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ABSTRACT

This paper presents a novel approach to minimally invasive service
differentiation in packet-switched networks. Instead of actively
managing service allocation, a simple differentiated queueing algo-
rithm provides traffic classes with essentially the same best-effort
service that would result from plain FIFO service using a single
queue for all traffic. However, each class is served from a separate
virtual queue, which is configured with an individual deterministic
delay bound that is enforced in the presence of dynamically vary-
ing packet arrival rates. The main advantage of such a scheme for
service differentiation is administrative simplicity, because it only
needs minimal configuration by a network operator and does not
necessarily require control plane functionality. Further, it does not
inherently prefer some traffic classes over others and thus satisfies
even the most radical definitions of network neutrality. In the pa-
per, the basic approach is motivated with the help of various use
case scenarios. A fairly simple and efficient algorithm is presented
to implement the differentiated queueing scheme. Finally, a num-
ber of simulation experiments and results are shown that confirm
the intuitive functionality of the algorithm.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet-switching net-
works; C.2.6 [Internetworking]: Routers

1. INTRODUCTION

Consider a home network with two concurrently active applica-
tions: a large file transfer and a VoIP session. For a file transfer to
or from a well-connected Internet server, the residential link might
very well be the throughput bottleneck. In this scenario, the router
at either end of the residential link (depending on the direction of
the file transfer) must have buffering capacity in the amount of the
file transfer’s round-trip time (RTT) to ensure smooth TCP service
and high link utilization. On the other hand, the quality of the VoIP
session would be seriously degraded by the resulting queueing de-
lay. Given the rate of adoption of conventional QoS mechanisms
and their administrative overhead and configuration complexity, it
is highly unlikely that this problem can be remedied easily. In fact,
there are recent reports of a so-called bufferbloat phenomenon [19]
that aggravates the fundamental buffering mismatch between slid-
ing window-based reliable transfer and latency-sensitive interac-
tive applications. In this paper, a very simple mechanism is pre-
sented that permits users and applications to choose from a small
variety of delay classes in a way that does not result in inherently
preferential service to any class. Thus, in the residential scenario,
both file transfer and VoIP applications would pick different delay
classes and experience appropriate buffering behaviour at routers,
but without further service differentiation. Aside from this residen-

tial scenario, there are other deployment configurations where such
a queueing regime would useful.

In general, different types of applications with different traffic pro-
files require different levels of buffering in Internet routers. For ex-
ample, bulk data transfer using TCP needs a certain level of buffer-
ing at routers to effectively utilize communication links and gen-
erally does not exhibit quality degradations with larger buffers (up
to a certain point). On the other hand, conversational applications
(e.g., voice or gaming) do not benefit from large buffers, but in-
stead their quality suffers when queues fill up and packets are de-
layed. While recent results give some indication that this quandary
might be less pronounced in lightly loaded core networks with a
high level of multiplexing (see Section 2.2.1 for details), it is still
clearly an open challenge for routers at the edges of networks, such
as home routers, ISP routers, and possibly public peering points.

The goal of Virtually Isolated FIFO Queueing (VIFQ) is to emu-
late FIFO throughput, but to also support differentiated strict delay
classes at routers. VIFQ adopts a policy-free point of view where
all arriving traffic is treated as equally important and valuable, thus
leaving rate allocation decisions to other network components. In-
stead of actively managing service rates, VIFQ constructs multiple
virtual FIFO queues that are configured with a maximum queueing
delay each. Aside from packet drops to enforce the strict queue-
ing delay targets, different classes are served in proportion to their
respective arrival rates, similar to best-effort shared FIFO service.
Therefore, each traffic source has an incentive to pick the service
class with the most suitable buffer/delay configuration for its utility
and burst characteristics.

This paper is the first to a) formulate this idea, b) present a feasible
algorithm for a queueing scheme, and c) evaluate its characteris-
tics. The paper is organized as follows. The general general idea
and possible deployment scenarios are introduced in next section.
Related work is discussed in Section 3. In Section 4, the queueing
algorithm is presented and studied. The operation of the algorithm
is demonstrated by means of simulations in Section 5. The paper
is wrapped up with a summary discussion and conclusions in Sec-
tion 6.

2. MOTIVATION

An intuitive conjecture about FIFO scheduling is its rate neutral-
ity, i.e., the notion that the service rates of multiple traffic classes
traversing a shared FIFO buffer are generally proportional to their
respective arrival rates. While not proved in the most general case,
there is some empirical [34] and analytical [11, 20] evidence, aside
from intuition, to use it as a working hypothesis. Based on this



hypothesis, edge-based traffic control (such as TCP’s congestion
control algorithm) can manage network resources without any dy-
namic state or explicit signalling with routers. However, traffic and
service management in this case only extends to rate allocation and
does not include differentiated delay control. The goal of VIFQ is
to add delay control and differentiation without changing the inher-
ent characteristics of FIFO scheduling. It is a queue management
module with the following properties:

Support for multiple strict delay classes.
e No inherently preferential treatment of any traffic class.

o Best-effort service approximating shared FIFO service.

No dynamic state or signalling.

o Efficient implementation at high line rates.

However, VIFQ does not address the inherent RTT-dependency of
the TCP congestion control algorithm. In particular, TCP’s send-
ing rate is inversely proportional to the RTT, so delay differenti-
ation indirectly affects end-to-end throughput for competing TCP
sessions. Other proposals have attempted to address these effects
with arguable success. This aspect is further discussed in Section 3
and experimentally studied in Section 5. It is important to note
though that end systems are free to choose any delay class for their
traffic, since there is no inherently preferential treatment. Thus,
any perceived unfairness can be remedied by end systems choosing
appropriate delay classes.

