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Part of Speech Tags

POS tagging is a process of marking each word in a corpus with a
POS tag based on meaning, context, etc

Initially, tagging was done by hand or by simple rules

Over the last 20 years, more automated ways have been discovered,
usually in the form of supervised learning

Nine “categories” of tags (noun, verb...), corpora contained anywhere
from 50-200 tags
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POS Tagging

Parse Tree

(S

(NP

(NNP John)

)

(VP

(VBZ loves)

(NP

(NNP Mary)

)

)

(. .)

)

Figure 1: Example structure for
John loves Mary.
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Why Parse?

Machine translation

Information retrieval

Question-answering
Search

Information extraction

Sentiment analysis
Text classification
Summarization
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Brown Corpus

Brown corpus was the first major POS tagged corpus available,
developed by Kucera and Francis at Brown in the 60s

Roughly 500 English works, 1 million words

Used 87 different tags and allows compound tags

Such as I’m is PPSS+BEM for non-third person nominative pronoun
and am

Brown corpus is now dwarfed in size compared to modern corpora,
which usually contain millions and millions of words
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Context-Free Grammars

Context-Free Grammar

A context-free grammar (CFG) is a 4-tuple G = (N,Σ,R,S) where:

N is a finite set of non-terminal symbols

Σ is the set of terminal symbols

R is the set of rules of the form n→ σ where n ∈ N and σ ⊂ Σ ∪ N

S ∈ N is the start symbol
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Context-Free Grammars

CFG Example

S → NP VP

NP → NNP

NNP → John
...

Figure 2: Example structure for
John loves Mary.
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Shift-Reduce Parsing

Uses the “current” parse tree, the words of the sentence in a queue
and partial parse trees in a stack

Applies different state transitions until the queue is empty and the
stack only contains the completed parse tree

Possible transitions:

Shift: move a word from queue to the stack
Unary reduce: label on the top of the stack changes
Binary reduce: top 2 nodes on the stack are combined with a new label
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Shift-Reduce Parsing

Stanford parser uses a multiclass perceptron to determine the next
transition

POS tags are not assigned, but rather used as features

Trained by iterating over the parse trees until “converged”

Start from base state and apply states until the actual tree can no
longer be rebuilt
Once wrong, each transition’s weights can be adjusted
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CYK Algorithm

Cocke–Younger–Kasami (CYK) algorithm is a parser for CFGs

CYK is a dynamic programming algorithm with run time Θ(n3|G |),
where n is the sentence length

Considers every possible consecutive subsequence of words (i , . . . , j) if
the sequence can be generated by a rule r

Does so for subsequences of length 1, 2, . . .

For length 2 and greater, also consider all possible partitions into two
parts and check for rules that can lead to such a production
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Classical Parsing

Context-Free Grammars were used as symbolic parsing tools

Did not scale well, many possible parses due to ambiguities

Issues with this strategy:

Constrained grammars limit weird parses, but lead to many sentences
having no parse
Less constrained grammars have a broad search space, simple sentences
will end up with many possible parses

Solution: need mechanism that finds the most likely parse out of all
the possible parses, statistical parsing!

But datas!
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The Penn Treebank

Several projects have extended the Brown corpus tagset

These other projects include anywhere from 100 to 200 tags, the
rationale being that more tags would lead to better classifications of
words

The Penn treebank consists of over 4.5 million words, but only 48 tags

Their goal was to reduce redundancies by considering lexical and
syntactic information

Created by Marcus, Marcinkiewicz at U. Pennsylvania and Santorini
at Northwestern

Most recent release is 20 years old now and still requires a licensing
fee and a cd-drive
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Recoverability

Brown corpus distinguishes five forms of verbs, VB (singular, past
tense etc)

The same paradigm is followed for have – although have is assigned
it’s own base tag, HV

The Brown corpus also distinguishes 3 forms of do and 8 forms of be

However, all these distinctions are lexically recoverable, so they are
not included in the Penn treebank tagset
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Consistency

The Penn treebank also removed some inconsistent tags

For example, there and now are always tagged as adverb, but here
and then are tagged as adverb or as nominal adverb
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Syntactic Function

