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Abstract

Different network applications have different service preferences regarding packet delay and buffering. Delay

management requires scheduling support at routers, which traditionally also requires some form of traffic specification

and admission control. In contrast, this paper studies the problem of guaranteeing queueing delay bounds for multiple

service classes without traffic contracts and without affecting the throughput rate for each class. A solution to this

problem is given by decoupling throughput and delay management via traffic-driven implicit buffer management. Using

this concept, the Delay Segment FIFO (DSF) packet scheduler guarantees differentiated delay targets in the presence

of unregulated throughput rates. This decoupling represents a modular approach and DSF embodies a small and self-

contained feature set. Furthermore, DSF’s service model satisfies even a strict interpretation of network neutrality,

while effectively guaranteeing delay targets for multiple service classes. DSF’s design and service characteristics are

analyzed mathematically and validated through simulations.

I. INTRODUCTION

The Internet serves a multitude of diverse applications that have different service requirements. Traditional bulk

data transfers seek to optimize their overall throughput. On the other hand, interactive multi-player games or

live conferencing systems have stringent end-to-end delay requirements on the order of 50-100ms. A number of

applications fall in between, e.g., multimedia streaming requires moderate throughput and has somewhat relaxed

end-to-end delay requirements. As an illustrative example, current mobile networks define 13 service classes with

end-to-end delay targets of 50ms-300ms [1], i.e., within one order of magnitude. However, the controllable portion

of the end-to-end delay is queueing delay. When subtracting speed-of-light propagation latency, the actual queueing

delay diversity covers two orders of magnitude [54].

Traditional approaches to limit and differentiate worst-case queueing delay for different types of applications

combine offline or signalled traffic contracts with differentiated scheduling, such that forwarding capacity is allocated

to dedicated service classes. As long as traffic arrivals conform to the negotiated traffic specification, the queueing
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delay is guaranteed by ensuring a particular minimum throughput service. Packet schedulers used in this context

include processor sharing and its variants [2], as well as priority scheduling. Thus, delay management is tied to

throughput management. However, the exclusive nature of these agreements requires a typically complex policy

framework to determine which traffic is eligible for certain service classes. This traffic discrimination might violate

a strict interpretation of network neutrality.

An alternative approach is controlling queueing delays without explicit throughput management - by implicitly

limiting the effective queue, i.e., buffer, size available for each service class: packets that (will) miss their delay

target are discarded. To avoid any throughput bias, service rates must be proportional to arrival rates, while the

effective queue size for each class must be automatically adjusted to enforce the respective delay target. This

traffic-driven approach provides less direct control, but has a number of practical advantages:

• Without explicit throughput management, sources can pick any service class. This removes the need for a

complex policy system determining service class eligibility.

• With unrestricted access to service classes, the network service clearly satisfies the so-called no paid prioriti-

zation rule, which is one of the three basic rules in the recent FCC Open Internet Order [18].

• Because throughput and delay management are decoupled, the resulting architecture is modular.

The first contribution of this paper is the definition of a service metric throughput interference index (TI2) to

quantitatively capture the above objectives for a packet scheduler. The main challenge is devising an efficient packet

scheduler that allocates service rates in proportion to arrival rates to achieve a good TI2 while enforcing per-class

queueing delays by dynamically and automatically adjusting the effective queue size for each class. This paper

presents the first proper solution to this problem and makes the following contributions:

• The non-technical descriptions of network neutrality are reframed using the more restrictive notion of TI2.

• Our approach – delay segmentation – is shown to achieve a low TI2, while providing effective delay guarantees.

• A novel multi-class scheduler using delay segmentation is proposed and evaluated. It guarantees delay targets

with minimal throughput interference.

The rest of the paper is organized as follows. Section II provides background and the definition of TI2. Section III

discusses related work. Section IV presents the DSF algorithm. The principles behind DSF are analyzed in Section V

and it is evaluated using simulations in Section VI. The paper is wrapped up with a brief conclusion in Section VII.

II. BACKGROUND AND MOTIVATION

A. Network Neutrality

The academic discussion of network neutrality spans almost two decades in the legal literature [18], [39], [57],

[63]. It has evolved from the question whether cable modem Internet providers in the USA should be regulated

under the same “common carrier” rules as providers using phone lines [4], [40], [41], [55], [56], [64], [65]. In

this context, Lemley and Mark [39] use the notion of the Internet’s “end-to-end architecture” to derive a “principle

of non-discrimination among applications”. This idea has been refined into the term “neutral network – that is, an
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Internet that does not favour one application [..] over others” by Wu [60]. According to Wu [62], a neutral network

is essential for innovation on the Internet, which he observes to happen mainly at the network edge. Consequently,

Wu proposes rules to enforce a neutral network in the future [60], [61], [62].

Other legal scholars have contested the necessity of such rules, e.g., by reasoning that competition forces Internet

service providers to maximize their value to customers and thus allow for a variety of applications [55], [56],

[64]. For example, Yoo [65] uses delay demands of voice communication as an example to highlight that not all

applications are served well by a network with equal treatment of all packets. Neutrality rules would prohibit some

solution approaches, such as priority service for delay-sensitive applications, and could thus also stifle innovation.

From a technical perspective, Crowcroft [12] criticizes the discussion at the time as largely oversimplified. He

argues that the Internet has never been “innately fair (for whatever definition of fairness you wish to choose [..])”

and he concludes that the Internet was never network neutral. To back this claim, he names various examples

of inherent biases of the Internet architecture such as the dependence of TCP throughput on round trip times,

and common practices, such as admission control for caching nodes, or service level agreements on statistical

performance guarantees.

In particular, the question which specific packet schedulers and/or service models conform to network neutrality

has received little attention in the legal literature. Only FIFO scheduling has been discussed widely and, in fact,

many claim that FIFO scheduling is necessary to attain network neutrality [11], [65], [68].

While the academic discussion on legal and economic aspects of network neutrality is still ongoing, several

countries have considered various approaches for regulation. In the USA, a consensus has evolved to “ban paid

prioritization, throttling, and blocking” [58], represented by the recent FCC Open Internet Order [18].

The literature about detecting network neutrality violations typically uses a broader definition. There is a large

body of work in this area [5], [14], [15], [33], [34], [43], [46], [66], [67] with many claims of finding evidence for

various degrees of network neutrality violations. In recent work [51], for example, network neutrality violations are

detected by comparing each flow’s loss rate to a baseline loss rate, e.g., of some traffic aggregate. The network is

neutral, if the difference between each flow and the baseline is sufficiently small. The same principle can be used

to derive a metric for quantitatively assessing specific packet schedulers or service models.

B. Throughput Interference Index

We propose a new metric to assess schedulers and service models without the need for a baseline: The throughput

interference index TI2 quantifies the degree by which a scheduler changes the throughput of multiple flows.

Definition 1: The throughput interference index (TI2) of a rate transformation for n flows, with λini and λouti

being the input and output rates for flow i, is measured as

TI2 = 1−

(∑n
i=1

λout
i

λin
i

)2
n
∑n
i=1

(
λout
i

λin
i

)2 .
Essentially, the TI2 definition applies Jain’s fairness index [32] to relative throughput rates. TI2 ranges from 0 to

n−1
n , with values closer to 0 indicating lower scheduler interference with throughput rates. In contrast, higher relative
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throughput differences result in a larger TI2. This definition is backwards compatible with previous definitions.