Given its objectives, VIFQ follows a laissez-faire approach where
all traffic is transmitted as equally and optimistically as possible.
Routers are statically configured with multiple delay classes and
drop packets from a traffic class as needed to meet the respective
delay target of that class. VIFQ does not create service classes
with inherently higher throughput and, therefore, does not need any
direct traffic management. It utilizes all available resources and
does not require signalling with routers. It does not interfere with
rate control by an external control regime and a control system can
employ any pro-active traffic control, such as prioritization, mark-
ing, scheduling, policing, or admission control, in addition to using
VIFQ.

The design of VIFQ is based on the observation that traffic profiles
from different applications differ in their burstiness and delay tar-
gets. For example, interactive applications often prefer a smaller
worst-case delay in exchange for a slightly higher drop rate. For
this type of traffic it is beneficial to limit the maximum buffer at
routers. In other words, during transient overload, those applica-
tions would rather have a few more packets dropped, than experi-
encing an unacceptable delay for all packets. One immediate com-
plication is given by the dynamics of arrival and service rates. From
an application perspective the size of the forwarding buffer in bytes
is largely irrelevant. What matters is the maximum queueing delay
in time units. In a multi-class scenario with dynamic rates for each
class, this prohibits the use of static buffer limits. Instead, each per-
class buffer has to be adapted to the corresponding service rate to
ensure a constant maximum per-class queueing delay.

2.1 Conceptual Design
The simplest way of thinking about VIFQ is to start with regular
FIFO scheduling, but add a simple delay test at service time. If a
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Figure 2: Alternative Conceptual Design [27]

packet violates its deadline, it is discarded. However, in its stead,
a packet from the same class is forwarded, if possible, so that the
overall throughput rates of multiple classes stay as close to FIFO
service as possible.

The conceptual operation of VIFQ is shown in Figure 1. Traffic
classes are serviced according to their arrival pattern. If, at de-
parture time, a packet violates its target delay, it is dropped and the
next packet from the same class is served. This shifts all subsequent
packets for this class and the corresponding service is not lost while
the class has packets in the queue. The main service queue stores
class descriptors representing send slots, while per-class queues
hold the actual packets. For example, in Figure 1, Packet C is found
violating the target delay of Class 3 and is dropped. Instead, Packet
F is moved ahead and forwarded immediately. Similarly, Packet D
violates the target delay of Class 1 and is replaced by Packet E.

The pseudo code for the arrival and service routines is shown in
Algorithm 1 and 2. For clarity reasons, the pseudo code shown
here does not account for varying packet sizes. The second column
in Table 1 summarizes the variables of the conceptual algorithm,
while the third column applies to the actual algorithm presented in
Section 4.

The arrival routine stores a class descriptor in the global slot queue
gs and places the packet with deadline d), in a per-class packet
queue ¢.. The admission test in Line 3 does not consider the length
of the arriving packet to avoid a bias against larger packet sizes.
The service routine processes class entries in the slot queue and for
each class, finds the next packet that can be sent without violating
the class’s target delay. Both loops in the service routine might ex-
ecute several times. If packets are found violating the deadline, the
inner loop executes several times. If a per-class packet queue runs
empty, but the main slot queue has still entries for this class, the
outer loop will execute more than once.



Table 1: Parameters and Variables

[ Name | Conceptual Version | Actual Algorithm
B queue limit queue limit
b backlog virtual backlog
t arrival time arrival time
)4 current packet current packet
Iy packet size packet size
dp packet deadline N/A
c service class service class
D, class delay target class delay target
qc class packet queue | class slot queue
tc N/A timestamp at head of ¢,
Il N/A packet size at head of g,
X N/A class transmit credit
qs slot queue slot queue
tg N/A timestamp at head of gg
s N/A packet size at head of gg
cs N/A class at head of gg
qp N/A packet queue

Unfortunately, there is a caveat with this simple design. The run-
time of the service routine cannot be limited effectively, since it is
impossible to predict how many consecutive packets will miss their
deadline and/or how many slots are left unused. In theory, there is
clearly some upper bound based on the minimum packet size and
the total amount of buffer. However, given the tight timing with
which packets must be released to a high-speed output link, it is not
possible to ensure that the output link is always fully utilized when
the runtime of the service routine cannot be tightly controlled.

A different way of conceptualizing the queueing algorithm is given
by the design of ICDS [27] shown in Figure 2, where measured ar-
rival rates are used to directly configure a rate-proportional sched-
uler. However, ICDS does not provide a feasible algorithm and is
included here only for illustration.

Intuitively, this queueing and delay control scheme provides service
very close to a regular shared FIFO queue, but at the same time,
strictly enforces the delay target of each service class. A packet
that violates its deadline is replaced by another packet of the same
class, which results in an overall service shift for all current and
future packets in that class during the same busy period. This mini-
mizes the impact of delay drops and the relative throughput of each
class does not deviate much from FIFO queueing. However, there
is one exception. A class that receives traffic at a very low rate
might be starved from service by not having another packet avail-
able in the per-class queue g, at the time when a previous packet
is discarded in the service routine. Such traffic must be placed in
a default class that is configured with a target delay equal to the
maximum system queueing delay. The actual VIFQ algorithm is
studied in more detail in Section 4.2.

2.2 Use Case Scenarios

Different applications and usage scenarios vary greatly in their re-
quirements for transmission rate. Many applications can operate
successfully within a spectrum of different throughput rates. In
economic terms, such applications have a concave rate utility func-
tion for throughput. Therefore, a freely configurable transmission
rate (as opposed to a few fixed rate classes) is highly desirable for
a multi-service communication network.

