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Abstract

In recent years, applications that provide a distributed
virtual environment (DVE) have become increasingly pop-
ular. Many DVE implementations use a client-server archi-
tecture that requires the server to send the same data to all
members of a collaborating or interacting group. This type
of group communication operation is often implemented by
sending data from the server to each recipient in a unicast
fashion. The problem with this approach is that the cost of
communication at the server does not scale very well with
the number of participants because the application requires
significant interaction with the operating system, network
stack and drivers for each individual send. In this paper,
we first propose a general analytic framework for predict-
ing how group communication performance impacts DVE
server capacity. We then conduct an experimental evalua-
tion to determine the extent to which using a kernel-based
group communication mechanism reduces the cost of group
send operations. Lastly, we use the measurements obtained
from these experiments to demonstrate how to apply the
analytic framework by determining the extent to which the
kernel-based group communication mechanism permits ex-
ample applications to scale to more users.

1 Introduction

A distributed virtual environment (DVE) is a shared vir-
tual environment where multiple human users interact with
each other. Such an environment is often considered as an
interactive, immersive, and multi-sensory environment. In
recent years, DVEs have rapidly gained popularity among
Internet users. This is substantiated by the increased use of
DVEs such as multi-player on-line games (MOGs) [1, 3],
and computer supported collaborative work (CSCW) appli-
cations [8]. In fact, even relatively conventional systems
such as audio and video conferencing and chat room appli-
cations can be classified as DVEs. The key attribute of these
applications is that they all support a number of participants

simultaneously interacting with each other using a network
such as the Internet. In many cases, they may involve a large
user population that is geographically distributed.

Typically, DVE applications are implemented using a
client-server architecture. They use UDP to transmit voice,
video, or other real-time data. Since these applications are
highly interactive, such as conferencing or on-line gaming,
they usually transmit data in small messages to achieve a
low packetization delay. They do not necessarily consume
a large amount of transmission bandwidth and often, the
servers are the system bottlenecks, rather than the network.

Perhaps the most important requirement of a DVE sys-
tem is to provide the participants with a consistent view of
the virtual environment in a timely manner. Any changes
in a user’s state (e.g., position and orientation) must be dis-
tributed to affected participants. In order to provide good
service, the server must be able to communicate to all or
a group of participants as quickly as possible [10]. There-
fore, of prime importance is the efficiency and scalability of
the communication mechanism. In the absence of IP-level
multicast, the only solution is a unicast-based distribution
mechanism. With or without the help of any application-
layer multicast (ALM) infrastructure, this requires repeated
send operations of the same data to multiple recipients.

In previous preliminary work [13] we have intro-
duced the notion of kernel-level group unicast, or kernel-
groupcast for short, to support efficient group communi-
cation using UDP. UDP is used because of its widespread
adoption for DVE systems and other group communica-
tion applications in the Internet. Initial experimental results
show that this technique significantly improves the perfor-
mance of group send operations, when compared with the
traditional approach that requires one send system call and
one data copy for each member of the group.

The focus of this paper is to examine how efficient group
communication mechanisms can be used to increase the ca-
pacity of DVE servers. By capacity, we mean the maximum
number of users that a server can support while maintaining
an acceptable level of performance. Our contributions are:

• We develop an analytic framework to examine process-
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ing and communication requirements in two different
types of DVE servers in order to predict the size of
the user population that can be supported by different
communication mechanisms.

• We illustrate how to apply our analytic framework by
demonstrating the potential benefits that could be ob-
tained by using our kernel-groupcast mechanism in a
DVE server.

• We derive bounds on the capacity of the application
server, that can be obtained through improved group
communication mechanisms.

The remainder of this paper is organized as follows. Sec-
tion 2 describes previous work related to our study. Sec-
tion 3 introduces an abstraction of DVE server models,
and Section 4 presents an analytic framework for assess-
ing the execution efficiency of different group communica-
tion mechanisms. Then, Section 5 provides an overview
of our kernel-based group unicast mechanism and presents
some measurement results. Using these results as inputs,
Section 6 demonstrates how our analytic framework can be
applied to examine the efficiency of our kernel-groupcast
technique at a DVE server. We also derive a general bound
for the potential benefits of using any improved groupcast
techniques. Finally, Section 7 contains concluding remarks
and some directions for future work.