The Penn treebank encodes a word’s syntactic function in the tag
when possible

For example, one is always labeled as a number by the Brown corpus,
but it is labeled as a noun when appropriate in the Penn treebank

Another example, the word both receives different tags depending on
context, such as the boys both (postnominal), both the boys
(prenominal) or both of the boys (noun phrase head)
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Indeterminacy

In some cases, annotators may simply not know how to tag a word

To account for this, the treebank allows for disjunctions of tags

Any combination of tags is allowed, however the vast majority of
cases are restricted to a small set of two-tag options
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POS Tagging

The corpus is POS-tagged by an automated stage and a manual
correction stage

Initially used a stochastic algorithm called PARTS (Church, 1988),
but now uses a “cascade of stochastic and rule-driven taggers”

Manual correction stage uses output of automated stage

Four annotators with graduate training in linguistics

Experiment showed that accuracy and inter-annotator agreement
rates were higher when correcting the automated output versus
tagging from scratch
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Bracketing

Bracketing is a “skeletal syntactic structure” using an “impoverished
flat context-free notation”

( (S

(NP Battle-tested industrial managers here)

always

(VP buck

up

(NP nervous newcomers)

...))

Basically just a relaxed parse tree for a CFG
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Bracketing

Fidditch is a deterministic parser developed at the University of
Pennsylvania in 1983

The parser produces a bunch of chunks that must be “glued”
together manually

Manual correction done on over half the corpus

Special null elements included because they can be used to infer
additional information like predicate-argument structure
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Annotations

Penn Treebank introduced the idea of an “annotated parse tree” to
circumvent problems with ambiguity and/or consistency

The X label is used whenever unsure of syntactic category

Global ambiguity in determining the correct attachment point handled
by “pseudo-attachment” notation

a boatload of warriors blown ashore 375 years ago︸ ︷︷ ︸
pseudo-attached
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Future of Penn Treebank

In 1994, released paper on making the predicate-argument structure
more explicit

No other literature could be found

Used as a training corpus for POS taggers and parsers

Gold standard for evaluating new parsers

Used especially within University of Pennsylvania

Don’t hear about it as much anymore, perhaps due to restricted
availability, and many free alternatives 1

1http://en.wikipedia.org/wiki/Treebank#Syntactic_treebanks
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Motivating Example

Example from Ratnaparkhi (1999)

Figure 3: Unlikely parse (left); Likely parse (right)

Money refers to buy (verb-phrase), not cars (noun-phrase)

Both parses are legal, but we want the one that is more likely
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Statistical Parsers

Distinguishing the more likely parse requires semantic knowledge

Or, for instance, the likelihood of someone buying a car that contains
money versus the likelihood of someone buying a car using money

Superior performance achieved using statistical parsers to learn a
probabilistic context-free grammar from a treebank
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Probabilistic Context-Free Grammars

This section was adapted from course notes by Collins (2011)

Key idea in probabilistic context-free grammars (PCFG) is to extend
the definition of CFGs by assigning a probability p(t) to each possible
parse tree t that the grammar produces

p(t) ≥ 0,
∑
t

p(t) = 1

This seems an impossible task at a glance, the set of possible parse
trees is large if not infinite

Turns out there is a nice trick!
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PCFG

A PCFG consists of:

A CFG G = (N,Σ,R,S)
A parameter q(α→ β) for each rule α→ β ∈ R

q(α→ β) is the conditional probability of producing through the rule
α→ β given the non-terminal being expanded is α

Then, we can define p(t) as

p(t) =
n∏

i=1

q(αi → βi )
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PCFG Training

CFG parameters are taken from all the trees in the corpus

eg Σ is the set of all terminals found

The maximum likelihood estimate of q is

q(α→ β) =
Count(α→ β)

Count(α)

where Count(α→ β) is the number of times the rule α→ β is seen
and Count(α) is the number of times the non-terminal α is seen in
the corpus
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Parsing with PCFGs

Given all possible parse trees T of a sentence, we can use the PCFG
to find the most likely parse with

arg max
t∈T

p(t)

CYK algorithm can be extended for use with PCFGs

Most likely parse is sometimes called the “Viterbi parse”