Algorithm 1 Conceptual Arrival Routine

1: p < received packet;
2: ¢ < service class of p;
3: if b < B then

4 tail(ge) < p;

50 tail(gs) < c;

6: b b+l

7 dy +1t+Dg;

8: else

9:  drop(p);

0

10: end if

Algorithm 2 Conceptual Service Routine

1: while gg not empty do
2: ¢ < head(gs);
3:  while g, not empty do
4: p < head(q.);
5: b<b—Ip;
6: if < d, then
7 tt+1p;
8: transmit(p);
9: else
10: drop(p);
11: end if

12:  end while
13: end while

In contrast, it seems less important to support a wide variety of de-
lay settings. In economic terms, delay utility curves are usually
S-shaped, since delay requirements are based on human perception
or other external factors. For similar reasons, there is not much
variety in delay requirements of different applications and thus, a
fixed number of global delay classes should be sufficient. Conse-
quently, VIFQ can be envisioned as being deployed with a small
fixed number of static delay classes, which can be selected by set-
ting an appropriate code point in the packet header. The set of delay
classes and code points can be standardized.

One caveat is that queueing delay is additive and thus the traversal
of multiple bottlenecks could add up the actual delay to a multi-
ple of the target delay. However, since VIFQ forwarding works
with dynamic rates, this seems less of a problem compared to the
fixed-rate scenario in reservation schemes such as the one analyzed
by Parekh and Gallager [35] and subsequently others. Instead, it
is assumed that most often a traffic flow experiences a single bot-
tleneck along its path and thus, a significant queueing delay only
applies once. Further, in most usage scenarios VIFQ would only
be deployed at certain routers along an end-to-end path, which also
limits the impact of additive delay.

With these considerations in mind, various use case scenarios are
presented and discussed here to motivate the VIFQ proposal, as
well as to illustrate avenues for future research.

2.2.1 Small Router Buffers

Recently, it has been speculated that for TCP-style traffic flows the
necessary amount of buffering in routers may be much less than
previously assumed and may become irrelevant in terms of delay
[29]. While this may be true for backbone routers [3], it is not
clear whether this assumption always holds [30, 32, 37] and in par-
ticular, whether it holds for all parts of the network [14]. Also,



while link utilization is reasonably high with a sufficient number of
desynchronized TCP flows [5], there is no clear and direct expla-
nation how TCP flows desynchronize under which circumstances.
Further, an argument against small router buffers is the resulting
increase in variability of TCP throughput per flow [13]. VIFQ can
help addressing those concerns by supporting both small and regu-
lar buffer sizes at the same time and letting source nodes (or gate-
ways) decide any potential trade-offs and experiment with different
buffer sizes. One argument in favour of small router buffers is the
resulting lower delay for all traffic, including delay-critical traffic.
VIFQ offers an alternative and more flexible solution for that chal-
lenge by offering different service classes. However, another bene-
fit of small router buffers applies to router design, especially in the
optical domain. VIFQ does not address this concern directly, but
might expedite research and in-situ experiments with small buffers.

2.2.2  Isolated Deployment

When deployed in isolation, VIFQ can be a very useful building
block, because it opens up new possibilities for end systems to in-
fluence their packets’ treatment at overloaded links, but without in-
terfering with existing network operations and management. VIFQ
can be used in isolation at specific routers along the data path that
are prone to overload, but where sophisticated traffic management
is not feasible.

A good example are Internet peering points between network do-
mains. If these exchanges are highly loaded, it might not be feasible
to add extra control functionality. Further, inter-domain QoS in-
evitably requires even more complicated accounting and/or billing
structures than single-domain offerings. Even in the absence of a
globally coherent QoS system, VIFQ can facilitate choice and de-
lay differentiation for different traffic flows from various applica-
tions.

Another example for using VIFQ is in edge routers near or on cus-
tomer premises, as already briefly discussed at the beginning of
Section 1. Because of the relatively small number of traffic flows in
such edge routers, the rationale for small router buffers (see previ-
ous section) does not apply. Instead, routers need to be configured
following the traditional recommendation that buffer sizes should
be around C-RTT, where C is the link capacity and RTT is the
maximum round-trip time excluding the buffer [9, 43]. Since the
round-trip time may be large, the buffer needs to be equally large.
Without any service differentiation, traffic from interactive applica-
tions traverses the same queue and experiences unnecessary and po-
tential harmful queueing delay, if the edge link is the bottleneck of
a concurrently running TCP session. Although the computational
complexity of differentiated packet scheduling schemes is limited
with a small number of active flows, pro-active traffic management
schemes are not a suitable choice in this scenario, because of their
inherent throughput differentiation and/or administrative overhead.
This is further discussed in Section 3.

VIFQ solves this problem by discarding some packets from a low-
delay class when the queue builds up, but in exchange guarantees
the queueing delay for all other packets in that class. Deploying
VIFS with a small number of delay classes at such edge routers
would solve the short-term problem of TCP-sized router buffers
interfering with interactive applications. However, it would not in-
terfere with the simple traffic management regimes that are cur-
rently found at the edge of the Internet. More importantly, it would
still allow for future innovations and alternative traffic management
schemes like, for example, those discussed in Section 2.2.4.

2.2.3  Active Queue Management

Active Queue Management (AQM) schemes operate on a router
queue by marking or dropping packets, before the queue is com-
pletely full. This is done to tighten and smooth the control loop
between rate-controlled edge systems and network routers. In par-
ticular, AQM schemes are credited with reducing latency, improv-
ing fairness, and avoiding synchronization between flows. See [39]
for an earlier survey of the field. VIFQ can be combined with any
non-preemptive AQM scheme, i.e., any scheme where a packet is
either discarded at arrival or not at all.

2.2.4 Edge-based Load Control

In recent years, a class of edge-based rate and admission control
schemes have been proposed [8, 16, 28, 29] that can provide dif-
ferentiated services without dynamic state in core routers. These
schemes operate based on load feedback that is conveyed to edge
systems via simple packet marking, similar to TCP/ECN [38]. Edge-
based traffic control can only manage network resources effectively,
if core routers do not interfere with the rate allocation decisions
at the edge. Consequently, these schemes work well with FIFO
scheduling, which however does not support delay differentiation.

