Modelling Sentence Pair Similarity

with Multi-Perspective
Convolutional Neural Networks

/HUCHENG TU | CS 898 SPRING 2017
JULY 17, 2017

Outline

Motivation
o Why do we want to model sentence similarity?

o Challenges
Existing Work on Sentence Modeling
Multi-Perspective CNN
Modifications and Results

Future Work

Motivation

Modeling the similarity of a pair of sentencesis critical to
many NLP tasks:

° Paraphrase identification, ex. plagiarism detection or detecting
duplicate questions

c Question answering, ex. answer selection
> Query ranking

What makes sentence modelling hard?

°Different ways of saying the same thing

°Little annotated training data

o “Difficult to use sparse, hand-crafted features as in conventional approaches
in NLP”(He et al., 2015)

Existing Work

> Before deep learning methods, methods included

° N-gram overlap on word and characters

o Knowledge-based, e.g. using WordNet

o Combinations of these methods and multi-task learning

° Deep learning methods:
o Collobert and Weston (2008) trained CNN in multitask setting
Kalchbrenner et al. (2014) used dynamic k-max pooling to handle variable sized input

o

(o]

Kim (2014) used fixed & learned word vectors and varying window sizes & convolution filters

[¢]

more CNNs...
Taiet al. (2015) and Zhu et al. (2015) used tree-based LSTM

o

Multi-Perspective CNN

° Based on: Hua He, Kevin Gimpel, and Jimmy Lin. 2015. Multi-
Perspective sentence similarity modeling with convolutional neural
networks. In Proceedings of EMINLP, pages 1576—1586.

e Compare sentence pairs using a “multiplicity of perspectives”

e Two components: sentence model and similarity measurement
layer

> Advantages:

> Do not use syntax parsers
° Do not need unsupervised pre-training step

Multi-Perspective CNN Architecture

Output: Similarity Score

I Fully Conn!ected Layer I

I Structured Slmllarlty Measurement Layer

. ® 0 . ® 0
Cats Sit On The Mat On The Mat There Sit Cats

Preparing Input

> Use GloVe (840B tokens, 2.2M vocab, 300d vectors) to create sentence embedding
o Use values from Normal(0, 1) for words not found in vocab

> Pad sentence embedding to create uniformly-sized batches for faster GPU training

A group of kids is playing in a yard and an old
man is standing in the background —_—

A group of boys in a yard is playing and a
man is standing in the background

Sentence Modelling: Multi-Perspective Convolution

Two types of convolution for each sentence
Holistic filters Per-dimensional filters

w Wy W3 Wy Ws W Wy W3 Wy Wy

000 >eo0000
000 >eo0000
000 >eo0000
000 >eo0000

»

Sentence Modeling: Multiple Pooling

Multiple types of pooling for type of convolution, we call the group of
filters for a particular convolution type a “Block”

Building Block A
Max Pooling| | Min Pooling| [Mean Pooling]

Building Block B
Max Pooling | | Min Pooling |

Holistic Holistic Holistic Dinl::;;ion Dinl?:;;ion
Filters Filters Filters Filters Filters
wsq ws ws wsy wsy

Sentence Modeling: Multiple Window Sizes

Multiple blocks, each corresponding to a particular width

Building Block A
[Max Pooling | I Min Poolingl IMean Poolind

Building Block B
[Max Pooling| | Min Pooling |

E A special ws = oo
! corresponds with
1

ws =1 Holistic 11 the entire
1 I==== > T 5 15 - 1
Pilters | 1 Building Block A 11 BuildingBlockB 1 sentence
S : [Max Pooling | I Min Pooliugl |Mean Poolmgl: :IMax Poolingl I Min Pooling :
I 11 1
""""" ! 11 1 I e [pa—
1 HoliStic [mee e ——————— | [mm——————— N
ws = 2 : Filters | Building Block A 11 Building Block B 1
| 11 1
: w0 : [Max Pooling | I Min Poolingl IMean Poolmgi: : IMax Poolingl I Min Poolingl :
| : | :
: H9ﬁstic H‘_)liStiC H?listic : : Dinll):;.sion Dinlzgll;;ion :
=3 : Filters Filters Filters : : Filters Filters :
WS = | wsq wsy wsy] wsy wsy |
I 11 I
I : : I

Sentence Modelling: Putting it together

Output: Similarity Score

I Fully Conn!ected Layer I

I Structured Slmllarlty Measurement Layer

—»ﬂﬁm -

. ® 0 . ® 0
Cats Sit On The Mat On The Mat There Sit Cats

Sentence Modelling: Putting it together

Similarity Measurement Layer

> We can flatten the outputs from the different blocksinto a 1D vector and
compare the result

° Problem: different parts of the flattened vector represent different results, so
comparing flattened vector might capture less information

° Instead, we can compare over non-flattened local regions

Local Region Comparisons

Horizontal comparison:
comparing local regions of the
two sentences based on matching
pooling method and window size
for holistic filters only. Compare
using cosine distance and
Euclidean distance.

