition and complete decomposi- 
tion problems using our algorithms for complete factorization and bi-factorization in 
K[x; r The key observation is that we need only consider decompositions of f E Pt K 
into linearized polynomials: Dorey & Whaples (1974) show that if f = ]1 o . . .  o ]k for 
any f l , - . - , h  E K[A], then there exist f l , . . . , h  E Pt K such that f = f l  o . . .  o h and 
degfi = deg~ for 1 < i <_ k. A complete decomposition of any f E Pt K of degree 
p'~ can be found by finding a complete factorization of r  in K[x; r Similarly, the 
bi-decomposition problem on input f �9 Pt K of degree pn and s �9 N, is equivalent to 
the bi-factorization problem in K[x; r on inputs r  �9 K[z; r and logp s. Probabilistic 
versions of these algorithms require expected time n 4. (~ log p log n) ~ i.e., they run in 
time polynomial in log(deg f).  Deterministic versions require time (n~p) ~ 

T h e  C o m p u t a t i o n a l  M o d e l  a n d  I n p u t  S p e c i f i c a t i o n  
We now characterize explicitly any skew-polynomial ring K[x; a] over a finite field K. The 
automorphism a: K --+ K fixes some maximum subfield F of K, and if IF : Fp] = 7/then 
F ~ Fq where q = f .  The only automorphisms of K fixing F are iterates of the Frobenius 
map r: K --* K of K/F, defined by r(a) = aq for all a �9 K. Thus a must have the form 
~(a) = r~(a) = aq" for all a �9 K, where ~ < p = [K : F]. Furthermore, since F is the 
largest subfield of K fixed by a, gcd(p, m) = 1. 
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Part of the input to our algorithms is some auxiliary information to describe K[z; or]: 
a prime p, the integers T/and/~ such that [K : F] =/~ and IF : Iv] = ~/, and a description 
of the fields F and K. The description of F consists of a polynomial FF E Fv[z ] of degree 
7/ which is irreducible over F v. We identify F = Fv[x]/(FF ) -~ Fq, so that F has basis 
nF -- (1, OF, e ~ , . . . ,  e~ -11 as an F~-vector space, where OF = x mod rF and F = Fp[eF]. 
The field K is described as an extension of F by a polynomial FK E F[z] of degree p, which 
is irreducible over F. Identify K = F[~]/(rK), so K has basis t3 K = (1, eK, e L . . . ,  e ~ - q  
as an F-vector space, where OK= z mod FK and K = F[eK]. For reasons described later 
in this section, we also require the element e~ = r(eK), represented with respect to 
this basis. Such an element can be computed with log q operations in K by repeated 
squaring, though for convenience we consider it pre-computation and do not count it in 
our complexity analyses. The cost of computing ~'(OK) is dominated by other costs in 
our algorithms for both complete and bi-factorization. Note that K[z; ~] is an associative 
F-algebra with basis {O/Kz j J0 < i < p, j >_ 0). It is not in general a K-algebra, since K 
is not, in general, in the centre of K[~:; a]. 

Input size is counted in terms of bits and cost in terms of operations in F. Multiplica- 
tion in K can be done with O(M(#)) operations in F, where M(#) = #2 using the usual 
"school" method, or M(/~) = # logp log log# with the algorithm of Cantor & Kaltofen 
(1987). We can also compute a -1 for any a E K with O(M(/z) log#) operations in F. Using 
a new algorithm of yon zur Gathen & Shoup (1991), for any a G K we can compute all 
conjugates a, r(a), r2(a) , . . . ,  r~- l(a) ,  of a with O(/~M(/~) log/J + (/~ log #)2) operations 
in F, assuming that we have computed r(OK) as described above. For convenience we 
assume throughout the paper that M(p) = f~(# log #), whence yon zur Gathen & Shoup's 
algorithm requires O(/~M(#)log/J) operations in F. Two n x n matrices over an arbitrary 
field L can be multiplied with O(MM(n)) operations in L, where MM(n) = n z using the 
standard algorithm, or MM(n) = n 2"3r6 with the algorithm of Coppersmith & Winograd 
(1990). With O(MM(n)) operations in L we can also solve a system of n linear equations 
in n unknowns over L. 