Firstly, FIFO indeed has a low TI2 as shown in Appendix A. Secondly, this definition incorporates the no blocking

and no throttling rules [18] because it ensures that relative service rates correspond to relative arrival rates. Thirdly,

this definition incorporates the loss-based metric from recent work [51], because the ratio λout
i

λin
i

corresponds to

1− loss for each flow. The analysis of the DSF scheduler proposed in this paper is based on the TI2 metric.

C. Incentive Compatibility

If all service classes of a multi-class service model are accessible to all traffic without restriction, this trivially

satisfies the no paid prioritization rule [18]. However, if a service class is strictly superior to another one in terms

of service quality, the resulting race to the top renders the lower class useless. Thus, no service class should be

dominated by another one in terms of service quality. The Incentive-Compatible Differentiated Scheduling (ICDS)

proposal [36] for multi-class delay differentiation satisfies this requirement. As evident by its name, ICDS identifies

the incentive-compatible nature of such a scheduler and presents a simple proof of this property. The same proof

can be applied to some of the systems discussed in the next section, as well as the DSF algorithm presented in

Section IV. Thus, DSF is also incentive-compatible. Furthermore, ICDS can be expected to have near-zero TI2,

because it is designed to allocate service rates in proportion to arrival rates. However, no practical algorithm is

given. In contrast, this paper introduces a specific algorithm, DSF, that also has a very low TI2.

III. RELATED WORK

The Alternative Best Effort (ABE) scheduler [31] offers a bounded-delay service class (“Green”) and a throughput-

oriented service class (“Blue”). The Blue class is guaranteed to achieve the same throughput as in the equivalent

FIFO system, while the Green class receives priority service whenever possible without violating the throughput

guarantee for Blue. However, this priority-based concept is fundamentally limited to two classes. A potential third

class cannot receive priority service (in comparison to Blue) and throughput guarantees (in comparison to Green)

at the same time. In contrast, DSF supports a general service model with multiple service classes.

Virtually Isolated FIFO Queueing (VIFQ) [35] is a previous attempt to generalize ABE to multiple classes and

to implement ICDS [36]. Unfortunately, VIFQ’s delay control approach is inherently flawed (cf. Sections V-A

and VI-A).

Various schedulers provide non-dominant service differentiation with trade-offs between throughput and de-

lay [19], [20]. The most recent incarnations of this approach are the RD proposal [50] and QJump [25]. RD provides

two service classes with a fixed throughput ratio between individual application flows in each class. Appropriate

buffer sizing ensures a maximum queueing delay for the delay-oriented class. The design resembles weighted

processor sharing with a specific throughput ratio, which would entrench a particular service policy in routers and

does not satisfy the objective of a low TI2. Similarly, QJump couples priority levels (for delay guarantees) with

strict limits on the maximum throughput to create trade-offs. Its delay guarantees depend on network parameters,
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while priorities and throughput limits must be enforced at end hosts. These are unrealistic assumptions for the

general Internet. In contrast, DSF is incentive-compatible and makes no such assumptions.

ABE, RD, and QJump all propose penalties for low-delay traffic. This is often justified by the observation

that long-term TCP goodput is inversely proportional to the average round-trip delay, which includes the average

queueing delay [45]. For example, ABE and RD contain complex rate control mechanisms to prevent TCP-like

traffic from gaining an advantage by using the low-delay class. In ABE, the low-delay service class is penalized

using a probabilistic parameter g, which can be computed precisely, only if the round-trip propagation delay of all

competing TCP flows is identical and known. In RD, a fixed ratio k > 1 is configured as the ratio of the average

per-flow rate of the throughput class in relation to the average per-flow rate of the delay class. RD maintains the

relative throughput of both classes according to k and the number of flows in each class, which must be estimated.

In contrast, DSF is based on a much simpler scheduling algorithm that does not require parameter estimation. In

both ABE and RD, addressing TCP’s “RTT unfairness” thus requires a complex and brittle parameter estimation.

Mathis [44] has questioned this traditional, narrow focus on TCP-friendly rate control. For example, recent

alternative TCP rate control algorithms [16] seek to overcome the dependency of TCP’s rate on the round-trip delay.

In fact, these rate control algorithms demonstrate how a particular service policy in routers would unnecessarily

contribute to the ossification of the Internet architecture. Therefore, TCP’s current properties should not curtail

the search space for packet schedulers without further investigation. DSF only gives delay guarantees (by offering

limited queueing space) without prioritizing service. Without prioritization, there is no need to actively penalize

low-delay traffic, which simply seeks less queueing space.

Traditional QoS schedulers that fit into the context of the IETF’s IntServ [7] or DiffServ [6] architectures are

either based on exclusive resource allocation [9], [49] or priorities [17], [42]. In both cases, admission control

is needed to avoid the tragedy of the commons effect [27]. Thus, these systems only work, if access to service

classes is restricted. The same is true for service differentiation through congestion pricing [28], [48], [52], which

degenerates into paid prioritization under congestion.

Several implementation proposals use differentiated buffer management to differentiate service [10], [26]. This

segregation of buffers is different from DSF, which manages a single shared buffer. Unlike differentiated services,

DSF is incentive-compatible and does not require traffic contracts.

Last but not least, a straightforward approach to delay control is limiting the maximum queueing delay of every

packet by a using small shared buffer. Because the traffic aggregate of all applications is jointly controlled, the

application with the smallest delay target dictates the buffer size. This idea has received extensive research interest

since an earlier proposal for small router buffers [3]. Smaller router buffers, however, sacrifice link utilization and

increase packet loss, and are thus only applicable in some scenarios [8], [13].

Another approach has recently (re)gained research interest: controlling queueing delay through active queue

management (AQM). A prominent example is the CoDel algorithm [47]. CoDel counteracts prolonged periods of

high queueing delay by increasing the packet drop rate until the delay reaches a configured value, but tolerates

transient phases of higher delay to absorb short-term traffic bursts. This approach is expected to consolidate low
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delay and high goodput, and indeed, a recent evaluation shows that CoDel achieves the best goodput among several

other AQMs [38]. Nevertheless, CoDel does not solve the fundamental trade-off between delay and goodput [30].

In some scenarios, CoDel can increase the file completion time by 42% [38]. In summary, there is no conclusive

evidence that small router buffers or AQM can support all desirable delay targets under all circumstances without

negative side effects . This is illustrated in Appendix B with a set of simulation experiments.

IV. DELAY SEGMENT FIFO (DSF)

Delay Segment FIFO (DSF) is a multi-class packet scheduler that closely approximates the per-flow throughput

of FIFO and thus attains a low TI2. Each service class has a fixed delay target and packets are assumed to carry

a service class identifier in their header, for example, in the DiffServ code point [6]. The DSF algorithm applies

two key principles, Delay Discard and Queue Segmentation, to achieve its objectives.