2 Related Work

A common communication pattern required by a DVE
server is to send the same data to a group of users. Infor-
mation delivery systems and audio and video conferencing
applications also have similar requirements. Traditionally,
group communication in DVEs has been implemented sim-
ply by performing repeated unicast sends to all recipients.
With an increasing number of users, the use of network-
layer multicast has been proposed for many DVE systems
[10, 14]. Multicast solves part of the scalability problem by
allowing the users or the server to send data only once for
the entire group rather than having to repeatedly transfer the
data to all the recipients using a unicast send.

IP multicast, as originally proposed by Deering [9], has
long been regarded as the right mechanism for multicast.
However, its deployment is still very limited due to a variety
of technical and non-technical reasons [11]. For instance, IP
multicast requires intermediate routers to be upgraded and
to support additional tasks such as maintaining group state
and routing information. As a result, there have been sev-
eral proposals for implementing multicast in the application
layer rather than the network layer. This approach is known
as application layer multicast (ALM). Much research has
focused on the construction and maintenance of efficient
ALM networks. However, little attention has been paid to

analyzing and improving the efficiency of operating system
mechanisms for the required underlying group unicast send
operations. Our kernel-groupcast mechanism proposed in
[13] is designed to reduce communication costs when one
host is communicating directly with several hosts (recipi-
ents). As a result, this mechanism could be used to reduce
the cost of sending data to downstream nodes in ALM net-
works. Likewise, kernel-groupcast could be used to reduce
communication costs in general group communication sys-
tems, such as Horus [16] and Spread [7].

Existing work on the performance analysis of DVE sys-
tems has been conducted mainly by means of prototyping
and measurement. For example, MiMaze is a prototype of
an MOG employing multicast and has been evaluated with
25 players located in various places in France [10]. On the
other hand, the performance of QuakeWorld has been mea-
sured in terms of throughput, network bandwidth require-
ments, and a breakdown of the processing time [5]. In a
follow-up to this work, the authors have attempted to im-
prove server performance by parallelizing the game server
[4]. To our knowledge, these papers are the only source of
raw performance data that sheds some light on the costs of
network stack processing related to sending data to groups
of recipients in a DVE application. However, when com-
paring the numbers reported in [5] and [4], it is unclear how
to interpret the data in each paper. For example, while [5]
reports a relative send overhead of 50%, [4] uses a differ-
ent metric and reports a 5% total overhead for all network-
related system calls. The actual fraction of time a server
spends performing group send operations depends on sev-
eral factors which include the server hardware architecture,
operating system, NICs, drivers, network environment, ap-
plication implementation and nature of the required group
communication. As a consequence, our work in this paper
treats the fraction of time a server spends performing send
operations as an input parameter to a model that can be used
to determine how many users can be supported and how that
number of users could be increased if group communication
efficiency would be improved.

In contrast to the above work, our work considers the im-
pact that a group communication mechanism has on overall
server performance and develops a model to support explicit
performance predictions. There is only limited work on an-
alytic modelling of DVE systems. Muller et al. [15] develop
an analytic model called a “game scalability model” (GSM)
to evaluate scalability of Rokkatan, an on-line real-time
strategy game. This model divides the processing at the
game server into different tasks, e.g., updating the database
and sending state updates to the server’s local users. For
each of these tasks, GSM characterizes the average pro-
cessing time required, the average amount of data received,
and the average amount of data sent. Summing each mea-
sure over these tasks and comparing the sums to pre-defined
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maximum values, GSM predicts the maximum number of
players that can be supported. However, mathematical defi-
nitions and detailed characterizations of the above measures
are not provided. Also, GSM does not take into account
different server execution models. Our model not only ad-
dresses these issues, but also provides insight into DVE
server performance under a wide range of scenarios.

Other work on analytic modelling of a DVE server can
be found in [17]. In this work, the server performance is
analyzed based on resource utilization rather than process-
ing time. Their server model does not distinguish different
operations performed by the server; therefore, it cannot be
applied to investigate the impact of a group communication
mechanism on the overall server performance.

Because the time required to send data to all recipients
constitutes one portion of the overall execution cost of a
DVE server, Amdahl’s law [6] could be applied to predict
the performance improvement as a result of decreasing the
time required to send data. While Amdahl’s law provides a
general formulation of the resulting speedup, we use a more
detailed model that allows us to capture and analyze more
specific characteristics of different DVE server models.