2 B a s i c  O p e r a t i o n s  in  K[z ;o ' ]  

A brief development of the theory of skew-polynomial rings follows, along with algorithms 
implementing aspects of this theory when appropriate. We begin with an easy observation 
on the complexity of addition and multiplication in K[z; ~r]. Let 

s = ~ a,x,, g = ~ b~xP~, (1) 
O<_i<_n O<_.i<_r 

with ao,...,an,bo,...,br G K and an,br ~ O. To compute fg  we expand 

f g=  ~ E aixibJzJ= E ~ a'~i(bJ)zi+" 
O<_i<n O<_j <r O<i<_n O<j<r 

and using the fast method of yon zur Gathen & Shoup (1991) to compute all conjugates 
of bj for 0 < j _< r, we obtain the next lemma. 

L e m m a  1. Given f, g E K[z; a], each of degree at most n, we can compute f + g with 
O(np) operations in F, and fg with O(n2M(p) + npM(p)logp)  operations in F. 
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The skew-polynomial ring K[z; ~r] has a right division algorithm, and in fact a (right) 
Euclidean algorithm. The right division algorithm is analogous to the usual one in K[x]. 
Let f,  g E K[z; ~] be as in (1) with g # 0: we want to find Q, R E K[z; ~,] such that 
f = Qg + R and degR < degg or R = 0. The algorithm is trivial if n < r - -  we 
know Q = 0 and R = f - - s o ' a s s u m e  n > r. Let f(") = f ,  and for n > i > r 
define h (i) = ( a d # i - r ( b r ) )  �9 z i - r ,  where ai is the  coefficient of z i in f(i). Next define 
f ( i -1)  = f(i) _ h(i)g E K[z; ~], whence f(0 = h(Og + f(i-1) and deg f(i-z) < deg f(0.  
Computing h(n), f ("-~) ,  h("-1), f ( , - 1 ) , . . . ,  h(~), f(r-1) in sequence, we get f = Qg + R 
where Q = h(") + h (n-~) + .. .  + h(~) and R = f(~-~), with degR < degg or R = 0. The 

and R obtained in the division algorithm are unique, as they are in K[z]. 

L e m m a 2 .  I f  f ,  g E K[z;~,] have degree at most n and g # O, then computing Q,,R E 
K[z;~,] such that f = Qg + R and degR < degg or R = 0 requires O(n2M(p) + 
npM(#) logp) operations in F. 

Using the above division algorithm, modular equivalence can be meaningfully defined: 
given f l ,  f2, g E K[x; ~], we write f~ = f2 rood g if there exists a Q E K[z; ~r] such that 
f l  --f2 -" Qg. 

Ore (1933) proves the main structure theorem on complete factorizations in K[x; ~], 
a somewhat simplified version of which is stated below. 

T h e o r e m 3  (Ore) .  / f f  E K[z;a] factors completely in two ways as f = f ir2"" "f~ = 
g lg2""gt ,  where f l , . . . , f k , g z , . . . , g t  E K[z;cr] are irreditcible, then k = t and there 
exists a permutation ~ of {1, . . . ,  k} such that for 1 < i < k, deg fi = degg~(i). 

C o m m o n  Mult iples  and  Divisors in K[z; ~] 

From the existence of a right division algorithm in K[z; ~] follows the existence of a 
right Euclidean scheme in the usual way (see van der Waerden (1970), pp. 55). Assume 
f l , f 2  E K[z;~] with degfl  > degf2. At each stage i > 2, let fi be the remainder of 
fi-2 divided on the right by fi-1. We obtain a Euclidean scheme defined by f i -2  = 
Qi-2fi-z + fi for 1 < i < t, where Qi,fi E K[x; ~], degfi < deg fi-1, and ft-1 = Qt- l f t .  
The polynomial w = aft E K[z; ~], where a E K is chosen such that aft is monic, is the 
Greatest Common Right Divisor (GCRD) of f l  and f2, denoted gcrd(fl, f2). The GCRD 
w is the unique monic polynomial of highest degree such that there exist ul, u2 E K[z; ~] 
with f~ = ulw and f~ = u2w. In the usual polynomial ring K[z] = K[z; id] we have 
gcrd(fl, f9.) = god(f1, f2), the usual greatest common divisor of f l ,  f2 E K[z]. 

