Chen Huang # Deep Learning - Financial Time Series application Use Deep learning to learn an existing strategy # Warning - Don't Try this at home! - * Investment involves risk. Make sure you understand the risk before investing. # A little background about me - * I am working for YiBei Investment and Management LTD - * Started in 2012 with 4 people all with CS background, grow into 12 people with different backgrounds - * YiBei is managing around 60-70 Million Yuan (~10 Millions in USD) - * Published Two funds to public in 2017 - * Focus on quantitive trading models on commodity, stocks. - * 2017 started VC. # Agenda - * Introduction on common quantitive trading strategies - * Background - Trading Model development - * Challenges - * Can deep learning help? - * LSTM to learn from an existing strategy - LRCN network to learn from an existing strategy - * Can deep learning help generate trading strategies? # Terminology - * Future a financial derivative with leverage option, usually based on some assets, e.g Copper Future - * Price Price of a single asset. e.g price of 50 bushel Corn - * Feature a processed input to Model. - * Model processing features and produces position - Position The number of assets holding at any given time - * Actions - * Long buy - Sell sell previous purchased asset - Short sell asset by borrowing the asset - Cover buy asset back and return the borrowed asset # Background - Trading Strategy * Trading Strategy is a program that automates the decision to buy/sell financial assets. # Background - Trading Feature # Background - Trading Feature - * Treading Feature provides as input to trading model. - * e.g. many technical indicators - Feature has a strength level - * A good feature should have a **large absolute** correlation between feature strength and price movement in the near future. # Background - Trading Feature # Background - Trading Model # Background - Trading Model - Trading Model take input from the features and decides what to do with them - It output positions, which later translated by the trading system and produces trading actions - * Trading Model is mostly concerned with the trading logic. # Background - Trading Model ``` bcond1_1 = Close > trendline && Close > shortline; bcond1 2 = trendline < shortline;</pre> bcond1 3 = abs(shortline - trendline) > myThreshold; bcond1 = bcond1 1 && bcond1 2 && bcond1 3; AddColumn(bcond1, "bcond1", format=1); bcond2 = LinRegSlope(C, myS) > LinRegSlope_coeff * cond3_coeff * lastCoupleDaysATR; AddColumn(bcond2, "bcond2", format=1); bcond3 = shortSlope > (LinRegSlope coeff * lastCoupleDaysATR); AddColumn(bcond3, "bcond3", format=1); BSIG = bcond1 && bcond2 && bcond3; AddColumn(BSIG, "BSIG", format=1); ``` # Background - Trading System # Background - Trading System - * The main functionality of the trading system is to calculate different metrics, e.g. - * Return - * NetProfits - * Annual Return - * Risk - * Max Drawdown (MDD) - * Standard Error - * Risk adjusted Return - * CAR/MDD - Profit Factor - Frequency(Number of Trades) - * Overfitting Prevention - Consistency (K-ratio) - * Robustness # Background - Equity Curve #### **Equity Curve is the only truth** - * Metrics can be deceiving. - * For example, sharpe ratio misses max drawdown. - * Evaluate a strategy involves evaluating multiple metrics are the same time. - * The objective function involves multiple metrics. - * objective function surface is very spiky! # Background - Equity Curve - * Trading is not only a technical challenge, but also a **phycological** challenge. - Under a working strategy, within certain timeframe, the strategy could perform worse. - * How to handle the pressure and take courages bet is beyond trading strategy development - * There are many ways to develop a model. Common models based on prices includes - Trend Following - * Mean Reversion - * Pattern Matching/Statistical