In previous work [13] we have described the core idea
behind kernel-groupcast, described the system call interface
and provided a high-level overview of the implementation.
Our work here differs significantly in that the focus of this
paper is to produce a detailed analytic model to interpret
new micro-benchmark results on modern server architec-
tures in the context of application performance.

3 Server Models

In a DVE any changes in a user’s state (e.g., position, ve-
locity, orientation) must be distributed to the workstations
of those users who are affected by these changes in real
time. The transmission of a state update is done using group
communication, by mapping affected users into a group and
sending the state update to all users within the group [18].

Many DVE systems are implemented using a client-
server architecture. With this architecture, all state updates
are first sent to a central server where they are processed
and sent to all affected users. This architecture is widely
deployed because of its ease of implementation. The server
maintains an authoritative copy of the virtual environment,
which makes it easy to guarantee consistency among all
users and prevent cheating. We therefore focus on the
client-server architecture in this paper.

A DVE server can be implemented using one of two
execution models. In one model updates are sent syn-
chronously immediately after client messages arrive. In the
other model updates are sent asynchronously, according to
some time interval which is related to the latency that clients
can tolerate. To avoid using the overloaded terms “syn-

chronous” and “asynchronous”, we call these two models
the immediate and the periodic send models, respectively.

In the immediate send model, the server receives an up-
date from a client, processes the update, and immediately
sends the resulting change to all affected users. On the other
hand, in the periodic send model, the server processes all in-
coming updates immediately, but only sends updates to the
affected users periodically. Pseudo-code for both alterna-
tives is shown in Figures 1 and 2, respectively.

while (1) {
receive_client_msg()
process_client_msg()
send_update_to_group()

}

Figure 1. DVE server - immediate send model

set_alarm_handler(send_update_to_group,
period);

while (1) {
receive_client_msg()
process_client_msg()

}

Figure 2. DVE server - periodic send model

The immediate send model is simple and often yields
the shortest delay in terms of receiving the most up-to-
date changes of the virtual environment. However, it
may result in more send operations than the periodic send
model. There are several scenarios where the immediate
send model is the appropriate choice. For example, it may
be used to model the server side of CSCW applications.
Also, multi-user dungeon (MUD) games, which are text-
based MOGs, operate on a coarser time scale, but still pro-
vide real-time interaction. One example of MUD games
that use the immediate send model is RockyMud [2].

In environments where the server sends real-time audio
or video streams to the clients, the frame rate of the audio or
video stream typically determines the desired frequency of
updates from the server to the clients. Generally, such appli-
cations are best described by the periodic send model. Up-
dates at a higher frequency will not improve the user expe-
rience and are thus unnecessary. However, if the frame rate
frequency cannot be sustained, the perceived quality will be
degraded. The periodic send model also applies to stream-
ing audio and video servers where multiple audio or video
streams are being sent by the server to multiple clients.

The same design choice between performing immedi-
ate and periodic sends also exists for the client program.
Nonetheless, the work presented in this paper is indepen-
dent of the detailed send behavior of the clients.
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4 Analytic Framework

In this section, we present an analytic framework which
allows us to describe the potential benefits that can be ob-
tained by reducing the time spent in performing group send
operations at a DVE server.

In this framework, we consider the two server models in-
troduced in Section 3. For simplicity, we assume all users
are in the same group. We also assume that every update
needs to be distributed to all the users. This in fact corre-
sponds to the worst case scenario, and such a scenario is of
interest when one consider the issue of performance.

Of interest is the send update to group()
(or send for short) operation, and the reduc-
tion in the time spent performing this opera-
tion. For the receive client msg() and
process client msg() operations, we simply
combine them into a single component (referred to as
other). Let S and H be the average processing times for
the send and the other operations, respectively.

The performance constraint of the DVE server is
modelled as a maximum average period between
send update to group() operations. In the case
of the immediate send model, T denotes the maximum
average delay from when an update is received to when the
corresponding updates are sent to the entire group. In the
case of the periodic send model, T is simply the pre-defined
period used to determine the frequency of send operations.