L e m m a 4 .  l f f l , f 2  E K[z;~] with n = degfl  _> deg f2, then we can compute gcrd(fl,  f2) 
with O(nZp 2) operations in F. 

The existence of a right Euclidean algorithm implies K[z; ~] is a principal left ideal 
ring, that is, each left ideal is generated by a single polynomial in K[z; ~]. If K[z; ~]f and 
K[z; ~]g are the two left ideals generated by f, g E K[z; ~] respectively, then the ideal 
K[z; a] gcrd(f, g) = K[x; ~]f-t- K[x; a]g (see Jacobson (1943), chapter 3). 

The set K[x; a]f M K[x; ~]g is also a left ideal, consisting of all polynomials in K[z; a] 
which are left multiples of both f and g. Since this left ideal is principal, it is generated 
by a unique monic h = lclm(f, g) E K[x; a], the Least Common Left Multiple (LCLM) 
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of f and g. The LCLM h is the unique monic polynomial in K[z; ~] of lowest degree 
such that there exist ux,u2 E K[z;a] with h = ux f  and h = u2g. Ore (1933) shows that 
deg lclm(f, g) = deg f + deg g - deg gcrd(f, g). In K[x] = K[x; ia~ the LCLM is simply the 
usual least common multiple in K[x], and deg lcm(f, g) = deg f + deg g - deg gcd(f, g). 

The LCLM h E K[z; ~] of f, g E K[x; ~] is computed by first computing the degree s 
of lclm(f, g) using Ore's formula and the algorithm for the GCRD. We use the fact that h 
is the (non-zero) left multiple of f (in K[z; a]) of lowest degree which is equivalent to zero 
modulo g. Assuming f and g have degrees n and r respectively, compute the sequence 
z i f  = Q i g + R i  for 0 < i < s -  n, where Qi ,Ri  E K[z;~] and degRi < degg = r. If 
u -- ~"~0<i<,-n cixi ~ O, for some co , . . . ,  e , -n E K such that ~"~0<i<,-n ciRi -" O, then 
u f  - 0 ffao"d g, and u f  is a scalar multiple of the LCLM h. Solve for- ffwith linear algebra 
to obtain the LCLM. 

L e m m a 5 .  Given f , g  E K[x;a] such that n = deg f  > degg, we can compnte h = 
lclm(f, g) with O(MM(n) �9 M(p) + n2p 2) operations in F. 

A polynomial can also be "decomposed" with respect to LCLM's as follows. Two 
polynomials fx, f2 E K[z; a] are co-prime if gcrd(fx, f2) = 1. Extending this to more 
polynomials, say f x , . . . ,  f t  E K[x; a] are mutually co-prime if 

gcrd(fi, lelm(fx,. . . ,  fi-x, fi+x,.- ', ft)) = 1 

for 1 < i < s i.e., each fi is co-prime to the LCLM of the remaining components. This is 
stronger than the usual pairwise co-primality often seen for K[z], though the two notions 
are equivalent in a commutative domain. An (LCLM) decomposition of f E K[z; a] is a list 
(fx,.", ft) E K[x; a] t of mutually co-prime polynomials such that f = Iclm(fl,..., ft); 
f is (LCLM) indecomposable if it admits no non-trivial (LCLM) decompositions. 

The following result of Ore (1933) captures the uniqueness of polynomial decomposi- 
tions in any skew-polynomial ring. 

T h e o r e m 6  (Ore) .  Let f E K[z; d be monic such that f = lc lm(f l , f2 , . . . , f t ) ,  where 
fx , . . . ,  fl  E K[~; ~] are (LCLM) indecomposable and mutually co-prime. 