Edge-based load control systems operate on the premise that routers
signal their current and/or incipient load situation to edge or end
systems, which in turn make rate adaptation or admission control
decisions to manage traffic and avoid long-term overload situations.
An example for a system proposal along with further references is
given in [16]. This work is conceptually rooted in TCP’s congestion
control algorithm, which uses packet loss as a load signal, as well as
more recent packet marking schemes, such as Explicit Congestion
Notification (ECN) [38]. In terms of theoretic analysis, it is based
mainly on work done by Kelly [29] and others. More involved pro-
posals exist, such as XCP [28], which provide better control and
efficiency at the cost of higher complexity. However, all propos-
als implicitly assume a single scheduling class and limit service
differentiation to controlling the transmission rate. Further, in the
dynamic case it seems impossible to reliably avoid transient over-
load situations under realistic assumptions [25], especially when
high utilization is also sought. In fact, the IETF PCN architecture
[16] requires a separate isolated traffic class for “PCN traffic” to
meet low-delay goals.

Because VIFQ does not interfere with basic FIFO service rates,
it is the ideal companion for such a control regime. Edge or end
systems can follow through with their rate allocation schemes and
sources can mark packets for a specific delay target, which is then
enforced by VIFQ. This creates a simple yet effective multi-class
QoS system without the need to label some traffic as special or
more important.

3. RELATED WORK

Service differentiation in IP networks is a long-standing open is-
sue. There are numerous technical proposals focusing on various
aspects of the overall problem. Proposed solutions comprise dif-
ferentiated scheduling at the flow or traffic class level, admission
control, and eventually accounting. As such, they are always an
amalgam of data plane (scheduling), control plane (signalling), and
management (accounting) operations. Complexity may arise from
each of these components and should be avoided as much as possi-
ble.

Traditional service differentiation schemes come in the form of rate
control mechanisms and are based on either of two paradigms:



priority forwarding or resource allocation. In priority-based sys-
tems, such as Expedited Forwarding [12], high priority forwarding
is used to keep delays small. Because of the resulting forwarding
preference, traffic control and management is needed to keep the
amount of high-priority traffic limited. In allocation-based systems,
such as the gamut of proposals for Integrated Services [7], a max-
imum queueing delay can only be guaranteed, if the arriving traf-
fic conforms to a specific traffic envelope [35]. In either case, the
amount of queueing delay ultimately depends on the total amount
of arriving traffic, which needs to be managed. Correspondingly,
any scheduling method other than FIFO needs configuration, con-
trol, and accounting, all of which result in increased complexity.
VIFQ is a much simpler approach that does not require external
traffic management, control, or accounting. There might be inter-
esting deployment scenarios including VIFQ and flavours of the
above mechanisms, but VIFQ has no inherent complexity.

Traffic aggregation is an approach to limited the overhead of ser-
vice differentiation using traditional schemes. Traffic is bundled
into traffic aggregates and sufficient throughput capacity is allo-
cated per aggregate in the core of the network to forward a pre-
defined maximum traffic rate without exceeding queueing delay
limits. There is considerable work that studies the relationship be-
tween rate allocation and delay guarantees for traffic aggregates [6,
10, 41]. However, in the presence of dynamic flow arrivals and
traffic rates, a traditional multi-class traffic control system still has
to resort to one of two basic control schemes for managing traffic
while guaranteeing queueing delay:

e With fixed rate allocations, traffic has to be fitted to the rate
allocation. This requires strict policing and might be inef-
ficient, if other traffic classes do no fully utilize their rate
allocation.

e Dynamic rate allocation requires signalling with core routers.
While this does not directly violate the requirement for as lit-
tle state information as possible, the resulting signalling in-
teractions pose an essentially similar overhead to core routers.

Strict priority scheduling is a very simple form of service differenti-
ation. In fact, it is one example for a relative or proportional class-
based scheduler. For example, the Best Effort Differentiated Ser-
vices (BEDS) [17] maintains fixed delay and drop ratios between
two services classes. One of the service classes is intended for
delay-sensitive traffic, but might incur a higher packet loss, while
the other one provides lower packet loss. A similar proposal, al-
though different in certain details has been presented as Equivalent
Differentiated Services (EDS) [18]. In both cases, it is unclear how
to configure the respective service ratios for any meaningful abso-
lute service guarantee. A thorough theoretical treatment of relative
average delay differentiation [15] works by adjusting the scheduler
to traffic conditions under the assumption that packets are never
dropped. This is fundamentally different from VIFQ, which guar-
antees absolute worst-case delays by potentially dropping packets.
Generally, attempts at relative service differentiation at routers im-
pose a throughput policy that might interfere with edge-based rate
allocation. Another approach to relative service differentiation is
given by so-called “lower-than-best-effort” approaches in the trans-
port layer [44], but these scheme also do not explicitly address de-
lay differentiation.

The Alternative Best-Effort (ABE) [21, 22] and RD Service [36]
proposals each present a stand-alone two-class service model, where

one class provides a deterministic bound on queueing delay, but
does not adversely affect the throughput of the other class. Be-
cause traffic rates from TCP-type sources increase with reduced
RTT, both proposals contain “fairness” provisions, such that a flow
cannot attain higher throughput in the delay-oriented class com-
pared to a similar flow that transmits using the throughput-oriented
class.

In the ABE implementation, the efficiency of the admission test for
delay-oriented packets is critically linked to managing only two ser-
vices classes. In addition, this admission test does not completely
eliminate the need for packets drops in the service routine, which
in turn results in the same unbounded worst-case overhead as the
conceptual design shown in Section 2.1. Further, the scheduling
algorithm utilizes a parameter g to choose between both classes,
if current packet deadlines do not mandate a specific order of ser-
vice, to mitigate the effect of smaller delays on feedback-controlled
sources. However, this approach is based on the assumption that
the RTT for all flows is identical and known. The computation of
g is not trivial and would only be complicated by supporting an
arbitrary number of classes.