Given the above performance constraint, we now present
our framework for each server model. For the immediate
send model, since each incoming message results in an up-
date being sent immediately to the group, we have:

λN(H + S) ≤ T (1)

where λ denotes the average number of messages sent from
a user per time period T , and N denotes the number of users
(in other words, the size of the group). For the periodic send
model, updates are generated at the end of the time period
T ; we have:

λNH + S ≤ T. (2)

Note that the basic formulation of Amdahl’s law [6] can
be directly applied only if the fraction of send times relative
to the total processing time is constant for varying numbers
of users. This is not always the case with the different server
models and the different models of H considered in this pa-
per (e.g., in the case of an immediate send model with a
function of H that is constant). Therefore, rather than using
Amdahl’s law, we design a new framework to permit the
analysis of and comparison between the two server models
in more general scenarios.

Consider now the characterization of S and H. Typi-
cally, in a DVE server, the average time for a send opera-
tion S may depend on the number of users involved N , and

the size of the update data packets being sent, b. S can be
written as:

S := S(N, b). (3)

For the average time required per other operation H, our
framework provides support for the possibility that H may
also depend on N . Specifically, H can be written as:

H := H(N). (4)

In order to examine the increase in the number of users
that can be supported by improving the efficiency of the
group communication mechanism, we introduce two per-
formance measures, namely the speedup factor r and the
relative capacity improvement ratio k. Suppose we have
an original groupcast technique and a new groupcast tech-
nique (which is supposed to reduce the “send” time). Let
Sorig(N, b) and Snew(N, b) be the amount of time taken to
send packets of size b bytes to N users by the original and
the new groupcast techniques, respectively.

The speedup factor r, which is a measure of efficiency
of the new technique with respect to the original technique,
is defined as:

r =
Sorig(N, b)

Snew(N, b)
. (5)

Values of r greater than one indicate that the new groupcast
technique is more efficient, and larger values indicate larger
improvements.

The relative capacity improvement ratio k is used to eval-
uate the potential benefit an application may gain as a result
of using the new groupcast technique. Given the charac-
terizations of H and S, and knowing the send model being
used (Equation 1 or 2), we can obtain the maximum num-
ber of users the server could support with the original and
new groupcast techniques (denoted by Nmax

orig and Nmax
new ,

respectively). Then, k is defined as:

k =
Nmax

new

Nmax
orig

. (6)

Generally speaking, this analytic framework applies to
any group communication mechanism. It not only allows
us to compute the number of users that can be supported
by a particular group communication mechanism at a DVE
server, but it also provides a methodology for comparing
the efficiency of two different mechanisms and their impact
on the number of users the server can support. For illus-
tration, we apply the framework to our proposed groupcast
technique, namely kernel-groupcast [13]. In the next sec-
tion, we will first describe our kernel-groupcast technique
and present measurement results which in Section 6 will be
used as inputs to the framework.
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5 Kernel-Level Group Unicast

In this section, we first briefly describe the design of our
kernel-level group unicast implementation from [13]. We
then describe the results obtained by running some micro-
benchmarks on two different hardware platforms, compar-
ing the performance of user-level group unicast (referred to
as user-groupcast) with the kernel-level group unicast (re-
ferred to as kernel-groupcast). These results are used in
Section 6 to populate mathematical models for the analysis
of application performance.

5.1 General Design

The goal of our operating system extension is to enhance
the functionality of sockets and the send system call to fa-
cilitate sending to a group of recipients with a single system
call. To use kernel-groupcast, an application first creates a
socket that will be used to refer to a group. A group of recip-
ients is associated with the socket by calling setsockopt
with the file descriptor of the socket, the SETSENDGRP pa-
rameter, and an array containing the addresses and ports
(struct sockaddr in) used to reach each member of
the group. To send the same data to all members of the
group, the application simply uses the send system call
with the file descriptor associated with the group. The ker-
nel then sends the data to each member of the group. In
previous work [13] we have shown that the system-call cost
for completely changing the entire group between each send
operation is negligible, and we have provided a more de-
tailed description of the API and an example use case.