Delay Discard decouples buffer admission control from per-class delay management. This is facilitated by using

two separate queue types – one for slots that represent a right to service and another one for packets. Each arriving

(and accepted) packet creates a corresponding slot that is appended to the global slot queue, while the packet is

stamped with its per-class delay deadline and added to a per-class packet queue. For each slot in the slot queue, the

service routine processes the corresponding packet queue and discards packets that have missed their deadline. The

next packet from this class that satisfies the delay target, is sent. By enforcing the target delay in this way, Delay

Discard implicitly adapts the effective buffer size for each service class to its arrival rate. This design is motivated

by viewing the buffer demands of a traffic flow as the dual of its delay objective. A traffic flow with average rate

r and delay target d can reasonably expect at most a buffer capacity of d/r. The earlier VIFQ proposal [35] is an

attempt at a practical implementation of this conceptual design. However, Section V-A presents a Markov chain

analysis that shows a fundamental flaw of relying on Delay Discard only. In particular, when the slot of a low-delay

class reaches the front of the slot queue for service, the class might not have a packet available that satisfies the

delay target, if its traffic rate is relatively low. This results in a high TI2 in those cases.

Therefore, DSF introduces Queue Segmentation in the buffer organization: each delay target is represented by a

corresponding queue segment. This is illustrated by a simple two-class example. Figure 1 shows a buffer that is

split into two segments of size S1 and S2, with slots from two service classes in black and grey. S1 corresponds

to the lower delay target, while S1 + S2 corresponds to the higher delay target. The scheduler places all new slots

(from both classes) into Segment 1 – as long as there is space. Slots in Segment 1 are served in the normal FIFO

order, which creates new room in this segment. If at the time of packet arrival, Segment 1 is full, only slots for

the higher delay class are accepted into Segment 2 – as long as there is space. However, slots from Segment 2 are
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served only when Segment 1 runs empty. In DSF, this scheme is used for a number of classes. The intuition behind

this approach is making the system appear as a short virtual FIFO queue for low-delay traffic, while offering a

bigger FIFO queue for higher-delay traffic. The key algorithmic change introduced with Queue Segmentation is the

last-in-first-out (LIFO) service order between queue segments, which addresses the high throughput interference of

Delay Discard. The rationale for this change is further explained in Section V. Assume that n delay classes are

ordered according to their delay targets. The total buffer space is split into n queue segments. The size of segment

i = 1, . . . , n corresponds to the incremental delay target of class i. In other words, if the link rate is R and the

delay targets are D1, . . . , Dn, then the capacity of each segment i is Si = (Di −Di−1) ·R (with D0 = 0). Thus,

the aggregate capacity of all segments is equivalent to the highest delay target. For each service class a packet

queue holds the packets in arrival order, ensuring FIFO service order per class. The combination of Delay Discard

and Queue Segmentation gives DSF its name.

A. Algorithm

DSF is illustrated in Figure 2 and specified in Algorithms 1 and 2. Data structures and variables are described

in Table I.

Upon arrival, the first non-full segment is determined (Lines 3-5). If successful, a slot is appended to the segment

queue (Line 6) and the per-class buffer size is increased (Line 7). Lines 8 and 9 implement a Drop Front mechanism

per class, which is discussed in the next paragraph. Last, the arrived packet is appended to the per-class packet

queue (Line 10).

At service time, if a non-empty segment is found (Lines 1,2), the first slot is removed (Lines 3,4) and the

corresponding service class is given the appropriate service credit (Line 5). The essence of the Delay Discard

function is found in Lines 6-10 of the service routine, which trivially guarantees that delay targets are met. As long

as there is a positive service credit and available packets, a packet from the per-class packet queue is retrieved (Lines

6,7). If it satisfies the delay target (Line 8), it is transmitted (Line 9,10). Variable packet sizes are handled through

the service credit counter. Because each packet is sent in entirety, a class might temporarily receive more service
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Algorithm 1 DSF Arrival Routine (per packet)

1: p ← received packet

2: c ← class(p)

3: i ← 1

4: while i ≤ c and squeue[i].full() do i ← i+ 1

5: if i ≤ c then

6: squeue[i].push(c, size(p))

7: buffer[c] ← buffer[c] + size(p)

8: while pqueue[c].size() + size(p) > buffer[c] do

9: pqueue[c].pop()

10: pqueue[c].push(p, now() +D[c])

TABLE I: DSF Variables and Routines

Name Index Explanation

squeue[] segment slot queue: {class, size}

pqueue[] class packet queue: {packet, deadline}

buffer[] class buffer size (sum of waiting slots)

service[] class service credit/debit

D[] class delay target

now() N/A current time

than it is entitled to. However, the service error is limited to one packet per class and corrected over time. Also,

the delay test of DSF operates on packet serialization start times to avoid favouring small packets. This introduces

a delay error in the amount of at most one maximum packet size per class.

Using only Delay Discard and Queue Segmentation would not limit the total amount of packet buffer needed

and would increase the amount of processing in the service routine to discard packets that never had a chance to

meet their delay target. Therefore, DSF uses an additional Drop Front mechanism in the arrival routine. There is no

point in storing more packets in the packet queue than the total amount of sending rights for a traffic class given

by the sum of its slot sizes. Lines 8,9 of the arrival routine thus limit the number of packets in the packet queue

and also ensure that only the most recently arrived packets are kept, because those packets have the best chance of

meeting their delay target.

B. Remarks

The DSF algorithm is traffic-driven, because the effective buffer size for each service class is determined by its

arrival process in combination with the fixed delay target. Buffer management is implicit, because the buffer size

is not computed explicitly before packet admission control, but is derived indirectly from admitted slots.
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Algorithm 2 DSF Service Routine (loop)

1: i ← 1

2: while squeue[i].empty() do i ← i+ 1

3: {c, s} ← squeue[i].pop()

4: buffer[c] ← buffer[c] - s

5: service[c] ← service[c] + s

6: while service[c] ≥ 0 and pqueue[c].nonempty() do

7: {p, d} ← pqueue[c].pop()

8: if now() < d then

9: service[c] ← service[c] - size(p)

10: send(p)

DSF is inherently a single-node technique. Therefore, it can be deployed incrementally, for example at critical

bottlenecks only. The flip side is that a flow traversing multiple bottlenecks might be subject to multiples of the

delay target. However, the number of bottlenecks is usually small. DSF can support very aggressive delay targets,

as shown in Section VI. In a system without Delay Discard, late packets are forwarded and increase downstream

load, despite being ultimately useless.

The LIFO service principle is applied across slot segments, while packets are stored in and transmitted from the

per-class packet queues. This decoupling of slots and packets permits reordering service times between slots, while

maintaining the ordering of packets within a class. An interesting observation is that the DSF system degenerates

to per-packet LIFO service, if delays are so close to each other that each segment can hold only a single slot.

However, considering contemporary line rates and meaningful delay targets, this is unlikely to happen in practice.

During busy periods, the system temporarily operates like a short FIFO queue corresponding to the smallest

delay target. Excess arrivals to this short queue are not immediately discarded though, but corresponding slots are

stored in higher-order slot segments, as much as possible. These slots can be used during underload queue drain

periods to transmit packets that would not have been accepted into the short FIFO queue. Service classes with a

higher delay target have access to more slot segments. Overall, DSF does not treat packets of any service class

inherently better or worse than any other service class. The only service differentiation taking place is enforcing

the self-imposed delay targets chosen by end systems. The main question is whether DSF provides service rates in

proportion to arrival rates to achieve a low TI2 value. This is further investigated in Sections V and VI.