(i) I f  f -- lclm(gl, g2 , . . . ,  g,n), where gx , . . . ,  gm E K[x; ~] are (LCLM) indecomposable 
and mutually co-prime, then s - m and there exists a permutation ~ of {1,. . . ,s  
such that degf~ = degg~(i) for i < i < L 

(ii) lf, for l < i < l,  we completely factor fi  -- fi,xfi,2"" " fi , , i ,  where each f i j  e K[x; er] is 
irreducible for i < j < si, and completely factor f = hxh2 . . .hk ,  where h x , . . . , h k  E 
K[z;~] are irreducible, there exists a bijection ~ from {1,. . .k} to {(i,j) l l  < i < 
s 1 < j < si} such that deghe = degf~(e) for 1 < e < k. 

3 Finding Complete Factorizations 

To completely factor a polynomial f E K[x; ~], we construct a small finite associative 
algebra D with the property that each non-trivial zero divisor in D yields a non-trivial 
factorization of f .  A candidate for D is the quotient K[z; ~]/K[z; ~]f, but it is in general 
only a K[z; ~]-module, and not an algebra. It is only an algebra when K[z;~]f is a 
two-sided ideal in K[x; ~r]. To regain some of the desirable structure of finite algebras, 
we follow Cohn (1985), Section 0.7, and introduce the concept of an eigenring. Define 
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I(K[x; ~]f) {u E K[x; ~] I f u  =- 0 mod f}, the idealizer of K[z; r The set I(K[x; ~]f) 
is the largest subalgebra of K[z; ~] in which K[z; ~r]f is a two-sided ideal. The eigenring 
E(K[z; or]f) of K[z; ~]f is defined as the quotient E(K[x; ~]f) = I(K[x; ~]f)/K[z; ~]f, a 
finite F-algebra since K[z; ~] is an F-algebra and K[z; ~]f a two-sided ideal in I(K[z; cr]f). 
If deg f = n, the eigenring E(K[z; a]f) is isomorphic to the F-algebra 

D = {u ~ I(K[x;w]f) I degu < n} = {u E K[z;~] I fu  =_ 0 mod f and degu < n}, 

under addition in A and multiplication in A reduced modulo f (i.e., each element in 
E(K[x; ~]f) is represented by its unique residue modulo f).  A basis for D is easily found 
using linear algebra. The next two theorems demonstrate the usefulness of the eigenring. 

T h e o r e m  7. For f E K[z; ~], the eigenring E(K[z; a]f) is a (finite) field if and only if  f 
is irreducible in K[x; ~]. 

T h e o r e m  8. For f E K[x; or], if  u, v E D \ {0} with uv =_ 0 mod f ,  then gcrd(f, u) # 1. 

The problem of finding complete factorizations in K[z; a] is reduced to the problem 
of finding zero divisors in finite algebras by the following algorithm. 

Algor i thm:  Complet e -Fac to r i za t  ion 
Input: f E K[x; ~] of degree n; 

Output: f l , . . . ,  fk E K[x; ~] irreducible, with f = f l " ' "  fk. 
(1) Compute a basis for D (above) as an F-algebra; 
(2) If D is a field Then Return f; 

Else 
(3) Find a non-trivial left zero divisor u E D; 

(4) Compute h = gcrd(f, u) and g E K[x; ~] with f = gh. 
(5) Recursively factor g = gl "'" gr and h = hi -- �9 h, 

with g l , . . - ,  gr, h i ,  �9 � 9  h~ E K[x; a] irreducible; 

(6) Return g l , . . .  ,g~, h i , . . . h , ;  
End. 

The polynomial f E K[z; or] is irreducible if and only if D is a field, and the algorithm 
halts correctly in this case. If f E K[z; ~] is reducible then Theorem 7 implies D is not a 
field, and therefore possesses non-trivial zero divisors. By Theorem 8 each of these zero 
divisors has a non-trivial GCRD with f,  yielding a proper factorization in step 4. 

Using R6nyai's reduction from finding zero divisors in finite associative algebras to 
factoring polynomials in Fp[x] (see Theorem 15), and our fast probabilistic algorithm for 
this same problem (see Corollary 20 below), we obtain the following theorem. 

T h e o r e m 9 .  Let f q K[z;cr] have degree n. The algorithm Complel;e-Factorizat ion 
correctly finds a complete factorization o f f  in K[x; ~], and proves: 

(i) the complete factorization problem is deterministically reducible, with (nltlog q)~ 
operations in F, to the problem of factoring polynomials in Fp[z] of degree (n~)~ 
and is solvable by a deterministic algorithm requiring (n~p)~ operations in F. 