Figure 3 gives an overview of the components of an op-
erating system kernel relevant to sending UDP data. In gen-
eral, carrying out a send operation consists of the following
steps. After initial processing in the socket layer, the pay-
load data is copied into a packet buffer. The UDP layer,
in cooperation with the socket layer, prepends the UDP
header and retrieves IP addressing information, which is
then used in the IP layer to produce the complete IP packet.
The packet buffer is submitted for link layer processing and
eventually DMA-transferred to the NIC. The basic function-
ality of kernel-groupcast is located in the UDP processing
component. A list of recipient endpoints (address & port) is
stored with the socket data structure. If this group address
list is not empty, instead of just creating a single IP packet,
the UDP output function loops through the list of addresses
and creates multiple instances of the packet buffer. Multi-
ple instances of the packet buffer are necessary, since lower
level processing is not invoked synchronously, but rather,
packet buffers may subsequently be queued in the system.
Because different processing steps throughout the network
stack are executed asynchronously, naively working with a
single copy of the packet buffer would result in overwriting

header data, while an outgoing packet buffer is still queued
for service. Ideally, packet buffer instances can be formed
without copying the payload part of the packet buffer, since
only header fields change between successive loop itera-
tions. If the operating system supports appropriate packet
buffers, multiple packets can be formed as multiple logical
instances of the same packet, each instance comprised of
private protocol headers and a shared payload. However,
this depends on the detailed design of the packet buffer data
structure and other considerations, such as the fragmenta-
tion strategy.

We have implemented kernel-groupcast on both
FreeBSD and Linux. The FreeBSD version is discussed in
[13]. It turns out that these two implementations require
different approaches to avoid copying the payload, result-
ing from different design philosophies for the networking
stack. In particular, the Linux networking stack does not
separate packet header and packet data for larger payloads,
as is the case in BSD-based systems. Therefore, it is not
possible to completely avoid copying the payload when
creating multiple packets to be sent to each recipient. We
have designed and implemented an on-demand lazy-copy
scheme to avoid making copies until absolutely necessary.
Essentially, after a packet is processed by the NIC, its
allocated data structure is appended to a shadow queue and
available for reuse. This is illustrated in Figure 3.

UDP processing

so
ck

et
packet buffer

payload

NIC

repeated packet
formation in
shadow queue

socket
layer

UDP

address list

IP Layer

Ethernet output queue

layer

layer

kernel level

user level

DMA

Figure 3. Lazy-copy packet replication

5.2 Experimental Results

We report the results of a number of micro-benchmark
experiments, which are designed to help understand the
performance improvements of kernel-groupcast over user-
groupcast. Specifically, we measure the time required by a
single server to send data to a number of recipients. The
results are obtained using version 2.6.8 of the Linux ker-
nel. The corresponding FreeBSD results are fundamentally
similar [13]. The two hardware platforms under study are
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a 2.8 GHz Intel Xeon server (referred to as i386) and a
900 MHz Intel Itanium2 server (referred to as ia64). Each
server uses up to four, 1 Gbps Ethernet interfaces to send out
data with its single CPU being the bottleneck. In fact, the
experiments revealed that because of the efficiency of our
kernel-groupcast implementation, with increasing packet
sizes we were able to generate very nearly 4 Gbps of net-
work traffic. We therefore limited the packet sizes to ensure
that the CPU is still the bottleneck.

The primary performance metric for our experiments is
the average time taken by the sender to send a single mes-
sage to all members in a group of recipients (average send
time). The graphs in this section show the average send time
while varying the group size for a set of packet sizes. A re-
duction in the average send time indicates a corresponding
increase in performance with a lower slope indicating bet-
ter scaling. All experiments consist of at least 100 send re-
quests and are run 10 times each. We then compute 99.9%
confidence intervals using the t-distribution. However, the
experiments are fairly deterministic, so the confidence in-
tervals turn out to be extremely small and would be barely
visible in the graphs. Therefore, we simply omit them.

Figure 4 illustrates the performance gains of kernel-
groupcast over user-groupcast on the Linux/i386 server.
Kernel-groupcast executes much faster than user-groupcast
and as expected the performance gap widens for larger
group sizes. Somewhat surprisingly, the packet size does
not significantly affect group unicast cost, especially for the
kernel-groupcast performance.
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Figure 5 shows the same results obtained on the 64-bit
Intel Itanium2 processor running Linux. On this platform
user groupcast executes faster than on the i386 architecture
(despite the discrepancy in processor speeds), while kernel-
groupcast is slower than on the i386. Nonetheless, our re-
sults still demonstrate the significant performance advan-
tages offered by using kernel-groupcast. We next examine
how these improvements might be used by servers to in-
crease the number of users it can support.
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6 Performance Prediction

In this section, we provide an illustration of how to apply
the framework presented in Section 4. We use the experi-
mental results obtained in Section 5.2 to determine the ex-
tent to which our proposed kernel-groupcast technique im-
proves the server’s capacity to service more users.