C. Overhead and Complexity

The computational overhead of the DSF algorithm is small and limited. The only data structures that are used

for DSF are plain FIFO queues storing either slots or packets. The only numerical operations are addition and

subtraction. There is no sorting or other rearrangement of information that would impose computational complexity.
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The segment search in the arrival routine (Lines 3-5) and the service routine (Lines 1,2) can be implemented using

bitstrings, along with the constant-time find-first-set operation that is available on modern hardware. The overhead

of the arrival routine is proportional to the size of the arriving packet divided by the minimum packet size. Similarly,

the total overhead of the service routine is proportional to the amount of sending rights stored in the slot segments

divided by the minimum packet size. Therefore, DSF has amortized constant complexity per packet. On the other

hand, the worst-case overhead between two consecutive service invocations might be increased by a series of

packets that cannot meet their delay target in the loop in Line 6 of the service routine. However, the Drop Front

function in the arrival routine limits the size of the overall packet buffer and furthermore, should keep the number

of packets that miss their deadline small. Therefore, it is expected that the length of such service drop episodes

is limited in practice. For example, over all the experiments reported in Section VI, the average length of service

drop episodes is 1.3 packets with a standard deviation of 1.18. Additional improvements are possible by exploiting

parallel hardware, which is abundantly available. An asynchronous cleanup procedure can remove old packets and

turn the test in Line 8 into a pure safety measure, thus avoiding looping even more. The current DSF algorithm is

only a starting point and we expect that improved versions can be found.

V. ANALYSIS

This section presents analytical models for the two key principles of DSF: Delay Discard and Queue Segmentation.

We provide abstract discrete-time Markov chain models for these in order to find closed form expressions for the

TI2. For the ease of presentation and to keep the models analytically tractable we make a set of simplifying

assumptions: The models are based on fixed-size packets and a discrete time model with each slot corresponding to

the service time of one packet. Sources are fully described by their arrival rate (i.e, no correlations are assumed);

no single source has more than one packet arriving in a single time slot, which essentially means geometrically

distributed packet inter-arrival times. Only two delay classes are modelled with Class i having a delay target of Ni

time slots. Consequently, the total buffer capacity is N = N2 slots. The arrival rates for Class 1 and 2 are denoted

as r1 and r2.

A. Delay Discard Only

The goal of this section is to find a closed-form expression for the TI2 of Delay Discard (DD). Under the above

assumptions, a global Markov chain could be created that closely tracks the dynamics of the overall system. The

state of the system would be captured by a vector (of length N ) whose entries could take three values: (1) assigned

slot (reserved for an in-time packet of Class 1 or for a Class 2 packet), (2) uncertain slot (reserved for Class 1,

but packet that created it is late) (3), empty slot. The Markov chain could be used to determine the probability of

an uncertain slot arriving at the head of the queue without a suitable Class 1 packet available to use it. Such a slot

is called expired. We have experimented with this model, but deem it intractable, because of its complex structure,

as well as a dramatic state space explosion, which also prohibits a numerical solution. The size of the state space

is given in Appendix C.
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1) Decoupling Approach: Since the global Markov chain is not a feasible choice for the analysis of DD, an

approximation is used that assumes a decoupling of the arrival and slot generation processes. The system is modelled

as two Markov chains that interact with each other in a simple way. In particular, one Markov chain is used to

model the slot generation process by tracking the total queue length to derive the drop rate due to a full slot queue.

In addition, it is used to determine the overload probability, i.e., the probability that the number of service slots

in the slot queue exceeds N1, the delay target of Class 1. The drop rate computed from this Markov chain can

be used to drive another Markov chain, which keeps track of the position of the first uncertain slot in the relevant

buffer spaces ranging from 1, . . . , N1. This Markov chain is conditioned on the system being in overload, which

provides another link between the two Markov chains.

Based on the two Markov chains, the steady-state probability for an expired slot of Class 1 is obtained as

pE1
= lim

t→∞
P (E1(t))

= lim
t→∞

P (E1(t) | O1(t−N1))P (O1(t−N1))

= pE1|O1
· pO1

,

where E1(t) denotes the event that a service slot of Class 1 expires at time t, and O1(t −N1) denotes the event

that the system was in overload at time t − N1. Note that the law of total probability is correctly applied in

the second line as O1(t − N1) is necessary for E1(t), i.e., E1(t) ⊂ O1(t − N1). The steady-state probabilities

pE1|O1
= limt→∞P (E1(t) | O1(t−N1)) and pO1

= limt→∞ P (O1(t−N1)) are calculated from the Markov

chains for the uncertain slot position and for the total queue length, respectively.

2) Markov Chain for Total Queue Length: This first Markov chain models the total queue length oblivious

to traffic classes. Under the given assumptions, this is very similar to a Geo/D/1/N queue [23] with the slight

difference that the arrival process is a superposition of two different flows with independent geometric inter-arrival

times. Therefore, it is no longer a simple Bernoulli process (for example there can be more than one arrival per time

slot). Still, the Markov chain is time-homogeneous, irreducible, finite, and aperiodic and has a simple birth-death

structure. The state variable i counts the number of slots in the queue and its steady-state probability distribution

can be determined by using the detailed balance equations [37] between neighbouring states:

π0 =
1− q

1− qN+1
, ∀i : 1 ≤ i ≤ N : πi = qiπ0 ,

where q = r1r2
(1−r1)(1−r2) . With the probability of a packet drop at time t due to a full buffer denoted as D(t), the

steady-state drop probability can be calculated as

pD = lim
t→∞

P(D(t)) = πN . (1)

The steady-state probability of overload is calculated as

pO1 =

N∑
i=N1+1

πi = qN1+1 1− qN−N1

1− qN+1
.
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Fig. 3: Markov Chain for Uncertain Slot Dynamics

3) Markov Chain for Uncertain Slot Dynamics: The second Markov chain models the position of the first

uncertain slot reserved by Class 1 in the buffer spaces numbered 1 to N1. If an uncertain slot reaches the head

of the buffer and no packet of Class 1 is in the packet queue, this slot expires; this is accounted for by State 0

and thus the interest is in the steady-state probability of State 0, denoted as π0. Another peculiarity of this Markov

chain is the State G, which accounts for the situation that there is no uncertain slot in the buffer spaces from 1

to N1. Remember that the Markov chain is conditioned on the system being in overload. Therefore, from State G

new uncertain slots are generated with rate s. This is where the two Markov chains interact and the slot generation

rate is set to s = r1(1 − pD), with pD calculated from the Markov chain for the total queue length (see Eq. 1).

For ease of presentation, s is used to denote the slot generation rate and r = r1 denotes the packet arrival rate of

Class 1.

The Markov chain state diagram is shown in Figure 3. While this Markov chain is also time-homogeneous,

irreducible, finite, and aperiodic, it is no longer reversible and thus not amenable to detailed balance equations.

Instead, the global balance equations have to be solved. The following proposition provides the steady-state

probability distribution of the uncertain slot Markov chain.