(ii) the complete factorization problem is solvable by a probabilistic algorithm with an 
expected O(n4itM(it) + nZit 2 M(it)log It + nMM(nit) + nVit log q) operations in F. 
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4 Bi-Factorization With Central Multiples 

Finding a polynomial ] - 0 mod f,  where ] is in the centre C of K[x; hi, provides the key 
to bi-factorization. McDonald (1974) shows C = F[zu; a] __. K[x; hi, the polynomials in x" 
with coefficients in F (recall p = [K : F]). Letting y = x u, we identify C = F[y], the usual 
ring of polynomials over F in the indeterminate y. In particular, F[y] is a commutative 
unique factorization domain. Clearly, the degree (in z) of any element in F[y] = Fix ~] 
will always be a multiple of p. The following theorem demonstrates how a left multiple 
of f in F[y] can be used to factor f in K[~; ~]. 

T h e o r e m  10. Let f �9 K[x; a] and / �9 F[y]\{0} be such that / - 0 mod f .  I f f  "- f x ' "  f l  

for pairwise co-prime s  ]t �9 F[y], then f = lc lm(hl , . . . ,  ht), where hi = gcrd(]i, f )  
for 1 < i < g. Furthermore hi, . . . ,  hi are mutually co-prime, and deg f = ~-~0<i<t deg hi. 

y 

The above theorem is used to get a partial decomposition of f by factoring ] �9 F[y], as 
a polynomial in y, into pairwJse co-prime polynomials in Fly], and then taking GCRD's 
between f and each of these factors. However, it is not clear per se that, for every 
f �9 K[x; hi, there exists a non-zero ] �9 F[y] with ] - 0 mod f.  In fact, such an ] does 
always exist, and can be found efficiently. Call the non-zero ] �9 F[y] of'minimal degree 
such that ] - 0 mod f the minimal central left multiple of f .  To find ],  compute the 
sequence z i~' = Q i f  + R~ for 0 < i < n p ,  where Qi, R / � 9  K[z; a] and deg R / <  deg f = n. 
The set of all polynomials in K[z; a] of degree less than n forms an F-vector space of 
dimension up. Since there are np + 1 polynomials R0, . . .Rnu,  there exists a minimal 
t < n p  and a0 , . . . ,  at �9 F, not all zero, such that ~-'~0<i<t aiRi = 0. The minimal 

central left multiple ] of f is then ] = a~ -1 ~0<i<t  al a:"i, and is found using linear 
algebra. 

L e m m a  11. Given f �9 K[x; a] of degree n, we can find the minimal central left multiple 
of f with O(n3pM(p)  + n2#2M(p) logp + MM(np)) operations in F. 

A distinct degree factorization (in F[y]), of the minimal central left multiple ] of 
f �9 K[z; a], yields the degrees of all factors in any complete faetorization of f as shown 
in the next theorem. 

T h e o r e m  12. Let f e K[x; a] and ] E F[y] \ {0} be such that ] - 0 mod f .  Furthermore, 

suppose ] = fie for some f �9 F[y]\{O} and e > 1, where f~ is irreducible as a polynomial in 
Fly], and deg z r = dp. Then for all complete factorizations f = f l  " " " fk,  with f l , .  . ., fk �9 
K[z; a] irreducible in K[x; a], we have deg fi = d. 

C o r o n a r y  13. Let f E K[x; ~] and / E F[y]\{0} be such that ] = 0 mod f .  Furthermore, 

suppose / = f i~ , f~2. . . f~ ,  where e l , . . . , e ,  >_ 1 and f l , . . . ,  f l  e F[y] are distinct and 
irreducible as polynomials in F[y], all with the same degree dp in x. Then for any complete 
factorization f = fa " " " fk,  with f l ,  . . . , fk E K[z; o'] irreducible, we have degfi = d. 