6.1 Send Time

The average time required for send operations us-
ing user-groupcast and kernel-groupcast (shown in Sec-
tion 5.2) can be characterized using a regression model. Let
Su(N, b) and Sk(N, b) be the average send times with user-
groupcast and kernel-groupcast, respectively. These send
times can be described using an equation of the form:

xN + yNb (7)

where x and y are constants. For example, on the
Linux/i386 platform we have (in ms):

Su(N, b) = (6.02E-3)N + (8.69E-7)Nb (8)

and

Sk(N, b) = (2.16E-3)N + (2.12E-7)Nb. (9)

Similarly, but not shown here, we determine equations
for the ia64 platform. As an example, Figures 6 and 7 show
how accurately these equations approximate the raw data
obtained on these two platforms for b = 80.

To compare the efficiency of the two groupcast tech-
niques, we compute the speedup factor r in Equation 5. We
observe that r is independent of N but not b. For instance,
the speedup factor on the Linux/i386 platform is:

r =
Su(N, b)

Sk(N, b)
=

(6.02E-3) + (8.69E-7)b

(2.16E-3) + (2.12E-7)b
(10)

where Su(N, b) and Sk(N, b) are given by Equations 8
and 9, respectively.
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6.2 Other Processing Time

In addition to characterizing the send time, we also need
to characterize the average processing time H for the other
operations performed by the server. Recall that this includes
the time spent receiving messages from users and the pro-
cessing time required before being able to send updates to
the clients. Clearly, H depends on the design and imple-
mentation of an application. Although there are numerous
possibilities for H, we consider two simple cases which we
believe will cover a variety of applications. In the first case
the server requires a constant amount of time per message:

H := H1 = c1, c1 is a constant, (11)

whereas in the second case the time spent per message is a
linear function of N :

H := H2(N) = c2N, c2 is a constant. (12)

In some cases one will know or will have measured how
the processing time for the other operations changes with
N . In these cases one can determine c1 or c2 directly. For
those cases where these values cannot be determined di-
rectly, we now describe how they can be calculated.

Suppose user-groupcast is used. We define f as the frac-
tion of time a server spends in distributing updates to the
users. So f ∈ [0, 1] and

f =
total send time

total processing time
. (13)

If the server is using an immediate send model, one can
derive H by conducting a simple experiment to determine f
(as defined above) and t (the average time between sending
updates), and then using their values to solve the following
set of equations (derived from Equations 1 and 13):

f =
MS

MS + MH
t = MS + MH

(14)

where M is the average number of messages received from
the users during t, which can easily be obtained in the ex-
periment.

If the server is using a periodic send model, one can
again determine f and t, and use the following set of equa-
tions to derive H (derived from Equations 2 and 13):

f =
S

S + MH
t = S + MH.

(15)

Substituting Su(N, b) into S and H1 (or H2(N)) from
Equations 11 (or 12) into H, we can solve for c1 (or c2).
Then, using this result together with Equation 1 or 2, we
can solve for Nmax

u and Nmax
k .

An alternative way to determine the values of c1 and c2

is to perform a stress test on the server in such a way that
it is 100% utilized and the average update processing time
does not exceed T . In this test, one measures the number
of users that can be supported, which is actually Nmax

u , and
the fraction of time spent in send operations f . Then, we
can solve Equation 13 for c1 or c2, depending on the type
of function H being considered.

6.3 Numerical Examples

We now illustrate how our framework can be used to pre-
dict the performance improvement of a DVE server when
using kernel-groupcast instead of user-groupcast.

In order to achieve smooth video and interactivity in
video-based applications, the desired frame rate is 30
frames per second. In our examples, we therefore assume
that T = 33.3 ms. We also assume that λ = 1, meaning
that on average each user submits one message per time pe-
riod T . Recall that T can be interpreted as the average delay
a user observes between receiving successive updates from
the server. Thus, it is reasonable for the server to expect to
receive one message per time period T . We choose a packet
size of 80 bytes (i.e., b = 80), which is about the mean
packet size observed in some MOG systems [12].