Proposition 1: The steady-state probability distribution for the uncertain slot Markov chain is given as

π0 =
1

1 +
∑N1

i=1
πi

π0
+ πG

π0

=
1

r( 1−s
1−r )

N1

s(r−s) −
1
r−s + r(1− s)N1

,

πi =
(1− s)i−1

(1− r)i
(
1− s (1− r)i

)
πo , i = 1, . . . , N1,

πG =
1

s

(
1− s
1− r

)N1 (
1− s (1− r)N1+1

)
πo .
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Proof: The global balance equations are used for an induction over state i = 1, . . . , N1. The induction

hypothesis is the statement of the proposition regarding the πi, i = 1, . . . , N1:

πi =
(1− s)i−1

(1− r)i
(
1− s (1− r)i

)
πo , i = 1, . . . , N1.

Basis: We start with the global balance equation for state 0

1− (1− r) sπ0 = (1− r)π1 ⇒ π1 =
1− s (1− r)

1− r
π0 =

(1− s)0

(1− r)1
(
1− s (1− r)1

)
which provides the induction hypothesis for i = 1.

Inductive step: Now we use the global balance equation for state i > 1, in particular:

(1− r)πi+1 +

i−1∑
j=1

rs (1− s)i−j πj +
(
irs2 (1− s)i−1 + (1− r) s (1− s)i

)
π0 = (1− rs)πi (2)

Using the induction hypothesis for all πj with j ≤ i and some rearranging we obtain

πi+1 =
π0

1− r

(1− rs) (1− s)i−1
(1− r)i

(
1− s (1− r)i

)
−

i−1∑
j=1

rs (1− s)i−j (1− s)
j−1

(1− r)j
(
1− s (1− r)j

)
−
(
irs2 (1− s)i−1 + (1− r) s (1− s)i

)]
=
(1− s)i−1

(1− r)i+1
π0

(1− rs)(1− s (1− r)i)− i−1∑
j=1

rs (1− r)i−j
(
1− s (1− r)j

)
− (1− r)i irs2 − (1− r)i+1

s (1− s)
]

=
(1− s)i−1

(1− r)i+1
π0

1− s (1− r)i − i∑
j=1

rs (1− r)i−j
(
1− s (1− r)j

)
− (1− r)i irs2 − (1− r)i+1

s (1− s)
]

=
(1− s)i−1

(1− r)i+1

π01− s (1− r)i − i∑
j=1

rs (1− r)i−j −
i∑

j=1

rs2 (1− r)i−j

− (1− r)i irs2 − (1− r)i+1
s (1− s)

]
=
(1− s)i−1

(1− r)i+1
π0

1− s (1− r)i − i∑
j=1

rs (1− r)i−j − (1− r)i+1
s (1− s)


=
(1− s)i−1

(1− r)i+1
π0

[
1− s (1− r)i − s

(
1− (1− r)i

)
− (1− r)i+1

s (1− s)
]

=
(1− s)i

(1− r)i+1

(
1− s (1− r)i+1

)
π0 ,

thereby showing that the rule in the proposition indeed holds for πi+1.

πG has to be solved separately using the global balance equation for state N1, in particular

sπg +

N1−1∑
j=1

rs (1− s)N1−j πj +
(
N1rs

2 (1− s)N1−1 + (1− r) s (1− s)N1

)
π0 = (1− rs)πN1

.
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This has the same form as Eq. 2, apart from the factor s in the first term (instead of 1− r). Thus, essentially the

same derivation as in the inductive step above can be performed to obtain

πG =
(1− s)N1

s (1− r)N1

(
1− s (1− r)N1+1

)
π0 =

1

s

(
1− s
1− r

)N1 (
1− s (1− r)N1+1

)
π0 .

π0 is obtained from the normalization condition as

π0 =
1

1 +
∑N1

i=1
πi

π0
+ πG

π0

=
1

1 +
∑N1

i=1
(1−s)i−1

(1−r)i

(
1− s (1− r)i

)
+ 1

s

(
1−s
1−r

)N1
(
1− s (1− r)N1+1

)
=

1

1 +
∑N1

i=1
(1−s)i−1

(1−r)i

(
1− s (1− r)i

)
+ 1

s

(
1−s
1−r

)N1

− (1− r) (1− s)N1

=
1

1 +
( 1−s

1−r )
N1−1

r−s − 1 + (1− s)N1 + 1
s

(
1−s
1−r

)N1

− (1− r) (1− s)N1

=
1

( 1−s
1−r )

N1−1
r−s + r (1− s)N1 + 1

s

(
1−s
1−r

)N1

=
1

r( 1−s
1−r )

N1

s(r−s) −
1
r−s + r(1− s)N1

.

Note that in the third line we assumed s 6= r, which however is always true for a finite queue (in fact, we have

s < r). This concludes the proof.
4) Connecting the Decoupled Chains: Both Markov chains are connected again and, thus, the throughput

interference under DD can be assessed. Let r1 = r again and s = (1− pD) r1, as well as q = r1r2
(1−r1)(1−r2) ,

then the (steady-state) probability for an expired slot of Class 1 is

pE1 = pE1|O1
· pO1 =

qN1+1 1−qN−N1

1−qN+1

r1

(
1−s
1−r1

)N1

s(r1−s)
− 1

r1−s
+ r1(1− s)N1

.

From this, the TI2 for DD can be derived as

TI2 ≈1−

(
r1−pE1

−pD
r1

+ r2−pD
r2

)2
2

((
r,1−pE1

−pD
r1

)2
+
(
r2−pD
r2

)2) .

This predicts a very high TI2 for DD under low-rate traffic with low delay requirements, as shown in Figure 4a

for a total load of 1, i.e., r1 + r2 = 1. In an extreme case, the TI2 of DD reaches 0.5, which is the maximum

TI2 possible for two flows. Hence, DD on its own, while guaranteeing delay targets by design, does have high

throughput interference in certain scenarios. The solution to this problem is the second key principle of DSF:

Queue Segmentation. In particular, in DSF the segments are serviced in LIFO order, which is crucial for a low

TI2, because LIFO automatically approximates recent relative arrival rates over a variety of intervals up to the

maximum queue length. It thus closely tracks the favourable properties of ICDS [36].
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Fig. 4: Throughput Interference - Analysis

B. Delay Discard & Queue Segmentation

A Markov chain is constructed for Delay Discard and Queue Segmentation (DD+QS). Segment sizes correspond

to the delay targets from the previous section, i.e., S1 = N1 and S2 = N2 − N1. A two-segment construction

requires a two-dimensional Markov model to track state. Accordingly, the Markov chain is represented with a state

tuple (n2, n1), where n1 is the number of packets in the first segment and n2 is the number of packets in the second

segment. Up to a queue size of S1 the system behaves like FIFO. Once the first segment is full, the behaviour

deviates from FIFO, according to the Queue Segmentation principle using LIFO between segments. The next event

after service depends on the order of arrival: if a Class 2 packet arrives first, it would create a new slot in the first

segment and the Class 1 packet would be discarded without creating any slot; if a Class 1 packet comes first, it

would create a slot in the first segment and the Class 2 packet would obtain a slot in the second segment. Assuming

that both cases happen with equal probability, the probability of creating a slot for the Class 2 packet in the second

segment is r1r2
2 .

The complete model can be constructed by observing that the second segment size decreases only if the first

segment runs empty and no arrival occurs in the same time step ((1− r1) (1− r2)). A sketch of the chain is shown

in Figure 5. While it is time-homogeneous, irreducible, finite, and aperiodic, finding an exact closed-form solution

is a hard problem, because it is not reversible and the global balance equations are not amenable to a direct solution.