Corollary 13 yields an efficient reduction from the bi-factorization problem to the 
complete factorization problem. 
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Algorithm: B i - F a c t o r i z a t i o n  

Input: f E K[x; o'] and s < deg / = n; 

Output: g, h E K[z; ~] with deg h = s, and f = gh, or a message that  no such h exists; 

(1) Compute the minimal central left multiple f E F[V] of f ;  

(2) Find a distinct degree factorization of ] as f = ]112"'" f , ,  where ]i E F[V] is such 
that  iffi E F[V] divides fi, and fi is irreducible as a polynomial in F[V], then deg v fi = i, 
for 1 < i < n (some .fi's may have degree zero). 

(3) Find hi = gcrd(fi, f )  E K[z; ~] for 1 < i < n. Assume deg hi = iei for some e~ E N; 

(4) Factor each hi completely in K[z;*r] as hi = hi,lhi,2"'" hi,,~, where deghi,j = i for 
1 < j < el, and 1 < i < n; 

(5) Determine if there exists a set d l , . . . ,  d ,  E N with di < ei for 1 < i < n, such that  
~O_<i_<n idi = s; 

If such d l , . . . ,  dn exist then return g, h E K[x; tr], where h = lclm(hl, h2 i . . . ,  hn), and 
hi = hi,e,-d~+lhi,e~-d~+2"" "hi,ei for 1 < i < n, and g E K[x;~r] is such that  f = gh; 
Otherwise, return " f  has no right factor of degree s in K[z; o']"; 

End. 

Any pair g, h G K[z; tr] produced by the algorithm has deg h = s and f = gh, and if 
such a bi-factorization exists, this algorithm produces one. To see the former, we note 
that  by Theorem 10, f : l c lm(h l , . . . ,  hn), where hi : gcrd(fl, f )  as computed in step 3. 
By Corollary 13, all complete factorizations of hi = hi,lhi,2..  �9 hi,e~ into irreducible hi,j E 
K[z; ~], are such that  deg hi,j = i for 1 < j < ei and 1 < i < n. If h = lc lm( i t l , . . . ,  tt ,),  
then Theorem 6 implies deg h = s. The computed h is a right factor of f since each hl is 
a right factor of hi and each hi is a right factor of f for 1 < i < n. 

If f = uv for some u, v E K[z; a] and deg v = s, this algorithm finds some right factor 
h of f of degree s. Suppose v = vlv2 . . .  vt, with v l , . . . ,  vt E K[x; ~] irreducible. If exactly 
di of the factors vl, �9 �9 vt have degree i for 1 < i < n, then di < ei by Theorem 6. Hence 
h = lclm(Fq, . . . ,  hn), computed in step 5, has degree s. 

Theorem 14. Let f E K[z; or] have degree n and s < n. The algorithm b i - f a c t o r i z a t i o n  
correctly solves the problem of determining if there exist g, h E K[x; tr] with f = gh, and 
deg h = s, and if  so, find such g, h, and proves: 

O) the bi-factorization problem is deterministicaily reducible, with (nplog  q)O(1) opera- 
tions in F, to the problem of factoring polynomials in Fp[z] of degree (n~) ~ and 
is solvable with a deterministic algorithm requiring (n~p)~ operations in F; 

Oi) the bi-factorization problem is solvable by a probabilistic algorithm with an expected 
O(n4pM(p)  + n3p2M(p) log p + n M M ( n p )  + n2p log q) operations in F. 

5 Zero Divisors in Finite  Associat ive  Algebras  

Let A be a finite dimensional associative algebra over a finite field F. Tha t  is, A is 
a finite dimensional vector space over F, with a product x :A  --, A, such that  A is a 
ring under + and x (we write ab for a x b for any a, b E A). Our goal in this section 
is to determine (efficiently) if A has any non-trivial zero divisors, and if it does, to 
produce a pair bl, b2 E A \ {0} such that  bib2 = 0. Familiarity with the basic theorems 
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and terminology of finite dimensional associative algebras is assumed. A good reference 
for this information is Pierce (1982), Chapters 1-4. Throughout this section, the word 
"algebra" (over F) will mean a finite dimensional associative algebra (over F) with a 
multiplicative identity 1 E A. Algebras may or may not be commutative. 