Viterbi algorithm finds most likely sequence of states in a hidden
Markov model
The term became popular, and started being used simply to mean the
“most likely parse”
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Problems with PCFGs

PCFGs exhibit two mean weaknesses:
1 Lack of sensitivity to lexical information
2 Lack of sensitivity to structure preferences
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Lack of Sensitivity to Lexical Information

p(t) =

q(S → NP VP) · q(NP → NNP)·
q(NPP → John) · q(VP → VPZ NP)·
q(VPZ → loves) · q(NP → NNP)·
q(NNP → Mary)

PCFG makes a strong
independence assumption

Figure 4: Example structure for
John loves Mary.
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Lack of Sensitivity to Lexical Information
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Lack of Sensitivity to Lexical Information

S → NP VP
NP → NNP
VP → VBD NP
NP → NNS
PP → IN NP
NP → DT NN
VP → VP PP

S → NP VP
NP → NNP
VP → VBD NP
NP → NNS
PP → IN NP
NP → DT NN
NP → NP PP

Parse tree picked depends only on q(VP→ VP PP) and
q(NP→ NP PP)
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Lack of Sensitivity to Structural Preferences
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Lack of Sensitivity to Structural Preferences

Searching the corpus, we find that the first structure is roughly twice
as common as the second structure

However, the PCFG assigns an identical probability to both trees
since they have the same rules
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Lexicalized PCFG

Lexicalized PCFGs address the first of the two weaknesses

Requires lexicalization of the corpus

LPCFGs are essentially PCFGs were each non-terminal in each rule
includes additional lexical information

S→ NP VP

becomes

S(questioned)→ NP(lawyer) VP(questioned)

Otherwise, LPCFGs are the same as PCFGs

Larger set of non-terminals
Larger set of rules
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Lexicalization of the Corpus

For each context-free rule
in the corpus, identify the
“head” of of the rule

Then, lexical information
can be propagated
bottom-up through the
parse tree from the head
to the parent Figure 5: Lexicalized parse tree

for question the witness.
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Formal Definition

Lexicalized Probabilistic Context-Free Grammar

A lexicalized probabilistic context-free grammar (LPCFG) is a 6-tuple
G = (N,Σ,R,S , q, γ) where:

N is a finite set of non-terminal symbols

Σ is the set of terminal lexical items

R is the set of rules in one of the following forms:

X (h)→1 Y1(h)Y2(m), X (h)→2 Y1(m)Y2(h), X (h)→ h

where X ,Y1,Y2 ∈ N and h,m ∈ Σ

S ∈ N is the start symbol
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Formal Definition

Lexicalized Probabilistic Context-Free Grammar

For each r ∈ R, there is a q(r) ≥ 0, and for any X ∈ N, h ∈ Σ∑
LHS(r)=X (h)

q(r) = 1

For each X ∈ N, h ∈ Σ, there is a γ(X , h) ≥ 0 and∑
X ,h

γ(X , h) = 1

Finally, the probability of a derivation of r1, . . . , rn, ri ∈ R, is

γ(LHS(r1))×
∏
i

q(ri )
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LPCFG Training

The number of rules, and therefore parameters, is huge

Make use of smoothing techniques to estimate each q(r)

q(S(questioned)→2 NP(lawyer) VP(questioned))

= P(R = S→2 NP VP,m = lawyer|X = S , h = questioned)

Use chain rule to decompose into two terms

= P(R = S→2 NP VP|X = S , h = questioned)

× P(m = lawyer|R = S→2 NP VP,X = S , h = questioned)
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LPCFG Training

Find smoothed estimates for both terms

Use MLE for q(S→2 NP VP|S , questioned) and q(S→2 NP VP|S)
as derived from the corpus

Then an estimate of the first term can be

a1 · q(S→2 NP VP|S , questioned) + b1 · q(S→2 NP VP|S)

A similar method can be used to estimate the second term

Putting both together yields

(a1 · q(S→2 NP VP|S , questioned) + b1 · q(S→2 NP VP|S)) ×
(a2 · q(lawyer|S→2 NP VP, questioned) + b2 · q(lawyer|S→2 NP VP))