To solve the Markov chain for DD+QS, the system is viewed as a queue of queues: each horizontal row is a queue

of size S1 and the vertical dimension is another queue of size S2. This is an approximation, because the vertical

queue’s holding times are actually not geometric. The queues are solved independently by starting with the vertical

queue and assigning the resulting probability mass to the horizontal queues. The vertical queue system represents

each row j as a single state Qj . Then, each state Qj has an outgoing edge to Qj+1 with probability (r1r2)/2 and

another one to Qj−1 with probability (1−r1) (1−r2) (except for Q0 and QS2
). A local solution for the steady-state
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Fig. 5: DD+QS Markov Chain

distribution of the vertical queue is given by (using q = r1r2
(1−r1)(1−r2) ), for 0 < j ≤ S2:

πQj = (q/2)
j
πQ0 , πQ0 =

1− q/2
1− (q/2)

S2+1
. (3)

In order to solve each horizontal queue from Figure 5, observe that each row j has the structure of a simple

queue when considering only the transitions between (Qj , 0), . . . , (Qj , S1) (ignoring transitions between rows).

Using states (i) with i ∈ 1, . . . , S1 to denote the length of this simple queue, the local solution is obtained, for

0 < i ≤ S1:

π̃i = qi π̃0, π̃0 =
1− q

1− qS1+1
. (4)

In order to bring both local solutions together, each row j is normalized to match πQj
, i.e.,

∑S1

i=0 π̃i = πQj
.

This leads to an approximation for the steady-state distribution of the overall Markov chain for each state (j, i):

π̂j,i = π̃i/πQj . This is finally used to obtain the approximate TI2 for DD+QS.

Proposition 2: A DD+QS scheduler has

TI2 ≈ 1−

(
1− r2

2

∑S2

j=0 π̂j,S1 + 1− r1
2 π̂S2,S1

)2
2

((
1− r2

2

∑S2

j=0 π̂j,S1

)2
+
(
1− r1

2 π̂S2,S1

)2)
Proof: The steady-state loss rate of each class is derived by combining the local solutions Eq. (3) and Eq. (4).

Loss for Class 1 occurs, if there are two arrivals in one of the right-most states in Figure 5. Therefore, the output

rate of Class 1 is λout1 = r1 − r1r2
2

∑S2

j=0 π̂j,S1
. Loss for Class 2 occurs, if there are two arrivals in state (S2, S1).

Accordingly, λout2 = r2− r1r2
2 π̂S2,S1

. The final equation then follows according to Definition 1 by letting λin1 = r1

and λin2 = r2.

The TI2 of DD+QS is calculated using Proposition 2 for different delay targets and relative arrival rates and

the results are shown in Figure 4b for a total load of 1. Consistently, the TI2 stays below 0.02, and is clearly

much better than for DD only. Furthermore, it is only slightly higher than FIFO’s TI2 (not shown) under the same

circumstances, so it can be considered a fairly low value. Based on these results we conclude that using QS and

applying the LIFO service principle between queue segments are key to achieving low throughput interference.
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Fig. 6: TI2 and Delay Distributions

VI. EVALUATION

All simulations reported in this section are run in the ns-3 environment and are available online for reproducibility.1

The simulation scenario is a single-bottleneck dumbbell topology with synthetic workloads. This choice is deliberate.

While a simple structured topology and synthetic workloads are not as “realistic” as other setups, they are better

suited to develop a systematic understanding of this novel scheduler. The workload keeps the average load around

100%, because this is the interesting operating regime for the scheduler. The default configuration is 100 Mbit/s

bottleneck rate, 1ms link propagation delay, 60s simulated time, and 20 repetitions.

1https://cs.uwaterloo.ca/%7emkarsten/nidd/
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A. Validation

The first experiment is designed to validate the TI2 and delay characteristics of DSF in comparison with FIFO

and static priority scheduling (PRIO). The workload is comprised of 4 traffic classes that each send at 25% of the

bottleneck capacity on average. Each traffic class uses 32 on-off traffic sources with on and off periods drawn from

a Pareto distribution with shape 1.4. The FIFO and PRIO schedulers are configured with a static buffer equivalent

to 100ms queueing delay. With PRIO scheduling, each of the traffic classes uses a separate priority level. The DSF

configuration provides 4 delay classes of 10ms, 50ms, 100ms, and 200ms. Each of the traffic classes uses one of

the delay classes. The observed values are the average queueing delay and throughput over 10ms time intervals.

The TI2 is computed in 10ms steps using a sliding window of length 1s. The experiment is run once for 600s

simulation time, because the observation is longitudinal over time. This longer time interval is sufficient to capture

typical random effects. X-axes are shown in logarithmic scale to ensure visibility of all data points.

Figure 6a shows the empirical cumulative distribution function (CDF) of TI2 values for the different schedulers.

It can be seen that PRIO scheduling has worse TI2 values overall, which corresponds to the understanding that

its service rates do not match arrival rates as closely as FIFO or DSF. The effects of PRIO scheduling primarily

exist over shorter time intervals, which is briefly discussed in Appendix A. Note that the maximum TI2 of PRIO

is recorded as approximately 0.031, which corresponds to a throughput swing of 36%. The equivalent maximum

numbers are 2% swing for FIFO and 4% swing for DSF. This observation is complemented by the empirical CDFs

for queueing delay shown for each scheduler in Figures 6b-6d. For FIFO’s shared queue, there is only one delay

curve and average delays go up to the maximum queue length of 100ms. With PRIO, given the load applied in this

experiment, the three higher-priority classes show extremely low average delay, which comes at the expense of a

high delay of up to 500ms for the lowest-priority class. DSF differentiates the delay for each service class. While

these graphs show the average delays over small periods of time, the observed worst-case delays for DSF are in

fact bounded by the given targets.

A second experiment revisits the TI2 comparison between DSF and a system performing only Delay Discard, such

as VIFQ. The different TI2 values predicted by the analytical model in Section V become manifest in comparable

packet-level simulations. The simulations are configured to mimic the analytical setup and run for 600s. The results

presented in Figure 7 show the long-term TI2 average over the whole duration of the experiment and thus confirm

the structural advantage of adding Queue Segmentation to the scheduler.

B. Traffic Scenarios

The next experiment illustrates the basic overall efficacy of DSF in an extreme setup. A single VoIP-type traffic

flow of 64 Kbit/s shares the bottleneck with 50 Pareto sources with an aggregate mean rate identical to the bottleneck

link capacity. The experiment is run in a FIFO configuration with 100ms buffer space and a DSF configuration with

two service classes - 1ms for VoIP, and 100ms for other traffic. The observed values are the average and maximum

delay as well as the throughput for each of the traffic classes measured for non-overlapping intervals of 1s. Figure 8
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Fig. 7: Throughput Interference - Packet Simulation

shows the results. As expected, the target delay is met, but DSF also ensures that low-delay traffic has appropriate

throughput. The background traffic does not suffer a throughput or delay penalty under DSF.