The problem of finding zero divisors is known to be polynomial-time reducible to 
factoring univariate polynomials over a finite field. Let F ~ Fq and q = pn for some 
prime p and 7/ > 1. An algebra A over F is described computationally as an F-vector 
space of dimension u > 0 with a supplied basis; elements of A are represented as vectors 
in F ~. A representation of the identity element in this basis is assumed to be supplied 
(alternatively, it may be computed within the allowed time). Addition in A is component- 
wise and a "black box" algorithm for multiplication in A, requiring a polynomial number 
of operations in F, is assumed to be provided. 

T h e o r e m 1 5  (R6nyal ,  1987). Let A be an algebra over F with dimension u, presented 
as above. The problem of determining if there exist zero divisors in A, and if so finding 
a pair bl, b2 E A \ {0} with blb2 = O, is reducible with (t,01ogp) ~ operations in F to 
the problem of factoring polynomials in Fp[x] of degree (v•) ~ 

Making use of the factoring algorithms of Berlekamp (1970), this theorem implies 
the problem of determining whether non-trivial zero divisors exist in A, and finding 
a pair multiplying to zero if they do, is solvable with a deterministic algorithm re- 
quiring (v~lp) ~  operations in Fp, or a probabilistic algorithm requiring an expected 
(vr/logp) ~  operations in Fp. 

R6nyai's algorithm computes an explicit decomposition of A, finding the radical of 
A, computing a Wedderburn decomposition if A is semi-simple, and computing an iso- 
morphism with a full matrix ring over an extension field of F if A is simple. Needless 
to say, this algorithm is quite complicated, and while not necessarily inefficient, R6nyai 
only shows it to be polynomial time and does not calculate the running time explicitly. 

We propose a simple algorithm which provides a fast probabilistic algorithm to solve 
this same problem. Assume A is represented as above. Addition in A requires v operations 
in F, while the supplied multiplication algorithm for A requires X operations in F. 

Algor i thm:  Zero-Divisor 
Input: an algebra A of dimension t~ over F (see above), and a description of F/Fp; 
Output: bl, b2 E A \ {0} with blb2 = 0, or a report that A is a field, or failure; 

(1) Choose random al, a2 E A; 

For b E {al, a2, ala2 - a2al} \ {0} Do 

(2) Compute f = minA(b) E F[x]; 
(3) Factor f over F[x]; 

If f is reducible (say f = gh for g, h e Fix] \ {0}) 
(4) Return g(b), h(b); 

Else if deg f = v (and f is irreducible) 
(5) Return "A is a field (and has no zero divisors)"; 

End For; 

(6) Return "Failure"; 
End. 



201 

The minimal polynomial f = minA(b) of b e A is the monic polynomial in F[z] \ {0} 
of minimal degree such that  f(b) = 0. Clearly f has degree at most v since d imA = v. 

To see that  the algorithm is correct, examine two cases: when A has (non-zero) zero 
divisors, and when A is a field. These cases are sufficient by Wedderburn's Theorem (see 
Lidl & Niederreiter (1983), Section 2.6) which shows any finite algebra whose only zero 
divisor is zero, is a field. I f A  is not a field, let b E A have a reducible minimal polynomial 
f E F[x] (we shall show that  there are many such elements). Factoring f = gh, for 
some g, h E Fix] \ F, yields f(b) = 0 = g(b)h(b), and g(b), h(b) are non-zero since f 
is the minimal polynomial of b. If some b E A has a minimal polynomial f E F[x] 
which is irreducible of degree v, then A = F[b] and F[b] is isomorphic to the finite field 
F[x]/(f) -~ Fqv under the isomorphism mapping b to x mod f .  

While determining the complexity of this algorithm, assume failure probability ~ < 1. 
In the sequel we show that  # < 1/2. Computing f in step 2 can be accomplished by 
first computing the sequence 1, b, b2, . . . ,  b V E A, requiring O(vx) operations in F. Using 
linear algebra f can then be found with O(MM(v)) additional operations in F. Factoring 
f can be done using the probabilistic algorithm of Berlekamp (1970), with an expected 
O(MM(v) + v logq) operations in F. Evaluating g(b) and h(b) in step 4 can be done with 
O(v 2) operations in F, using the powers of b computed in step 2. 

