FIFO Service with Differentiated Queueing

Martin Karsten

David R. Cheriton School of Computer Science
University of Waterloo
(currently on Sabbatical at University of Kaiserslautern)

ANCS 2011

Motivation

- residential access link concurrent flows:
 - file transfer (using TCP) ■
 - voice call
- link buffer fully utilized

Table of Contents

Motivation

Motivation

- 2 Problem Statement
- 3 Algorithm
- 4 Implementation
- 5 Evaluation
- 6 Wrap Up

Table of Contents

- 1 Motivation
- 2 Problem Statement
- 3 Algorithm
- 4 Implementation
- 5 Evaluation
- 6 Wrap Up

ANCS 2011 4/29

Rate Neutrality

- avoid control and accounting overhead
 avoid preferential treatment of traffic
- use shared FIFO service as benchmark
 - service rates proportional to arrival rates
- rate control at edge/end nodes: TCP, etc.

ANCS 2011 5/29

Rate Neutrality

- avoid control and accounting overhead
 avoid preferential treatment of traffic
- use shared FIFO service as benchmark
 - service rates proportional to arrival rates
- rate control at edge/end nodes: TCP, etc.
- classical packet scheduling?
 - absolute: needs rate allocation (signalling)
 - priority: preferential treatment
 - => distorts edge/end control

ANCS 2011 5/29

Delay Control

- delay control without rate increase?
 - -> packet discard
- rate neutral with packet discard?
 - -> preserve service

ANCS 2011 6/29

Delay Control

- delay control without rate increase?
 - -> packet discard
- rate neutral with packet discard?
 - -> preserve service
- proposal: multi-class queueing system
 - maximum queueing delay per class
 - preserve service within class
 - throughput similar to corresponding FIFO

Incentive Compatibility

- end/edge systems freely choose service class
- no preferential treatment
- lower delay = less buffer = higher loss => strategy-proof

ANCS 2011 7/29

Incentive Compatibility

- end/edge systems freely choose service class
- no preferential treatment
- lower delay = less buffer = higher loss => strategy-proof
- not addressed: indirect effects (TCP, etc.)
 - smaller RTT -> higher sending rate
 - enforce transparency at router? hard-code router policy for specfic e2e mechanism? sound architecture? modular design?

ANCS 2011 7/29 WATERLOO

Use Cases

- isolated deployment
 - peering exchange, residential gateway
- edge-based load control
 - IETF PCN architecture
- small router buffers
 - experimentation and transition
- small number of (standardized) delay classes

Conceptual Design

■ late delay test: worst-case linear complexity

ANCS 2011 9/29

Alternative Conceptual Design

rate estimation/allocation: complexity, accuracy, time lag

Table of Contents

- 1 Motivation
- 2 Problem Statement
- 3 Algorithm
- 4 Implementation
- 5 Evaluation
- 6 Wrap Up

Virtually Isolated FIFO Queueing

- manage FIFO queue of virtual slots
 - virtual slot: packet in regular FIFO here: right to send at some point in time
- admit packet, if virtual slot available in queue
 - with suitable service time
 - store in packet queue (sorted by service time)
- purge unused virtual slots from system
 - avoid virtual buffer hogging

VIFQ Operation

- buffer
- arrival

VIFQ Operation

- buffer
- arrival
- classification

VIFQ Operation

- buffer
- arrival
- classification
- packet/slot queue

VIFQ Operation

- buffer
- arrival
- classification
- packet/slot queue
- service

Algorithm

VIFQ Operation

- buffer
- arrival
- classification
- packet/slot queue
- service
- arrival

VIFQ Operation

- buffer
- arrival
- classification
- packet/slot queue
- service
- arrival
- classification

VIFQ Operation

- buffer
- arrival
- classification
- packet/slot queue
- service
- arrival
- classification
- packet/slot queue

Table of Contents

- 1 Motivation
- 2 Problem Statement
- 3 Algorithm
- 4 Implementation
- 5 Evaluation
- 6 Wrap Up

Complexity in Arrival Routine

- two loops proportional to arriving packet length
 - purge unused slots
 - reconcile different packet lengths
- packet-amortized constant complexity
 - router designed to handle minimum size packets
 - extra CPU capacity for larger packets

Sorted Packet Queue

- hardware-assisted priority queue => O(1)
 - timer wheel with *find-first-set* instruction

■ software tree/heap-based priority queue

■ worst-case: O(logN) in small number of classes

Table of Contents

- 1 Motivation
- 2 Problem Statement
- 3 Algorithm
- 4 Implementation
- 5 Evaluation
- 6 Wrap Up

Simulation Parameters

- dumbbell topology
- 50 Mbit/s bottleneck
- 60 msec roundtrip propagation delay
- methodology
 - compare throughput, utilization, etc., with FIFO
 - verify delay differentiation

Evaluation

CBR vs. Pareto - Example

ANCS 2011 19/29 Evaluation

CBR vs. Pareto - Example

ANCS 2011 20/29

CBR vs. Pareto - Example

ANCS 2011 21/29 Evaluation

CBR vs. Pareto - Example

ANCS 2011 22/29

CBR vs. Pareto - Throughput

CBR vs. Pareto - Utilization

ANCS 2011 24/29

Multiple Classes

delay class	traffic type
60 msec	50 long-term, greedy TCP flows
60 msec	10/sec short (web) TCP flows, 100KB
20 msec	CBR, 20% load
10 msec	CBR, 20% load
100 msec	Pareto, 20% load
10 msec	Pareto, 20% load

Multiple Classes - Throughput

ANCS 2011 26/29

Evaluation

Multiple Classes - Delay

ANCS 2011 27/29

Table of Contents

- 1 Motivation
- 2 Problem Statement
- 3 Algorithm
- 4 Implementation
- 5 Evaluation
- 6 Wrap Up

ANCS 2011 28/29

Wrap Up

- new approach to differentiated delay control
 - rate neutral, incentive-compatible
- VIFQ concept: versatile building block
- VIFQ algorithm: simple and feasible
- initial evaluation results promising
- next steps: scenarios, modelling, implementation

Extra Slides

TCP vs. Pareto - Throughput

Short Flows - Completion Time

TCP/TFRC - Throughput