The RD Service proposal also offers two service classes only and
requires an a-priori policy decision about the relative throughput
rate targets. Its fundamental design trade-offs are very similar to
ABE. Again, packets might need to be dropped during the service
routine and enforcing the throughput policy requires a complex
and error-prone estimation - in this case of the number of ongo-
ing flows.

Both ABE and RD Service do not offer a generally feasible low-
complexity scheduling algorithm. Also, both proposals couple de-
lay differentiation with rate control. As such, they have a funda-
mentally different set of goals than VIFQ. In contrast, VIFQ sepa-
rates both dimensions and therefore increases the flexibility to place
arbitrary rate control functionality anywhere in the network - which
of course can resemble ABE’s or RD’s throughput policies, if de-
sirable.

Fundamentally, the deployment of ABE and/or RD Service would
entrench a specific policy in core routers and interfere with edge-
based rate allocation. This would ossify the Internet architecture
and make it more difficult to experiment with alternatives to TCP’s
control algorithms. For example, Mathis [33] has recently ques-
tioned whether the narrow focus on “TCP-friendly” congestion con-
trol is still timely and adequate. RTT-“unfairness” is inherent to
TCP’s congestion control algorithm and should be addressed in that
context, instead of hard-coded scheduling policies in routers.

One of the key aspects of VIFQ is that it permits the decoupling
of rate and delay control. This must not be confused with the rate
and delay decoupling offered by service curve schedulers, such as
SCED [40] or L-SCED [4]. With a service curve scheduler, it is
possible to configure rate and delay targets independently of each
other — in contrast to, e.g., rate-based schedulers. However, the
scheduling functionality is still tightly coupled in a single module
and delay control requires strict policing. Further, these schedulers
are inherently complex and there is no known algorithmic design
that can execute at low constant complexity feasible for high-speed
links. In contrast, VIFQ provides differentiated delay control and
can be implemented in a form of constant complexity with low ab-
solute overhead.



Algorithm 4 VIFQ Service Routine

Algorithm 3 VIFQ Arrival Routine

1: p < received packet;
2: ¢ < service class of p;
3: if b < B then

4:  tail(ge) < (t+b,0p);
5. tail(gs) < (t+b,c);
6: b b+1py;

T xe = xe+1p;

8: end if

9: whilezg <t+b—Bdo
10:  iftg =1, then
11: Xe = Xe —leg;
12: b—b—lc;
13: pop_head(q.,);
14:  endif
15:  pop_head(gs);
16: end while
17: if xc > I, and t. <t+ D, then

18:  gplte] + p;
190 xe < xc—Ip;
20:  whilel, >0do

21: if [, < Is then
22: lg < Ig—1p;
23: I, 05

24: else

25: I 1y, —Is;
26: pop_head(q.);
27: end if

28:  end while

29: else

30:  drop(p);

31: end if

Dropping packets from the front of the queue has been suggested
before and found to improve the overall queueing delay and thus
responsiveness of the network [31]. However, the system studied
there is single-class and the drop from front is triggered directly by
the arrival of a new packet.

4. VIFQ

The VIFQ design closely emulates the conceptual design presented
in Section 2.1, but avoids unlimited packet discard operations in the
service routine. Instead of managing service rates, VIFQ differen-
tiates between delay classes by using an appropriate queueing and
dropping mechanism. VIFQ is illustrated in Figure 3, showing the
same arrival pattern as in Figure 1. The arrival and service routines
are shown in Algorithm 3 and 4. Note that for brevity Algorithm 3
uses cg directly as an index to ¢, /, and ¢ in Lines 10-13 to denote
that the respective value is taken from the class at the head of gg.

4.1 Algorithm

The system emulates a FIFO scheduler, similar to the conceptual
design, but performs all critical operations in the arrival routine to
manage the execution overhead. The key idea is that VIFQ man-
ages virtual slots that represent packets in the comparable FIFO
queue. Arriving packets that would be accepted into the compa-
rable FIFO queue create a virtual slot in VIFQ. Virtual slots are
tracked in the system and used for (potentially later) packets, such
that a packet might be using the virtual slot of a packet previously
discarded for violating its delay target. This emulates the service
shift shown in the service routine of the conceptual scheduler in Al-

1: if gp not empty then
2:  p < head(gp);

3 b b—1lp;

4 tt+1p;

5 transmit(p);

6: end if

slot queue(s)

. HEEE
—{_J— [E|F[Bla—(_)—E[F[e[a]
classification 1323 service output
delay test packet queue
cleanup

Figure 3: VIFQ Algorithm — Packets C and D too late

gorithm 2. The arrival routine is comprised of the following com-
ponents: Admission control creates virtual slots, while delay test
uses a virtual slot for a packet, if that packet can then be sent with-
out violating the delay target. The cleanup component deletes old
and unused virtual slots from the system. Admission control and
delay test are discussed first, followed by cleanup.

Admission Control

VIFQ maintains a queue of virtual slots that closely tracks the cor-
responding queue in a regular FIFO system. It first executes a
global packet admission test (Line 3) - independent of the traffic
class - similar to the conventional buffer test for a shared FIFO
queue. First, this ensures a basic packet admission pattern similar
to FIFO. Second, it limits the startup delay for a service class that
has been dormant and begins receiving new packets, similar to the
comparable FIFO queue. For each packet that passes the admis-
sion test, a virtual slot is stored in a per-class queue g, and a corre-
sponding class entry is stored in the main slot queue gg (Lines 4.,5).
The virtual slots are labelled with a timestamp that represents the
service time in the corresponding FIFO system. This timestamp
is based on the existing length of the virtual queue, regardless of
whether all virtual slots are eventually used for actual packets. Fi-
nally, the virtual backlog and per-class transmit credit are increased
to reflect the arrival in the virtual queue (Lines 6,7).