T h e o r e m  16. Let A be an algebra with dimension v over F = Fq. Ze ro -Div i so r  requires 
an expected O ( ( 1 -  ~)-1.  (vX + M M ( v ) +  vlogq)) operations in F to determine whether 
A is a field extension ofF, or to produce bl,b2 E A \  {0} with b~b2 = O. 

The proof that  ~ _< 1/2 for any algebra A is quite involved, the hardest case being 
when A has a non-trivial zero divisor. When A is a field extension of F, the number of 
elements in A which generate A is well known to be very high. 

T h e o r e m  17. Let A be field of dimension v over F. The algorithm Z e r o - D i v i s o r  with 
input A reports failure with probability ~ < 1/2. 

Now let A be an algebra with at least one non-trivial zero divisor. Steps 2-4 are 
executed at most 3 times, with b = al ,  b = a2, and b = ala2 - a2al. Except when A 
is a local algebra (i.e., A / R a d ( A )  is a finite field - -  see Theorem 19), we ignore the 
possibility of success with b = ala2 - a2al. For a random selection of b in a non-local A, 
we bound above by l /v /2  the probability that  steps 2-4 fail to find a zero divisor. When 
two random choices of b are made, as in the main algorithm, the probability ~ of failure 
is at most 1/2. Let P(A)  be the number of elements in A whose minimal polynomiM in 
F[x] is irreducible. The failure probability ~ of the algorithm is at most (P(A)/qV) 2, so 
it is sufficient to show P(A)  < qV/v/2. 

T h e o r e m 1 8 .  Let A be an algebra of dimension v over F which is not local and has 
a multiplicative identity. The algorithm Zero -Div i so r  fails to find a non-trivial zero 
divisor in A with probability ~ < 1/2. 

P r o o f  (outline). Let b E A have minimal polynomial f E F[x], as computed in step 2. 
The proof depends upon the type of algebra A: 

�9 A is simple (all two-sided ideals are trivial): It is well known that  A is isomorphic 
to a full matrix algebra over an extension field K of F. Making use of an explicit 
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formula of Hodges (1958) for the number of matrices over K of given size which are 
annihilated by a given polynomial in K[z], we achieve the desired bound. 

�9 A is semi-simple (a direct sum of simple algebras): For an element b E A to have 
an irreducible minimal polynomial, its image in each of the simple components of A 
must have the same irreducible minimal polynomial. This is shown to be unlikely. 

�9 A is not semi-simple (and not local): use the Wedderburn-Malcev Principal Theorem 
(see McDonald (1974), Theorem 8.28) to write A as the sum of its radical and a 
semi-simple subalgebra. The larger the radical, the more likely it is the minimal 
polynomial of a randomly selected element is reducible. [] 

The case when A is local must be considered separately because there exist non- 
commutative local algebras (with non-trivial zero divisors) such that the minimal polyno- 
mial of every unit is irreducible. Only non-zero zero divisors in A have reducible minimal 
polynomials, and the number of these is small. When A is not commutative, we know 
ala2 - azal E Rad(A). Thus ala2 - a2al is nilpotent, and hence only has an irreducible 
minimal polynomial when it is zero. In a non-commutative local algebra, the probability 
that ala2 - a2al = 0 is shown to be small. When A is a commutative local algebra, it is 
straightforward to show that P ( A )  < qV/v~,  as in Theorem 18. 

T h e o r e m 1 9 .  Let A be a local algebra of dimension ~, over F, with at least one non- 
trivial zero divisor. The algorithm Zero-Div isor  fails to find a non-trivial zero divisor 
with probability ~ < 1/2. 

Applying Theorem 17 when A is a field, and Theorems 18 and 19 when it is not, 
completes our anMysis: 

Corol la ry  20 to  T h e o r e m  16. Let A be an algebra of dimension u over F = Fq. The 
algorithm Zero-Div isor  requires an expected O(vx  + MM(u)+~ log q) operations in F to 
determine whether A is a field extension of F, or to produce bl, b2 E A \  {0} with bib2 = 0 
(where X is the number of operations in F required for a single multiplication in A )  
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