Taras Mychaskiw & Aaron Voelker (UW) Statistical Parsing May 27th, 2015 43 / 67



Parsing with LPCFGs

Parsing strategy remains the same as for with PCFGs, an extended
version of the CYK algorithm can be used to find the most likely
parse tree

Slower than PCFGs since grammar is much larger
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Performance

Collins (1996) compared lexicalized PCFGs to non-lexical PCFGs and
showed that lexicalization in this fashion achieved significantly better
parsing results; 85% compared to 75%

Magerman (Statistical Decision-Tree Models for Parsing, 1995)
showed similar results with a decision-tree learned parser

Later, Collins (1997) improved his results with more sophisticated
models to get 88% correct rates
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History

Ratnaparkhi (1999) provides the core model used by Charniak (2000)

Interesting facts: Ratnaparkhi is also from the University of
Pennsylvania, but Charniak is from Brown University

“Charniak (1997) and Collins (1997) do not use general machine learning
algorithms, but instead develop specialized statistical estimation
techniques for their respective parsing tasks.” Ratnaparkhi (1999)

Idea of applying maximum entropy to NLP first proposed by Berger
(1996) for machine translation

Perhaps the first example of a general machine learning technique
applied to parsing
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Model Intuition

Idea: score a parse by examining its derivation

Derivations are built from the bottom up by adding actions to a list
(similar to shift-reduce parsing)

Every derivation corresponds to a unique parse tree (a complete parse
T has exactly one derivation d = {a1, . . . , an})
Each action is scored using the maximum entropy approach

Parsing is again just a standard search problem for the highest scoring
parse
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Maximum Entropy Framework

Also referred to as a log-linear approach (a kind of discriminative
model)

The probability of taking an action a is conditioned on H, which
includes some chosen history and surrounding context from the partial
derivation

P(a|H) =
1

Z (H)
eλ1f1(a,H)+...+λmfm(a,H)

f1, . . . , fm provide the scalar features of a, given H (fixed)

λi are weights in (−∞,∞) indicating the relative importance of
feature i , depending on a and H (estimated)

Z (H) simply normalizes so that
∑

a p(a|H) = 1, for each H
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Maximum Entropy Framework

Advantages:

Model is easily changeable
Can incorporate arbitrarily diverse information
No independence assumption required for features
Smoothing comes for free

Disadvantages:

Can be difficult to incorporate prior linguistic knowledge in a
predictable manner
Feature selection is an “art”; evidence should have little noise
(otherwise need smoothing)

In other words, to design a parser, one only needs intuition about
what evidence is “useful” to distinguish likely actions from unlikely
actions in a derivation.
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Alternative Representations

Again, the model is P(a|H) = 1
Z(H)e

λ1f1(a,H)+...+λmfm(a,H)

Taking the log of both sides,

lnP(a|H) =
m∑
i=1

λi fi (a,H)− ln(Z (H))

gives a more familiar form (logistic regression).

Let g0(a,H) = 1/Z (H), gi (a,H) = eλi fi (a,H), then

p(a|H) = g0(a,H) · · · gm(a,H)

is the form used by Charniak (2000) to connect each feature’s
contribution back to conditional probabilities.
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Parameter Estimation

Generalized Iterative Scaling algorithm (Darroch & Ratcliff, 1972)

Let αi = eλi , then

P(a|H) =
1

Z (H)

m∏
i=1

α
fi (a,H)
i

Introduce a “correction” feature fm+1 = C −
∑m

i=1 fi (a,H)

Iteratively update all αi by computing the expectation of each fi ,∑
a

P(a|H)fi (a,H)

Guaranteed to converge monotonically to the optimal solution
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Maximum Likelihood Estimation

Berger (1996) states that this algorithm gives the maximum
likelihood estimate for the set of models under the given form

“The duality is appealing since as a maximum entropy model, it will not
assume anything beyond the evidence, and as a maximum likelihood
model, it will have a close fit to the observed data.” Ratnaparkhi (1999)
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Training and Searching

Trained using the Penn Treebank

Beam-search

Achieves state of the art performance
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Charniak’s Model

Uses a top-down generative parser to narrow down the search space
to a set of candidate parses