Delay Test

The conceptual version performs the delay test in the service rou-
tine, immediately before a packet is being sent out. While this is the
optimal place for the delay test in terms of accuracy, it also leads to
an unlimited runtime for the service routine, which is a problem for
high-performance execution, as discussed in Section 2.1. To elim-
inate this performance bottleneck, VIFQ performs the delay test
during the arrival routine. The queue of virtual slots is conservative
in that it holds virtual slots for all packets that would be accepted
into the corresponding FIFO queue. Therefore, the timestamp as-
signed to a virtual slot in Lines 4 and 5 is an upper bound for the
time when the class has the right to send a packet. The delay test
is based on this conservative timestamp and the decision about a
packet’s acceptance is made by considering the oldest unused vir-
tual slot that is available in the per-class queue. If that slot allows
to send the currently arriving packet within the target delay bound
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Figure 4: Main and Class Slot Queues

and the overall class transmit credit is large enough (Line 17), the
packet is accepted for service (Line 18) at the given time. The
code in Lines 19-28 reconciles varying packet sizes by borrowing
transmit credit from later slots, if necessary. While this can slightly
distort the delay bound, the error is clearly limited. For each class,
less than one MTU worth of data can be sent ahead of time through
this mechanism. Therefore, the overall error is limited to N - MTU
where N is the number of classes - which is expected to be rather
small, as explained in Section 2.2.

Cleanup

One caveat of keeping virtual slots in the system is that “old” vir-
tual slots might never be used, but still occupy virtual queue space.
To avoid virtual buffer hogging by unused slots, VIFQ is designed
to store only slots that cover a service time span equivalent to the
overall buffer limit B, but this parameter might be subject to fu-
ture investigation. For example, the choice of B here determines
the highest arrival rate at which traffic might be starved (cf. Sec-
tion 2.1). In this case, if the packet inter-arrival time of a class is
larger than the maximum system queueing delay of ﬁ, then
that class might not receive any service and corresponding traf-
fic should be placed in the default class. Unused virtual slots are
purged from the system (Lines 9-16) to approximate the removal
of unused slots in the service routine of the conceptual version (cf.
Algorithm 2). In particular, the test in Line 9 checks whether the
current service time of the system (¢ + b) exceeds the service time
of the oldest virtual slot (¢5) by the buffer size B. If that slot is
unused (Line 10), it is deleted. In fact, cleaning up unused virtual
slots is the only reason for the main slot queue’s existence in VIFQ,
because it facilitates access to slots in their global arrival order. The
relationship between per-class queues and main slot queue is illus-
trated in Figure 4. The main slot queue is entirely managed by the
cleanup procedure and consistency between both types of queues is
maintained through timestamps (cf. Line 10).

4.2 Service Characteristics

VIFQ does not require any control or accounting and is thus best
characterized by its game-theoretic properties. The following anal-
ysis is adapted from earlier work [27] and applies to open-loop traf-
fic under overload conditions. Each traffic source is considered as
one of m players. Each player j is defined by its maximum de-
lay target d; € D = {dj, ..., dy,} where D is the set of delay targets
provided by n service classes of the VIFQ mechanism. The delay
target d;f is called the rype of player j and assumed to be private
information (i.e., the mechanism and the other players do not know
d;).

A strategy for player j, s;, is a mapping s; : D — D, where, given
its true delay target dj, the player announces some delay target
5j(d}) = d; by means of choosing the corresponding VIFQ service
class. A strategy profile, s = (s,...,5p), is a vector specifying
that each player j is playing strategy s;. A strategy profile is also
written as s = (sj,5_ ;) where s_j = (S1,...,8j_1,5j41,---,5m)-

The outcome of the game depends on the strategies chosen by the
players. In particular, given a strategy profile s, the outcome is
described by o(s) = (d(s),y(s)) where d(s) = (di(s),...,dn(s))
specifies the delay d;(s) that the traffic of player j experiences, and
¥(s) = (71 (s),...,%m(s)) where ¥;(s) is the drop rate experienced
by player ;.

The players have preferences over different possible outcomes, given
their type d]*», which is captured using utility functions u;. It is as-
sumed that all the players are self-interested so that their utility
depends only on the delay and drop rate of their own traffic. That
is

uj(o(s),dj) = u;j((d(s),v(s)),d}) = uj(d;(s), vj(s),dj).

Each player tries to choose a strategy that maximizes its utility,
given that all other players are doing the same.

A strategy is said to be dominant, if it is a player’s best strategy
against any set of strategies that other players may choose. For-
mally, a strategy s} is a dominant strategy if u;(o(s},s—;),d}) >
uj(o(sj,s—j),d;) holds for all 5; # s7 and arbitrary s_;. A domi-
nant strategy equilibrium is a strategy profile s* where every player
is using a dominant strategy. While many games do not have dom-
inant strategy equilibria, VIFQ has one. In fact, the players’ dom-
inant strategies are to reveal their true target delay to the mecha-
nism. Based on the following assumptions about the system and
the players’ utility functions, VIFQ is strategy-proof, which is an
even stronger notion than incentive-compatible.

1. If d; > dy then ¥%(d},5_) < %ldy5_7).

2. It dj(s) > dj then uj(o(s),d}) = 0.

3. For two strategy profiles s and s', if d;(s),d;(s") < d} and
¥i(s) = ¥;(s") thenu;(o(s),d}) = uj(o(s'),d;).

4. For two strategy profiles s and s', if d;(s),d;(s") < dj and
Yi(s) < ¥;(s") thenuj(o(s),d}) > uj(o(s'),d;).

Assumption 1 states that a lower delay target, enforced by a smaller
virtual buffer, results in a higher drop rate. Assumption 2 states that
if the queueing delay is greater than the maximum target delay then
the player’s utility is 0. Assumption 3 states that for a fixed drop-
rate, then as long as the delay is less than the maximum target delay,
the player is ambivalent between the two outcomes. Assumption 4
states that as long as the delay is less than the target delay, a player
prefers to have a lower drop rate.