Vertical comparison:

Similar, but in vertical direction
for both holistic and per-
dimension filters. Compare using
i cosine distance, Euclidean
distance, and element-wise
absolute value.

e

/
=
P
&
i)
P
i'i
=
&
|
'SI
.fl
=
&

Other Model Details

> Fully-Connected Layer: After similarity measurement, add two linear layers
with tanh activation layerin between

° Final layeris log-softmax layer

Re-Implementation

e Model used in the paper was written in Torch

° Re-implement model in PyTorch as a part of wider efforts in
research group

> Make some changes to the network and compare performance

Datasets for experiments

o SICK

o Sentences Involving Compositional Knowledge
° 9927 sentence pairs— 4500 training, 500 dev, 4927 testing
o Scores are inrange[1, 5]

> MSRVID

o Microsoft Video Paraphrase Corpus

° 1500 sentence pairs— 750 training, 750 testing

> Since no dev set is provided, ~20% of the training data is held out for validationin each
epoch

o Scores are in range [0, 5]

Training

> Use 300 spatial filters and 20 per-dimension filters

c Both datasets are trained using Adam, using KL-divergence loss
with L2 regularization penalty of 0.001

o Use batch size of 64 for SICK, 16 for MSRVID

o Learning rate: initially, 0.1, but decreases by a factor of ~3 if
validation performance do not improve after 2 epochs (reduce
learning rate on plateau)

> Shuffle training data after every epoch

Learning Curve

14 090

085
12

080

10
075

loss
(o]
loss

070
6 065
0.60
055

0 5 10 15 2 25 D

0 5 10 15 20 25 0
epoch

epoch
Training set loss for SICK dataset Dev set loss for SICK dataset

*Note: training set loss is showing summed loss over batches, dev set loss is showing average loss per batch. Due to oversight. | did
not have time before the presentation to make them consistent.

Evaluation metric curve

g

pearson'sr
o o ©o o
& &8 o 8

o
3

055
050
045
0 5 10 15 20 25 0
epoch

Pearson’s r on dev set

Benchmark of Re-Implementation

SICK Dataset MSRVID Dataset

2-layer Bidirectional LSTM 0.8488 0.7926 Beltagy et al. (2014) 0.8300
Taietal (2015) Const. LSTM ~ 0.8491 0.7873 Bar et al. (2012) 0.8730
Tai etal (2015) Dep. LSTM 0.8676 0.8083 Sari¢ et al. (2012) 0.8803
Paper 0.8686 0.8047 Paper 0.9090
Re-impl. 0.8553 0.7905 Re-impl. 0.8668

r refers to Pearson’s r
p refers to Spearman’s p

Modification 1: Dropout

SICK Dataset MSRVID Dataset
BTNV
2-layer Bidirectional LSTM 0.8488 0.7926 Beltagy et al. (2014) 0.8300
Taietal (2015) Const. LSTM 0.8491 0.7873 Bar et al. (2012) 0.8730
Taietal (2015) Dep. LSTM 0.8676 0.8083 Sari¢ et al. (2012) 0.8803
Paper 0.8686 0.8047 Paper 0.9090
Re-impl. w/ modif. 0.8590 0.7917 Re-impl. w/ modif. 0.8788
+0.0037 +0.0012 +0.012

Using dropout probability = 0.5

Modification 2: Batch Renormalization

SICK Dataset MSRVID Dataset
0.8016 0.7415 0.8604

Unfortunately batch normalization did not improve
the performance with the default parameters

Modification 3: Symmetric Compare Unit

SICK Dataset MSRVID Dataset
BTNV
2-layer Bidirectional LSTM 0.8488 0.7926 Beltagy et al. (2014) 0.8300
Taietal (2015) Const. LSTM 0.8491 0.7873 Bar et al. (2012) 0.8730
Taietal (2015) Dep. LSTM 0.8676 0.8083 Sari¢ et al. (2012) 0.8803
Paper 0.8686 0.8047 Paper 0.9090
Re-impl. w/ modif. 0.8565 0.7883 Re-impl. w/ modif. 0.8741
-0.0035 -0.0034 -0.0047