The following experiment verifies that DSF is effective and can provide several delay classes – without deviating

much from FIFO service in per-class throughput. The DSF scheduler at the bottleneck link is configured with 10

delay classes at 10ms, 20ms, ..., 100ms. Correspondingly, there are 10 traffic classes with an average respective

load of 10.1% of the bottleneck capacity; each uses one delay class. In the first part, each traffic class is comprised

of 8 Poisson sources. In a second part, each traffic class is comprised of 32 Pareto sources with a shape value of

1.4. The DSF configuration is compared to a FIFO system with 100ms buffer.

Figure 9 shows the distribution of average throughput for each traffic/service class. The box-and-whisker plots

show the average throughput, as well as the 10%, 25%, 75%, and 90% quantiles. The results also confirm the

conjectured properties of DSF. The average throughput per class almost perfectly matches FIFO throughput. Traffic

sources loose a slight but increasing fraction of packets when choosing smaller delay targets – evident when

comparing the mean values for FIFO and DSF in Figure 9 across service classes. The experiment has been repeated

with various numbers around 100% total average load, such as 99%, 99.9%, 100%, 100.1% or 105%, without any

significant change in outcome.

C. TCP

DSF provides delay guarantees for any number of service classes with very low throughput interference. However,

TCP has two effects that relate buffering to goodput: 1) Higher levels of flow multiplexing reduce the overall

amount of buffering needed at the bottleneck to achieve good link utilization [3], [59]. 2) Long-term TCP goodput

is inversely proportional to the RTT [45]. Thus, DSF potentially has indirect side effects on TCP goodput through

both delay control and buffer management. This is investigated by testing a comprehensive traffic mix with FIFO
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Fig. 8: Single Flow - Note different y2 ranges!

configurations for 5ms, 20ms, 100ms, and 200ms, as well as two DSF scenarios with 4 service classes for the four

delay targets. The regular (DSFR) scenario assumes that all TCP traffic uses the default 200ms delay class, regardless

of propagation delay. TCP traffic is typically throughput-oriented and at 200ms, long-term TCP throughput is not

affected by bufferbloat [21] effects. In contrast, the impatient (DSFI) scenario investigates the effect of TCP traffic

with smaller RTTs using a smaller delay class. Based on the classical notion of RTT unfairness and the concerns

stated in the ABE [31] and RD [50] proposals, this could be expected to result in a highly imbalanced bottleneck

capacity allocation.

A synthetic traffic mix, specified in Table II, is loosely modelled after Sandvine’s Global Internet Phenomena

Report [53], which reports traffic comprised of real-time entertainment (40-60%), web browsing and social net-

working (15-30%), and communication services (5-10%). Data traffic uses TCP NewReno while Voice, Video, and

Other traffic is modelled as UDP. Each Data traffic flow performs renewing file transfers with sizes drawn from
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Fig. 9: Multiple Classes - FIFO vs. DSF

TABLE II: Traffic Mix - Baseline for 100 Mbit/s

Traffic Source Type
Flows

Load or Delay
Notes

Class (RTT, if apl) File Size Class

1 Poisson 160 64Kbit/s 5ms Voice

2 Pareto 1.6 160 192Kbit/s 100ms Video

3a

TCP (20ms)

20 10KB (*)

Data
3b 10 100KB (*)

3c 5 1000KB (*)

3d 5 infinite (*)

4a

TCP (200ms)

20 10KB 200ms

Data
4b 10 100KB 200ms

4c 5 1000KB 200ms

4d 5 infinite 200ms

5a

Pareto 1.4

16 150Kbit/s 10ms

Other
5b 16 150Kbit/s 20ms

5c 16 150Kbit/s 100ms

5d 16 150Kbit/s 200ms
(*) delay class 20ms or 200ms

a Pareto distribution with shape 1.2. The traffic mix is scaled to various bottleneck link rates by proportionally

scaling the number of flows in each traffic class.

Figure 10a shows the link-level throughput measurements for each service class at different bottleneck link rates.

It confirms that DSF does not unduly influence throughput of service classes. DSFI shows a higher throughput

for the 20ms classes, because the TCP flows from TC3 enter this class. To properly investigate TCP-level effects,

Figure 10b shows the aggregate TCP goodput for each of the TCP traffic classes. The general problem with
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Fig. 10: Traffic Mix

a small-buffer configuration is visible for F5 and F20, albeit not as strong as prior work has shown in certain

scenarios (cf. Section III). The nature of TCP’s RTT unfairness is visible throughout all configurations, because

TC3 generally obtains a significantly higher share of the bottleneck capacity than TC4. When taking F100 or F200

as the benchmark, DSFR performs equally well in terms of goodput and RTT unfairness, and much better than F5

or F20. This demonstrates the essential benefits of DSF. The results for DSFI are somewhat inconclusive. In the

100 Mbit/s experiment, RTT unfairness is reduced, while overall utilization suffers. In the 200 Mbit/s configuration,

DSFI outperforms all other scheduler configurations. At 400 Mbit/s link speed, RTT unfairness is slightly higher,

but DSFI is still better than F5 and F20. Thus, even in scenarios where the classical TCP models predict RTT

unfairness, DSF appears competitive.

VII. CONCLUSION

The goal of this work is providing multiple delay classes while adhering to strict network neutrality requirements.

The DSF scheduler is presented as an effective solution. DSF can provide multiple service classes with arbitrary

delay targets. It is minimal and modular by focusing on a single feature (delay differentiation) with very little

side effects. It is shown analytically and with simulations that delays are enforced without significant throughput

interference. A non-intuitive outcome is that DSF does not necessarily cause additional RTT unfairness for TCP

traffic. This poses an interesting challenge to possibly refine existing TCP models.
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APPENDIX

A. FIFO

FIFO is the simplest and dominant service policy currently deployed in the Internet. In the legal debate about

network neutrality, FIFO scheduling is typically above all suspicion: It does not prefer (or discriminate against)

particular users, protocols, or applications. On the other hand, FIFO does not enforce any notion of fairness, because

it is commonly assumed to assign the forwarding resource proportional to arrival rates, i.e., it has low throughput

interference. In fact, this is the essence of its perceived neutrality.

We investigate the intuitive, but to our knowledge, unproven conjecture that a finite FIFO buffer has low throughput

interference, i.e., TI2 ≈ 0. The analytical discussion neglects traffic correlations, thus restricting it mainly to Poisson

traffic.

For ease of presentation, let us consider two traffic flows accessing a FIFO buffer. Let Ain1 (t), Ain2 (t) be the

cumulative arrivals up to time t from Flow 1 and 2, respectively; further, denote with Aouti (t) and Alossi (t) the

cumulative arrivals of Flow i up to time t that were accepted by the system, respectively not able to enter the

buffer, such that Aini (t) = Aouti (t) +Alossi (t). The following (long-term) rates are defined

λ•i = lim
t→∞

A•i (t)

t
• ∈ {in, out, loss}, i ∈ {1, 2} .

As a mathematical technicality, under a stochastic process interpretation of Ai(t), the limits are taken according

to mean-square convergence (see [24], Chapter 7). For the case of two CBR flows sharing an infinite FIFO buffer,

Ghiassi-Farrokhfal et al. [22] show that under overload the two CBR flows share the server proportionally to their

input rates, i.e.,
λout1

λout2

=
λin1
λin2

,

and thus FIFO perfectly achieves TI2 = 0. However, the analysis critically relies on the buffer to be infinite. In fact,

for finite buffers it is not difficult to construct a pathological example to show that being “in sync” with the FIFO

scheduler helps to dramatically increase a flow’s share of the overall capacity, such that TI2 → 1
2 , the worst-case

for two flows. Therefore, stochastic arrivals are considered. The following proposition establishes that for Poisson

flows in a finite FIFO buffer the relative throughputs are equal in expectation and thus it can be expected that

TI2 ≈ 0.