THEOREM 1. VIFQ is a strategy-proof mechanism.

PROOF. (Sketch) If a player declares its true target value, that
is follows a strategy s;f (dj) = d; when all others play s_;, then its

utility will be uj(o(d7,s—j),d}) = 0. If, instead, the player had fol-

lowed strategy s (dj) > d;f then its traffic would be in a class with
delay greater than its true target, resulting in u;(o(s;,s—;),d}) =0
(Assumption 2) and so the player is better off declaring its true tar-
get value. If the player had followed a strategy s (d}*) < d}f then
its traffic would be in a class with lower delay lower, but with a
higher drop rate (Assumption 1). From Assumptions 3 and 4 fol-
lows that the player would be better off by declaring its true target
value. Since j and s_ ; were arbitrarily chosen, any player is always
best off revealing its true target delay. [
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4.3 Execution Overhead

The VIFQ algorithm does not fundamentally deviate from the com-
plexity of a regular FIFO scheduler, except for two non-trivial as-
pects that are discussed below. The limited execution overhead of
VIFQ is evident from the pseudo-code, which essentially maintains
a few counters and linked lists. The key aspect is to perform all
non-trivial operations in the arrival routine to better control the ex-
ecution overhead.

A router or switch is usually designed to handle a worst-case traffic
load of only minimum-sized packets. The two loops in the arrival
routine (Lines 9-16 and 20-28) of VIFQ execute in proportion to the
size of the currently arriving packet. Consequently, the execution
overhead of the arrival routine is directly proportional to the size of
the arriving packet. If an underlying hardware platform is capable
of handling minimum-sized packets at arrival speed using FIFO
scheduling, it will also be able to perform the VIFQ arrival routine
on arbitrarily sized packets at arrival speed. This principle is termed
packet-amortized constant complexity [26].

The only other potentially costly operation is maintenance of the
packet queue gp, which is sorted by the estimated service time of
virtual slots and requires random-access insertion. It cannot be ef-
ficiently implemented as a linked list, but there are at least two
feasible alternatives.

The first option is using a timer wheel [42], augmented by a hi-
erarchical bitmask and using a find-first-set (ffs) operation to find
the next element. The ffs operation finds the position of the least
significant bit in a word. It can be implemented in software at loga-
rithmic cost in the word length [1] or as a hardware priority encoder
operating at low cycle cost. For example, Intel processors execute
this operation in 1-3 clock cycles, depending on the architecture
[23, 24]. As an example, a two-level hierarchy of 32-bit words can
cover 1024 time slots. Assuming a total buffer space equivalent to
250 milliseconds, each slot covers roughly 250 microseconds. This
accuracy is sufficient for packet deadlines.

On the other hand, as explained in Section 2.2, only a moderate
number of delay classes are needed for deploying VIFQ. There-
fore, a more traditional implementation of a class-based priority
queue might also suffice, which would typically result in logarith-
mic overhead in the number of classes.
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S. EVALUATION

The VIFQ algorithm emulates shared FIFO queueing as closely as
possible, but with strict delay control and differentiation. The basic
algorithm and its service characteristics are fairly straightforward.
VIFQ has been implemented in the ns-2 simulation environment
[2], following the pseudo-code given in Section 4.1. The main
goal of the simulation experiments presented here is to confirm that
VIFQ differentiates delay properly and to assess the throughput de-
viation between FIFO and VIFQ service in a controlled setting.

Experiments are carried out in a simulated dumbbell topology with
a dedicated pair of sender and receiver nodes for each traffic flow.
Except where noted, the following default configuration is used:
The bottleneck link is configured with 50 Mbit/s. All access links
are configured with twice the bottleneck speed. All link propa-
gation delays are set to 10 milliseconds, i.e., the round-trip prop-
agation delay is 60 milliseconds. All packet sizes are set to 500
bytes. Each experiment runs for 60 seconds of simulated time and
is repeated 50 times with different seeds. The average results are
reported here and unless the standard deviation is larger than 5% of
the average, it is omitted in the figures.

5.1 CBR vs. Pareto Sources

In the first simple experiment, a constant bit rate (CBR) source
transmits concurrently with a set of 32 Pareto sources with a shape
parameter of 1.4, which produce self-similar background traffic.
The offered load from the CBR source varies between 20% and
90% of the bottleneck capacity. The aggregated offered background
load conversely varies from 90% to 20% for a combined expected
average load of 110% of the bottleneck link. The experiment com-
pares a FIFO queue with a buffer size of 60 milliseconds (msec)
with a two-class VIFQ configuration where the CBR traffic uses
the 10 msec class and the background traffic uses the 60 msec class.
As a first illustration, Figures 5—-8 show an example experiment run
for 30% CBR traffic. Judging from a visual inspection of the re-
sults, VIFQ delivers the service that is intended. Figures 5 and 6
show that the rate allocation under VIFQ tracks FIFO service very
closely. On the other hand, Figures 7 and 8 show that the max-
imum queueing delays are nicely differentiated, with the 60 msec
class tracking the maximum delay under FIFO, while the 10 msec
delay target for CBR traffic is also met when using VIFQ.
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Figure 9 shows the average CBR throughput, depending on the of-
fered load, with FIFO at 60 msec and VIFQ when using the 10 msec
class. The results show the expected behaviour. There is a small
penalty for choosing a lower-delay class, but throughput is close to
the FIFO throughput.

Figure 10 shows the total throughput of CBR and Pareto traffic,
depending on the fraction of CBR traffic in 3 scenarios: FIFO with
a 10 msec and FIFO with a 60 msec buffer, compared to VIFQ
with a 10- and a 60 msec class. Note that the y-axis begins at
44 Mbit/sec. It shows how the increased dropping of CBR traffic
in the 10 msec class of VIFQ results in reduced link utilization
compared to FIFO queueing. However, the results also show how a
two-class 10/60 msec VIFQ system provides better link utilization
than a single shared FIFO queue with a 10 msec buffer. Of course,
less CBR and more Pareto traffic causes an overall higher impact
of reduced buffer sizes. Overall, the utilization penalty of delay
differentiation using VIFQ is rather small.