Compared with adding dropout as baseline, this did not improve performance

Randomized Grid Search

sick_scores_df.sort values('val', ascending=False)

msrvid_scores_df.sort_values(‘val', ascending=False

file

test

val

file

test

val

grid_sick_Ir_0.0016_eps_0.0038_reg_0.0011.txt

0.838606

0.826844

19

grid_msrvid_Ir_0.0066_eps_0.0017_reg_0.0005.txt

0.879973

0.999691

grid_sick_Ir_0.0087_eps_0.0001_reg_0.0051.txt

0.828084

0.824307

4

grid_msrvid_Ir_0.0003_eps_0.0002_reg_0.0007.txt

0.863920

0.999338

grid_sick_Ir_0.0008_eps_0.002_reg_0.0013.txt

0.838737

0.823897

1

grid_msrvid_Ir_0.0016_eps_0.0001_reg_0.0015.txt

0.889749

0.999146

grid_sick_Ir_0.0009_eps_0.0011_reg_0.0218.txt

0.785866

0.763221

12

grid_msrvid_Ir_0.0018_eps_0.004_reg_0.0001.txt

0.863612

0.998825

grid_sick_Ir_0.0009_eps_0.0072_reg_0.0148.txt

0.776737

0.756730

1

grid_msrvid_Ir_0.0002_eps_0.0001_reg_0.0019.txt

0.863329

0.996565

W0 | s~ |(©® | @

grid_sick_Ir_0.0004_eps_0.0025_reg_0.0384.txt

0.585399

0.544012

24

grid_msrvid_Ir_0.0089_eps_0.0016_reg_0.0039.txt

0.883729

0.995516

17

grid_msrvid_Ir_0.0048_eps_0.004_reg_0.0057.txt

0.877002

0.992085

-

grid_sick_Ir_0.0001_eps_0.0601_reg_0.0007.txt

0.538176

0.530472

22

grid_msrvid_Ir_0.0078_eps_0.0006_reg_0.0002.txt

0.888155

0.990571

grid_sick_Ir_0.0009_eps_0.0757_reg_0.0008.txt

0.538565

0.527721

2

grid_msrvid_Ir_0.0002_eps_0.0008_reg_0.0002.txt

0.859497

0.890201

grid_sick_Ir_0.0001_eps_0.0024_reg_0.0002.txt

0.527839

0.498647

16

grid_msrvid_Ir_0.002_eps_0.0117_reg_0.0001.txt

0.861618

0.989668

grid_sick_Ir_0.0002_eps_0.0008_reg_0.079.txt

0.495018

0.453034

14

grid_msrvid_Ir_0.0027_eps_0.0169_reg_0.0003.txt

0.861385

0.986688

5

grid_msrvid_Ir_0.0003_eps_0.0018_reg_0.0013.txt

0.855682

0.980119

test and val metrics show Pearson’s r. Found better performance for MSRVID dataset. As an improvement, can try picking from a
random set of reasonable discrete parameters instead. Thanks to Salman Mohammed for randomized hyperparameter search script.

+0.001

Work in Progress

o Adding attention module in parallel with convolution layers(Yin et al., 2016)
o Adding sparse features (e.g. idf) to first linear layer

o Evaluate performance on other tasks
> TrecQA for question answering

> SNLI for inference (contradiction, entailment, neutral)

References

° Hua He, Kevin Gimpel, and Jimmy Lin. 2015. Multi-Perspective sentence similarity modeling with
convolutional neural networks. In Proceedings of EMINLP, pages 1576—-1586.

> Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: deep
neural networks with multitask learning. In Proceedings of the 25th International Conference on
Machine learning, pages 160-167.

o Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics.
> Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceedings of the 2014
Conference on Empirical Methods for Natural Language Processing.

o Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations
from tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics.

References Cont’ed

o Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. 2015. Long short-term memory over recursive
structures. In Proceedings of the 32nd International Conference on Machine Learning, pages 1604—
1612.

o Daniel Bar, Chris Biemann, Iryna Gurevych, and ~ Torsten Zesch. 2012. UKP: computing semantic textual
similarity by combining multiple content similarity measures. In Proceedings of the First Joint
Conference on Lexical and Computational Semantics, pages 435-440.

o Frane Sari ~ ¢, Goran Glava " s, Mladen Karan, Jan ~ Snajder, “ and Bojana Dalbelo Basi” c. 2012. TakelLab:

systems ~ for measuring semantic text similarity. In Proceedings of the First Joint Conference on Lexical
and Computational Semantics, pages 441-448.

° |slam Beltagy, Katrin Erk, and Raymond Mooney. 2014. Probabilistic soft logic for semantic textual
similarity. Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics, pages
1210-1219.

o Wenpeng Yin, Hinrich Schutze, Bing Xiang, and Bowen Zhou. Abcnn: Attention-based convolutional
neural network for modeling sentence pairs. In ACL, 2016.