With b = 80, the average send times on the Linux/i386
platform in Equations 8 and 9 become:

Su(N) = (6.07E-3)N (16)
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and
Sk(N) = (2.17E-3)N, (17)

respectively.
Suppose we measure f and t for a certain DVE server.

Without loss of generality, we assume that t = T . Using the
methodology presented in Section 6.2, we can determine
the corresponding function H by Equation 16 or 17, and
consequently derive the relative capacity improvement ratio
k. The results of such computations are shown in Figures 8
and 9. They show how k changes with different values of f
for the two different functions H .

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

 0  0.2  0.4  0.6  0.8  1

ca
pa

ci
ty

 im
pr

ov
em

en
t r

at
io

, k

f

i386, immediate
ia64, immediate

i386, periodic
ia64, periodic

Figure 8. Capacity for f with constant H
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Figure 9. Capacity for f with linear H

These figures show how using kernel-groupcast can im-
prove the overall capacity of some example server appli-
cations. The degree of improvement differs between the
two platforms. In particular, the relative benefit of kernel-
groupcast is higher on the Linux/i368 platform than on the
ia64 platform (because of the larger differences in the re-
duction in send times due to kernel-groupcast on that plat-
form). These results also show that as the send opera-
tion comprises a larger portion of the total processing time
(i.e., as f increases), the capacity improvement increases.
More specifically, for small values of f , the immediate send
model benefits more from kernel-groupcast than the peri-
odic send model. However, as f increases, the periodic send
model yields a better relative capacity improvement ratio.

To better understand how the capacity of various servers
can be improved (i.e., how k changes), we provide another

perspective on the relationship between the costs of send
and other operations. In particular, we define

α =
time for sending one update to one user

time for one other operation
. (18)

The time for sending one update to one user is given by
Su(N, b)/N . Sending an update to a user and performing
one round of other operations is considered to be the basic
operation that one would observe at the server. The value
of α can easily be measured by conducting a simple experi-
ment or it may already be known. The relationship between
α and f can be shown to be:
Case 1: periodic send model with constant H and immedi-
ate send model with linear H

α =
f

1 − f
;

Case 2: immediate send model with constant H and peri-
odic send model with linear H

α =
Nmax

u f

1 − f
.

In the latter case, f depends on the number of users being
supported by the server.

The results for the relative capacity improvement ratio
(k) are shown again in Figures 10 and 11 this time using a
range of values for α (from 0.1 to 10). In Case 1, α = 0.1
and α = 10 correspond to f = 0.0909 and f = 0.9090,
respectively. In other words, it covers a range of servers that
spend between roughly 10% and 90% of their time sending
updates. In Case 2, the intuition behind α = 0.1 is that
it corresponds to an environment in which the cost of an
individual send operation is one-tenth the cost of an other
operation. At the other end of the spectrum shown in the
graphs, α = 10 corresponds to a scenario where the cost of
an individual send operation is ten times the cost of an other
operation.

In Figures 8 and 9 (as well as in Figures 10 and 11),
we observe that the relative capacity improvement ratio k
grows more quickly for small values of f and α in the im-
mediate send model than in the periodic send model. This
is because the immediate send model performs more send
operations than the periodic send model. When the cost
of performing the other operations is small relative to the
cost of the send operations (i.e., f and α are small), kernel-
groupcast provides greater benefits in the immediate send
model. However, in the periodic model, if the cost of send
operations is very high relative to the cost of other opera-
tions, larger improvements are theoretically possible, which
will be discussed in the next section.

Intuitively, and as can be seen in Figures 8 and 9, as f
approaches 1, the benefits that can be obtained from more
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Figure 10. Capacity for α with constant H
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Figure 11. Capacity for α with linear H

efficient group communication is limited. Figures 10 and 11
also show that there is likely an upper limit on the benefits
of improved group communication. In the next section, we
will also derive such upper bounds.

6.4 Bounds on Capacity Improvements

In this section we show that there exist theoretical upper
bounds on the capacity improvements, more specifically for
the immediate send model

k ≤
√

r (19)

and for the periodic send model

k ≤ r. (20)

We present a proof of the upper bound for the immediate
send model; the result for the periodic send model follows
from that result.