Proposition 3: If A1, A2 are independent Poisson arrival processes with parameters λin1 and λin2 then

E
(
λout1

λin1

)
= E

(
λout2

λin2

)
.
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Proof: The time evolution of the system consists of an alternating sequence of periods when the buffer is not

yet full and when it is full. Periods where the buffer is not yet full are termed success periods and denoted by

S1,S2, . . . , as packets arriving are accepted by the system and will eventually contribute to the output for their

corresponding flows. Periods where the buffer is full are called loss periods, denoted by L1, L2, . . . , as packets

arriving are lost. Hence, time is partitioned into the sequence S1, L1, S2, L2, . . . Focusing on success periods, let

Y iSj
be the amount of packets arriving from flow i during success period Sj . A basic, though important, observation

is that no matter when a certain success period starts, i.e., when the buffer becomes free, for both flows Y iSj
is

Poisson-distributed with parameter λini |Sj |, where |Sj | denotes the (random) duration of Sj . This is due to the

memoryless property of the exponential inter-arrival times for Poisson flows (in terms of renewal theory, at the start

of the success period both flows have residual life that is exponentially distributed with parameter 1
λin
i

).

Using a slightly informal notation, the expected output rates for both flows (i = 1, 2) can be partially calculated

as follows. EX(.) denotes the expectation operator with respect to random variable X .

E
(
λout
i

)
=ESj ,Lj

EY i
Sj

 lim
k→∞

∑k
j=1 Y

i
sj∑k

j=1 sj + lj

∣∣∣∣∣ |Sj | = sj

|Lj | = lj



=ESj ,Lj

 lim
k→∞

∑k
j=1 EY i

Sj

Y i
Sj

∣∣∣∣∣ |Sj | = sj

|Lj | = lj


∑k

j=1 sj + lj


=λin

i ESj ,Lj

(
lim
k→∞

∑k
j=1 sj∑k

j=1 sj + lj

)
.

In the first line, the law of total expectation is applied. In the second line, the exchange of limit and expectation

is possible because the convergence of the output rates is in the mean-square sense. Also, the linearity of the

expectation operator is used. In the third line, the fact that Y iSj
is Poisson-distributed is applied. Thus, the ratio of

the output rates yields the proposition.

The restriction to two flows is without loss of generality due to the superposition property of Poisson flows.

However, the memoryless property of the Poisson distribution is critical for the proof of Proposition 3. Hence, the

proposition does not necessarily hold for general renewal processes (with arbitrary i.i.d. inter-arrival distributions),

because the distribution of residual life is different from a fresh renewal epoch and depends on the variance of

that distribution. Yet, from the Palm-Khintchine Theorem ([29], p.250) it is known that an aggregate of renewal

processes (each with a small intensity) converges to a Poisson process and, therefore, these deviations should not

be too significant. However, traffic correlations, especially long-range dependencies (LRD), are not covered by the

theorem. Therefore, the FIFO analysis is complemented by simulation experiments with LRD traffic reported in

Section VI-A.
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Fig. 11: TI2 Distribution

An interesting observation is that the the proof of Proposition 3 only depends on the unbiased acceptance policy

of a finite buffer, rather than the FIFO service policy itself. The actual order in which packets are served from

the buffer does not change the fact that a finite buffer with unbiased packet acceptance achieves a low throughput

interference in the long term (t→∞). This even holds true for strict priority service, but it is expected that FIFO

achieves a lower TI2 on shorter time scales. The dependency of TI2 on the scope of the time interval is illustrated

by showing the results from Section VI-A, Figure 6a (1s window) for increasing sliding window sizes (2s, 4s) in

Figure 11. TI2 values become smaller with an increasing window size and trend towards 0 for all three schedulers.

B. Shared Queue

To illustrate the trade-offs associated with a small shared queue, a FIFO Tail Drop queue with buffer sizes between

1ms and 750ms is observed using packet-level simulation (cf. Section VI). For each buffer size, Figure 12a shows

the maximum delay experienced by a delay-sensitive application and the mean goodput of file downloads as a

scatter plot. The highest per-download goodput in this experiment is about 3 Mbit/s for 20 concurrent downloads

and a propagation delay of 30ms; the corresponding delay lies above 200ms. If the buffer is configured to achieve

a 100ms delay target, the downloads see a 12% reduction in goodput. If the delay target is 50ms, the goodput

decreases by more than 32%. Figure 12a also shows that the trade-off for the 99 delay percentile is similar to the

maximum delay case.

A second experiment studies CoDel’s trade-off under a maximum delay (and 99 delay percentile) metric. Keeping

CoDel’s default parameters and adjusting its TargetDelay does not result in significant delay reductions, so different

Interval parameters are evaluated between 1µs and 500ms [38], [47]. Figure 12b shows the corresponding results for

the delay over the mean per-download goodput. Unlike the Tail Drop results, CoDel’s trade-off for the 99 percentile

is better than for the maximum delay. Nevertheless, achieving a 99 delay percentile of 50ms costs about 20%



28

 0

 50

 100

 150

 200

 1000  1500  2000  2500  3000

buffer size 750ms

buffer size 1ms

D
e

la
y
 (

m
s
)

Per-Flow Goodput Rate (Kbit/s)

maximum of delay
99 percentile of delay

(a) Tail Drop

 0

 50

 100

 150

 200

 1000  1500  2000  2500  3000

CoDel default interval 100ms

CoDel interval 2ms

D
e

la
y
 (

m
s
)

Per-Flow Goodput Rate (Kbit/s)

maximum of delay
99 percentile of delay

(b) CoDel

Fig. 12: Trade-off between Goodput and Low Delay

in goodput. Achieving a 50ms maximum delay is almost impossible when only adjusting the Interval parameter.

Therefore, an exhaustive search in CoDel’s parameter space was performed. This leads to an improved trade-off, in

particular for low delay targets. However, a 50ms maximum delay target still decreases the file download goodput

by about 36%. These findings confirm that aggregate delay control for low-delay targets entails a significant cost

on goodput.

C. Global DD Markov Chain

As has been discussed in Section V-A, the N -dimensional state vector of a global Markov chain has entry values

corresponding to: assigned (a), uncertain (u), and empty (e) slots. As the DD slot queue is a FIFO queue, the

empty slots are always trailing. Assigned and uncertain slots are in the leading entries and can take any permutation

over these. The number of uncertain slots is bounded by N −N1. Under these conditions, the state vector can be

represented by the regular language over the alphabet {a, u, e} defined by

{aikujken | ∀k ≥ 0 : ik, jk ≥ 0, n ≥ 0,

n+
∑
k

ik + jk = N,
∑
k

jk ≤ N −N1}.

In particular, the size of the state space of the global Markov chain can then be calculated as

N∑
i=0

min{N−N1,N−i}∑
j=0

(
N − i
j

)
.

While no closed-form is known for such a sum of binomial coefficients, it is clear that a state space explosion is

experienced for typical parameter settings. For example, N = 1000, N1 = 100 yields ∼ 2.143× 10302 states.