5.2 TCP vs. Pareto Sources

In another experiment, 5 service classes are configured with delay
targets of 20, 40, 60, 80, and 100 msec. For each class, background
traffic comprised of 32 Pareto sources with a total average offered
load of 10% of the bottleneck capacity is created. The experiment
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studies the behaviour of TCP traffic comprised of 1, 10, 50, and 100
flows. Figure 11 shows the TCP throughput depending on the ser-
vice class chosen for TCP. The results confirm the assumption that
it is beneficial to pick a higher delay class, since TCP throughput
generally benefits from more buffers, but the effect is diminished
with an increasing number of flows.

A second similar experiment with a set of short TCP flows studies
the effect of VIFQ on the completion times of short flows. The
system is configured with the same 5 service classes and the same
set of 32 Pareto background flows for each class, as before. A set
of short flows is configured to start 20 flows/sec with each flow
transmitting a 100KB file. The results are shown in Figure 12.
As expected, flow completion times are reduced when choosing
a higher delay class, since TCP throughput generally benefits from
more buffers. In addition, the standard deviation (shown as error
bars) does not change fundamentally between service classes. The
average completion time for FIFO queueing is approximately 0.72
seconds and also shown in the figure as a benchmark. The standard
deviation for FIFO queueing is not shown in the figure for clarity
reasons, but it is about 0.61 seconds and thus fairly similar to the
respective standard deviation for each VIFQ service class. This is
evidence that using VIFQ, as well as the choice of service class,
does not affect fairness more than FIFO queueing.
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5.3 TCP/TFRC with Different Delay Targets

The previous experiments demonstrate that VIFQ provides the ex-
pected incentives for feedback-controlled TCP traffic to pick the
traffic class with more buffer space, if it competes with open-loop
traffic. However, it is also interesting to study the impact that com-
peting long-term TCP and TFRC flows have on each other to verify
the basic assumptions about VIFQ. This is done by a series of ex-
periments with two sets of TCP or TFRC flows in different service
classes between 10 and 100 msec. Due to space restrictions, only
the results for two sets of 50 TCP and TFRC flows each are shown
in Figure 13 as an illustration. The results show that the TCP and
TFRC rate control algorithms have a preference for low round-trip
times over more buffer space, even with only 100 competing flows
overall. This is not entirely surprising and confirms the observa-
tions that are reported in the small router buffer work described in
Section 2.2.1.

5.4 Integrated Scenario

This experiment investigates a scenario with more traffic classes
and a more comprehensive traffic mix. The scenario is comprised
of 4 service classes with delay targets of 10, 20, 60, and 100 msec.
6 sets of flows use the available classes as shown in Table 2. It is
assumed that a “rogue” set of Pareto sources chooses the 10 msec
class (last row in Table 2). Figure 14 shows the resulting average

50 flows —+—

Figure 13: Competing TCP and TFRC Flow Sets

Table 2: Traffic Mix for Integrated Scenario
Traffic Service Class
50 long-term TCP flows 60 msec
Web TCP flows 10/sec, 100KB | 60 msec

CBR 20% load 20 msec
CBR 20% load 10 msec
Pareto, 32 sources, 20% load 100 msec
Pareto, 32 sources, 20% load 10 msec

throughput for each traffic set for FIFO (with 60 msec buffering)
and VIFQ. The standard deviations are shown as error bars. The
results illustrate that VIFQ provides the proper incentive to pick
a service class. The “rogue” Pareto traffic in the 10 msec class
suffers a penalty with VIFQ, while the long-term TCP flows are
able to pick up the corresponding service allocation.

The delay plot for one run of these experiments is shown in Fig-
ure 15 to illustrate the delay differentiation capabilities of VIFQ.
Note that the plot for CBR 10 traffic completely overlaps with the
plot for the “rogue” Pareto traffic that transmits in the same service
class. Also, the plots for both types of TCP flows in the 60 msec
class overlap.

6. CONCLUSION

The goal of VIFQ is to manage queueing delays without any side
effects on the “natural” (FIFO) throughput of traffic classes. VIFQ
is a versatile building block for service differentiation, because it
can provide multi-class delay differentiation without direct admis-
sion control or traffic management requirements. VIFQ can be im-
plemented with low execution complexity and deployed with very
low operational overhead. Further, VIFQ in isolation can provide
some form of useful service differentiation without violating net
neutrality principles. Although there is no comprehensive ana-
lytical model for VIFQ yet, the paper presents evidence for these
claims in the form of simulation experiments. More analytical and
experimental work is needed to fully investigate VIFQ. Another
interesting area for future work is the combination of VIFQ with
active queue management schemes.

While the presented VIFQ scheduling algorithm is fundamentally
not more complex than FIFO queueing, more prototyping and ex-
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perimental work is needed to fully assess the execution overhead of
VIFQ, especially on practical hardware platforms. IL.e., VIFQ re-
quires managing more counters and slightly more involved queue-
ing mechanisms than FIFO, so future work needs to establish that
the actual execution overhead is comparable to FIFO and manage-
able at very high line rates with contemporary hardware.

Ultimately, more research is needed to fully explore the design
space of rate-transparent scheduling and potential traffic mixes, es-
pecially when it comes to closed-loop traffic. If it is deemed impor-
tant to maintain the status-quo of current TCP fairness, then TCP
implementations will need to adhere to certain standard rules for
choosing the service class. This is not an unusual requirement. For
example, the notion of TCP fairness is also based on the implicit
assumption that all end systems use a similar configuration of pa-
rameters, such as the initial window size or the slope of the window
increase during congestion avoidance.
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