In the extreme case the send operation comprises the to-
tal processing time at the server (i.e., f = 1). This implies
that the processing time for the other operation H becomes
negligible. Consider the immediate send model. By Equa-
tion 1, we have:

λNmax
u Su(Nmax

u , b) = T

and

λNmax
k Sk(Nmax

k , b) = T

for user-groupcast and kernel-groupcast, respectively.
Combining these two equations,

Nmax
u Su(Nmax

u , b) = Nmax
k Sk(Nmax

k , b). (21)

Since our experimental results show that Su and Sk can
be expressed in the form xN + yNb (Equation 7). Assume
Su(N, b) = x1N + y1Nb and Sk(N, b) = x2N + y2Nb.
We rewrite Equation 21 as follows:

Nmax
u (x1N

max
u +y1N

max
u b) = Nmax

k (x2N
max
k +y2N

max
k b).

After rearranging this equation, we obtain:

(

Nmax
k

Nmax
u

)2

=
x1 + y1b

x2 + y2b

k =
√

r

(22)

by the definition of k and Equation 10. As long as the
speedup factor r is bounded (and in our case r is a con-
stant), the relative capacity improvement k will be bounded.
A similar approach can be used to derive the upper bound,
k ≤ r, for the periodic send model.

We note that the upper bounds are in fact independent
of the characterization of H. This means that these bounds
are universally true, regardless of what the function H looks
like. Also, the arrival rate of messages from a user λ does
not affect the upper bounds.

The intuitive explanation is as follows. In the periodic
send model, the total time required to perform send opera-
tions is linear in the number of users. If the cost of the send
operations accounts for all of the total execution cost, im-
proving the efficiency of each send operation by a constant
factor r can lead to the same improvement in the overall
server performance. In the immediate send model, the to-
tal time spent on the send operations, however, is quadratic
in the number of users. Therefore, an improvement in the
send cost can at most lead to a square-root improvement in
overall server capacity.

As further explanation consider now a simple example.
Recall that within T units of time, the immediate and the
periodic send models require N 2 and N send updates, re-
spectively. (See Equations 1 and 2, and the definition of
S.) Again, let λ be 1. Consider an example application
server that can support only one user using user-groupcast
(Nmax

u = 1). Because the bound is obtained when the en-
tire time period T is spent in sending updates, this implies
that the cost of sending an update to a user is T . Now, sup-
pose kernel-groupcast is four times as fast as user-groupcast

9



(i.e., r = 4). This reduces the sending time to T/4. Since
the periodic send model requires N send updates, kernel-
groupcast can now be used to support 4 users. That is,
Nmax

k = 4 and k = 4 = r. During the same period of
time T , the immediate send model requires N 2 send up-
dates. Although 4 send operations can be performed using
kernel-groupcast, in this case the server can only support 2
users, yielding Nmax

k = 2 and k = 2 =
√

r.
The difference between these two models is in the num-

ber of users being updated during the period T . While the
same number of send operations is supported in both cases,
because the immediate model requires N 2 updates to be
sent (where the periodic model only requires N updates),
the maximum gain in the relative capacity improvement ra-
tio is limited to

√
r for the immediate send model.

7 Summary

In this paper, we present an analytic framework to eval-
uate the potential benefits that would be obtained from us-
ing more efficient group communication mechanisms in a
server-based DVE application. The bounds on capacity
improvement, derived based on our framework, advance
our understanding of these potential benefits on different
server models. While the application focus is DVEs, our
framework and results can also be applied to other Internet
servers, e.g., streaming servers and conference bridges.

We use a prototype implementation of our kernel-
groupcast to conduct measurement experiments on two
modern server platforms. These measurements are then
used together with the analytic framework to determine how
the reductions in group send times would be translated into
increased server capacity for a spectrum of applications.

Unfortunately, as discussed in Section 2, very little
work has been done in characterizing the behavior of DVE
servers, that can be used in our study. This makes it dif-
ficult to directly apply and comment on the capacity im-
provements that can be obtained in real applications by uti-
lizing kernel-groupcast. We believe that this and other re-
search could benefit greatly from a detailed characteriza-
tion of client and server behavior in DVE systems. As part
of our future work, we plan to conduct a range of experi-
ments to obtain the necessary data. These experiments will
also allow us to directly verify the predicted performance
improvements on different platforms.
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