Methods ### Model Development - Trend Following - * Trend following is based on the belief that price movement has momentum, the direction of the price moment won't change too soon. - * It's relatively easy to compose a trend following model. - * There are many trend following models because trend can be defined in many ways. ### Model Development - Mean Reversion - * Mean reversion is based the assumption that the price will often overshoot and revert back to its mean. - * It's slightly more difficult to compose compared to trend following. - * There are many mean reversion models as it can defined differently. - * Trend Following is the completely opposite of the Mean reversion. - * Under market efficient theory, neither of the strategy would work out - * However, does the data show that market is efficient? - * After a model has been created, an optimization is performed to decide what parameters are the best suitable for certain assets. - * The optimization is based on a objective function, which could be a linear combination of different metrics. - * Then we looked at the top 200 optimization results and hand-pick a couple parameters to trade. # Comparison | Comparison | Trading Strategy | Machine Learning | | |----------------|--------------------|--|--| | Model | mathematical model | Neural Network, etc | | | Optimization | hand-crafted | Gradient Decent, Adam, etc | | | HyperParameter | Grid Search | Grid Search, Bayesian
Optimization, etc | | #### Deep Learning Application in Time Series - * In 2012, I've tried deep neural network as well as reinforcement learning to see if they can be a good model for trading - * The results is not promising. reinforcement approach didn't coverage and deep neural network doesn't produce a results that is tradable after slippage and commission. - * This time I am trying to see if neural network is able to learn trend following strategy. #### Deep Learning Application in Time Series - * First, we picked one of our current trading trend-following strategy based on moving average and an extra linear regression line. - * Two moving averages and linear regression line decides whether a trend is formed from past data. - * Once the condition met, place the trade in the direction of the short moving average. - * Exit the position when maximum drawdown for this specific position exceeds a certain threshold. # Deep Learning - Target function ``` def strategy(self): 策略的逻辑 recentATR = ATR(self.C, self.H, self.L, 100, False) threshold = self.optimize("threshold_multiplier") * recentATR linreg_slope_coeff = self.optimize("linreg_slope_coeff") linreg_lookback = int(self.optimize("linreg_lookback")) long period = int(self.optimize("longPeriod")) short_period = int(self.optimize("short_ratio") * long_period) short_line = MA(self.C, short_period) long_line = MA(self.C, self.optimize("longPeriod")) close_slope = LinRegSlope(self.C, short_period) short_slope = LinRegSlope(short_line, linreg_lookback) bcond1_1 = (self.C > long_line) & (self.C > short_line) bcond1_2 = long_line < short_line</pre> bcond1_3 = abs(short_line - long_line) > threshold bcond1 = bcond1_1 & bcond1_2 & bcond1_3 bcond2 = LinRegSlope(self.C, short_period) > linreg_slope_coeff * self.optimize("cond3_coeff") * recentATR bcond3 = short_slope > linreg_slope_coeff * recentATR BSIG = bcond1 & bcond2 & bcond3 scond1_1 = (self.C < long_line) & (self.C < short_line)</pre> scond1_2 = long_line > short_line scond1_3 = abs(short_line - long_line) > threshold scond1 = scond1_1 & scond1_2 & scond1_3 scond2 = LinRegSlope(self.C, short_period) < (-1) * linreg_slope_coeff * self.optimize("cond3_coeff") * recentATR</pre> scond3 = short_slope < (-1) * linreg_slope_coeff * recentATR</pre> SSIG - scond1 & scond2 & scond3 self.BUY = BSIG self.SHDRT = SSIG sigs = MoveStop(self.C, self.BUY, self.SHORT, self.SELL | self.COVER, 100) return sigs.values ``` This