Then uses the methods from Ratnaparkhi (1999)

However, instead of feature selecting only the common features,
includes all features and smooths with deleted interpolation

Also uses a less flexible formulation with a specific decomposition of
probabilities, equivalent (?) to using 6 particular features and
Z (H) = 1 (see eq. 7 from Charniak, 2000)
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Semantic Parsing

Often a traditional parse tree is not enough for an application

Parse trees only reflect a language’s grammar, which gives few clues
as to the meaning of a sentence

For instance, in question-answering tasks, it is much easier to work
with logical forms

The task of parsing to a logical form is called “semantic parsing”
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Logical Forms

A logical form can be thought of as a parse tree for a special grammar
where the rules in the derivation encode logical relationships2

Most often this is written using lambda calculus,

Example from Kwiatkowski et. al (2010)

Sentence: Which states border Texas?
Meaning: λ x .state(x) ∧ next to(x ,Texas)

In 2007, Collins went on to coauthor a paper titled Online Learning of
Relaxed CCG Grammars for Parsing to Logical Form.

2Formalized as something called a combinatory categorial grammar (CCG)
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Dependency-Based Compositional Semantics

A hot topic in the field of semantic parsing is Dependency-based
Compositional Semantics (DCS), first introduced by Liang et al
(2011)

Fun fact: Michael Jordan was a coauthor!

Inspired by Discourse Representation Theory (DRT)

They define a new semantic representation called DCS, which is a
tree corresponding to a latent logical form, that is much less stringent
than lambda calculus
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Dependency-Based Compositional Semantics

Interestingly, they use a discriminative log-linear feature model and
beam-search, much like the Ratnaparkhi (1999) model discussed
earlier

Model trained using an EM-like algorithm and evaluated on a
question-answer corpus

This approach outperforms all existing semantic parsers, without even
learning from annotated logical forms

Success owed to using a flexible representation in a latent factor space
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Charniak Extension

Charniak and Johnson (Coarse-to-Fine n-Best Parsing and MaxEnt
Discriminative Reranking, 2005) build a discriminative ranker of
parses produced by the maximum entropy parser

Get top 50 parses, exploiting a “course-to-fine” heuristic they defined

Improvements over the vanilla maximum entropy model, achieving
about 91% on sentences up to 80 words
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Stanford’s Factored Parser

Fast Exact Inference with a Factored Model for Natural Language
Parsing (Klein and Manning, 2003)

Version that is combined with a PCFG parser is available online for
play: http://nlp.stanford.edu:8080/parser/

Source code also available for download, including some more recent
models
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Neural Networks

Compositional Vector Grammars (CVG)

Parsing With Compositional Vector Grammars (Socher et al., 2013)
Andrew Ng and Stanford
Combines PCFG with a recurrent neural network to learn a
“syntactico-semantic” representation
Faster and more accurate than Stanford’s factored parser

Dependency Parser

A Fast and Accurate Dependency Parser using Neural Networks (Chen
and Manning, 2014)
Dependency parsing establishes relationships between head words and
the words that modify those heads
Their parser is transition based, where decisions are made by a neural
network
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Conclusions

CFGs served as a decent foundation for parsing, but were
fundamentally flawed

Development of PCFGs “was one of the biggest breakthroughs in
natural language processing in the 1990s”

Modern parsers improved by use of discriminative techniques
(maximum entropy)

Stanford’s newest neural network models are state of the art with
92% accuracy, fast, and freely available
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Bioinformatics

PCFGs are used to predict RNA structure

Trained using a database of RNA structures in a similar fashion to
using a treebank

A maximum probability parse corresponds to a maximum probability
RNA structure

Can model long range interactions, pairwise structure and nested
structures

Pseudoknots (essentially loops in the structure) cannot be modeled
however
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Bioinformatics

Generally a grammar is chosen by modeling RNA sequence structure3

S → LS | L
L→ s | dFd
F → dFd | LS

Transition probabilities learned from training data

Used to rank most likely structures

Biological Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids (Durbin, 1998)

3http://en.wikipedia.org/wiki/Stochastic_context-free_grammar#

Building_a_PCFG_model
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