is the target function. Equity Curve from 2012 Equity Curve from 2004 #### LSTM - Financial Time Series - * input: Copper minute prices in the format of OHLC (Open, High, Low, Close) of Shanghai Future Exchange from 2012 to July 2017, total of 500310 records. - * Training data is compose the first 35000 records, and testing data is the reset 15000 records. The last 310 records are ignored due to batch size. 20% Training data is further split into validation set without shuffle. - * output the positions as a vector. #### LSTM - Time Series - * One of the structure that comes in mind for time series would be LSTM. - * It is capable to learn from past experience to predict time series. # Results - Learning from a Strategy | Target: Strategy | Accuracy | Metric | Optimizer | Config | Layers | |----------------------|----------|--------------------------|-----------|--|--| | LSTM
(Regression) | 30.03% | 0.3737
(MSE) | SGD | LR: 1e-8
Decay: 1e-9
Momentum: 0.9 | LSTM-128
LSTM-128
LSTM-32
Dense-32
Dense-32
Dense-1 | | LSTM
(Classifier) | 28.25% | 1.0989
(CrossEntropy) | SGD | LR: 1e-8
Decay: 1e-9
Momentum: 0.9 | LSTM-128
LSTM-128
LSTM-32
Dense-32
Dense-32
Dense-3 | # Learning - Trading Strategy - * It seems that LSTM is not able to learn the strategy function. - * What part of the strategy can't be learned? - * The strategy is composed of features, entry logic and exit logic. - * Each part is tested to see if they can be learned. # Features Learning ``` def strategy(self): 策略的逻辑 recentATR = ATR(self.C, self.H, self.L, 100, False) threshold = self.optimize("threshold_multiplier") * recentATR linreg_slope_coeff = self.optimize("linreg_slope_coeff") linreg_lookback = int(self.optimize("linreg_lookback")) long period = int(self.optimize("longPeriod")) short_period = int(self.optimize("short_ratio") * long_period) short_line = MA(self.C, short_period) long_line = MA(self.C, self.optimize("longPeriod")) close_slope = LinRegSlope(self.C, short_period) short_slope = LinRegSlope(short_line, linreg_lookback) bcond1_1 = (self.C > long_line) & (self.C > short_line) bcond1_2 = long_line < short_line</pre> bcond1_3 = abs(short_line - long_line) > threshold bcond1 = bcond1_1 & bcond1_2 & bcond1_3 bcond2 = LinRegSlope(self.C, short_period) > linreg_slope_coeff * self.optimize("cond3_coeff") * recentATR bcond3 = short_slope > linreg_slope_coeff * recentATR BSIG = bcond1 & bcond2 & bcond3 scond1_1 = (self.C < long_line) & (self.C < short_line)</pre> scond1_2 = long_line > short_line scond1_3 = abs(short_line - long_line) > threshold scond1 = scond1_1 & scond1_2 & scond1_3 scond2 = LinRegSlope(self.C, short_period) < (-1) * linreg_slope_coeff * self.optimize("cond3_coeff") * recentATR</pre> scond3 = short_slope < (-1) * linreg_slope_coeff * recentATR</pre> SSIG = scond1 & scond2 & scond3 self.BUY = BSIG self.SHDRT = SSIG sigs = MoveStop(self.C, self.BUY, self.SHORT, self.SELL | self.COVER, 100) return sigs.values ``` - Features calculation is highlighted to the left - We picked Moving Average since it's the most commonly used technical indicator and also a basis for most other indicators $$egin{align} ar{p}_{ ext{SM}} &= rac{p_M + p_{M-1} + \dots + p_{M-(n-1)}}{n} \ &= rac{1}{n} \sum_{i=0}^{n-1} p_{M-i} \frac{1}{n} \frac{$$ # Results - Learning Features Metric (MSE) Target: SMA 20 Optimizer Config Layers **SGD** 3.9949 LSTM (Regression) Adam (Doesn't Converge) AdaDelta FullyConnected Dense128 LR: 1e-7 Dense64 6.9339e-04 (MSE) SGD Decay: 1e-8 Dense32 (Regression) Momentum: 0.9 Dense1 # Entry Logic Learning ``` def strategy(self): 策略的逻辑 recentATR = ATR(self.C, self.H, self.L, 100, False) threshold = self.optimize("threshold_multiplier") * recentATR linreg_slope_coeff = self.optimize("linreg_slope_coeff") linreg_lookback = int(self.optimize("linreg_lookback")) long_period = int(self.optimize("longPeriod")) short_period = int(self.optimize("short_ratio") * long_period) short_line = MA(self.C, short_period) long_line = MA(self.C, self.optimize("longPeriod")) close_slope = LinRegSlope(self.C, short_period) short_slope = LinRegSlope(short_line, linreg_lookback) bcond1_1 = (self.C > long_line) & (self.C > short_line) bcond1_2 = long_line < short_line</pre> bcond1_3 = abs(short_line - long_line) > threshold bcond1 = bcond1_1 & bcond1_2 & bcond1_3 bcond2 = LinRegSlope(self.C, short_period) > linreg_slope_coeff * self.optimize("cond3_coeff") * recentATR bcond3 = short_slope > linreg_slope_coeff * recentATR BSIG = bcond1 & bcond2 & bcond3 scond1_1 = (self.C < long_line) & (self.C < short_line)</pre> scond1_2 = long_line > short_line scond1_3 = abs(short_line - long_line) > threshold scond1 = scond1_1 & scond1_2 & scond1_3 scond2 = LinRegSlope(self.C, short_period) < (-1) * linreq_slope_coeff * self.optimize("cond3_coeff") * recentATR</pre> scond3 = short_slope < (-1) * linreg_slope_coeff * recentATR</pre> SSIG = scond1 & scond2 & scond3 self.BUY = BSIG self.SHORT = SSIG sigs = MoveStop(self.C, self.BUY, self.SHORT, self.SELL | self.COVER, 100) return sigs.values ``` - Entry logic contains both Long and Short direction - * The basic logics are the same but opposite between long and short. - The operators used in the entry logics includes, less operator, and operator, multiplication, # Results - Learning Entry Logic | Target: Entry Logic | Metric
(Accuracy) | Optimizer | Config | Layers | |--------------------------------|----------------------|-----------|----------|--| | LSTM (Regression) | N/A | N/A | N/A | N/A | | FullyConnected
(Regression) | 96.057% | Adam | LR: 1e-9 | Dense-128
Dense-64
Dense-32
Dense-3 | # Exit Logic Learning ``` def strategy(self): 策略的逻辑 recentATR = ATR(self.C, self.H, self.L, 100, False) threshold = self.optimize("threshold_multiplier") * recentATR linreg_slope_coeff = self.optimize("linreg_slope_coeff") linreg_lookback = int(self.optimize("linreg_lookback")) long_period = int(self.optimize("longPeriod")) short_period = int(self.optimize("short_ratio") * long_period) short_line = MA(self.C, short_period) long_line = MA(self.C, self.optimize("longPeriod")) close_slope = LinRegSlope(self.C, short_period) short_slope = LinRegSlope(short_line, linreg_lookback) bcond1_1 = (self.C > long_line) & (self.C > short_line) bcond1_2 = long_line < short_line</pre> bcond1_3 = abs(short_line - long_line) > threshold bcond1 = bcond1_1 & bcond1_2 & bcond1_3 bcond2 = LinRegSlope(self.C, short_period) > linreg_slope_coeff * self.optimize("cond3_coeff") * recentATR bcond3 = short_slope > linreg_slope_coeff * recentATR BSIG = bcond1 & bcond2 & bcond3 scond1_1 = (self.C < long_line) & (self.C < short_line)</pre> scond1_2 = long_line > short_line scond1_3 = abs(short_line - long_line) > threshold scond1 = scond1_1 & scond1_2 & scond1_3 scond2 = LinRegSlope(self.C, short_period) < (-1) * linreg_slope_coeff * self.optimize("cond3_coeff") * recentATR</pre> scond3 = short_slope < (-1) * linreq_slope_coeff * recentATR</pre> SSIG = scond1 & scond2 & scond3 self.BUY = BSIG self.SHDRT = SSIG sigs = MoveStop(self.C, self.BUY, self.SHORT, self.SELL | self.COVER, 100) return sigs.values ``` - * Trailing stop is one of the common exit strategy. - Position is exited when the maximum drawdown exceed a certain threshold - The position can be open for a long time if maximum drawdown never exceeded the threshold # Results - Learning Exit Logic | Target: Exit Logic | Metric (Accuracy) | Optimizer | Config | Layers | |--------------------------------|-------------------|-----------|----------|---------------------------------------| | LSTM (Classifier) | 79.21% | Adam | lr:1e-9 | 6 LSTM Layers +
2 Dense layer | | FullyConnected
(Classifier) | 77.68% | Adam | lr: 1e-9 | Dense-128 Dense-128 Dense-128 Dense-3 | | LSTM + Dense
(Classifier) | 79.21% | Adam | lr:1e-9 | 6 LSTM Layers +
2 Dense layer | ## The End