CS 755 — System and Network Architectures
and Implementation

Module 4 — Remote Services

Martin Karsten

mkarsten@uwaterloo.ca

CS 755 - Fall 2014 4-1

Notice

Some figures are taken from third-party slide
sets. In this module, parts are taken from the
Kurose/Ross and the Tanenbaum/van Steen
slide set. See details on next slides...

CS 755 - Fall 2014

4-2

A note on the use of these ppt slides:

We’'re making these slides freely available to all (faculty, students, readers). They're
in PowerPoint form so you can add, modify, and delete slides (including this one)
and slide content to suit your needs. They obviously represent a /ot of work on our
part. In return for use, we only ask the following:

U If you use these slides (e.g., in a class) in substantially unaltered form, that you
mention their source (after all, we’'d like people to use our book!)

O If you post any slides in substantially unaltered form on a www site, that you note
that they are adapted from (or perhaps identical to) our slides, and note our
copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

CS 755 - Fall 2014

COMPUTER s omen
NETWORKING

A Top-Down Approach

KUROSE - ROSS

Computer Networking: A
Top Down Approach

5th edition.

Jim Kurose, Keith Ross
Addison-Wesley, April
20009.

4-3

DISTRIBUTED SYSTEMS

Principles and Paradigms
Second Edition
ANDREW S. TANENBAUM
MAARTEN VAN STEEN

Chapter 4
Communication

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e,
(c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

CS 755 - Fall 2014 4-4

Overview

* messaging / message gueueing
* remote procedure call
* Security

CS 755 - Fall 2014

4-5

Transport - Review

 multiplexing, virtual channel
* process-to-process communication
 reliability
» flow and congestion control
e connection management

 participants: online and available!

CS 755 - Fall 2014

4-6

Communication - Synchronization

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server
Client I/ I/
Request \ /

Transmission
interrupt

Storage
facility

CS 755 - Fall 2014

Messaging

e persistent communication

e sender can terminate after sending message
e recelver does not need to be online
e VS. transient communication

e asynchronous communication

* sender can continue other work after sending
- VvS. sender waits for acknowledgement

* receiver iIs notified when message Is available
- VS. receiver blocks waiting for message

CS 755 - Fall 2014

4-8

Persistency and Synchronization

Sender
running

|l <

Receiver
running

(@)

Sender Sender
running passive

Receiver Receiver
passive running
(b) (c)

CS 755 - Fall 2014

Sender
passive

Receiver
passive

(d)

4-9

Messaging Middleware

* persistence — reliability
 management, tracing, availability

* flexible integration with heterogeneous systems
 OS, network, programming language, etc.

e group communication: publish / subscribe
 underlying distribution model: unicast vs. broadcast

CS 755 - Fall 2014 4-10

Messaging Queueing Primitives

Put — append message to queue (send)

Get — retrieve message from queue (receive)

Poll — check queue(s) for message availability
Notify — install asynchronous retrieve handler

need buffer decoupled from sender, receiver
relay nodes for larger networks

e addressing, routing, forwarding, etc., as usual

CS 755 - Fall 2014 4-11

Architecture

Look-up
_— transport-level Receiver

/ address of queue
Queuing ‘B Queue-level =| Queuing
layer address 1 layer

Sender

Local OS ™ Address look-up Local OS X\

database o
| \. _/ ‘ Transport-level

address

CS 755 - Fall 2014 4-12

Architecture

Sender A
Application
i Application
CReoeive
queue
(17T <— R2 LU /
Message 11
K |k\\ S [T ke
Send queue \ / .
[T 11 [
. Application
|| |
| 1]
[_\. [1] a \ E []] f—j
1] . Receiver B
< » [11]
Application [
Router

CS 755 - Fall 2014

4-13

Message Broker

Repository with
conversion rules
Source client Message broker and programs Destination client
\ \ [/
\ \ [[

Broker

program <>
7T AN
THH B
LT —| [= layer

0S ; 0S E‘ 0S
)

Network

CS 755 - Fall 2014 4-14

Example: Emall

mail servers

* Incoming messages
mailbox

e outgoing message
gueue

e communication
protocol: SMTP

e reliable server-to-
server transfer

mail
server

RREinN

1

SMTP

I

mail
server

RRENN

alr ’ D
user
agent

CS 755 - Fall 2014

alr [

user
agent

SMTP

N
/

SMTP

/

alr |
user
agent

alr |
o user
agent
]
ma‘ll alr |
server user
agent
OO0

user

alr 0

agent

4-15

Email Access Protocols

SMTP SMTP access ‘-_:-;%ﬁ
éﬁ?} user -g " [protocol 1 o r“"'f_.is’
|agen E“ 8

LI 00O
sender’s mail receiver’'s mail
server server

* sender: synchronous, transient to server

* receiver. asynchronous, persistent from server

» Post Office Protocol (POP) — old & simple

* Internet Malil Access Protocol (IMAP) — better

« HTTP — POP, IMAP, etc in background

* remote file system and file-based (elm, pine, etc.)

CS 755 - Fall 2014 4-16

Advanced Message Queuing
Protocol (AMQP)

Exchanges Queues | Applications
Route and Filter Store and Forward Consume
Messages Messages I Messages
|

-©
-©
©

|

|

I .
Server(ak.a. Broker) 1 Clients

|

|

|

Applications
Produce
Messages

‘_

Clients

CS 755 - Fall 2014 4-17

Message Passing Interface (MPI)

» portable abstraction of socket interface
» weaker semantics than message queueing

Primitive Meaning
MPI1_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts
MPI_sendrecv | Send a message and wait for reply
MPI_isend Pass reference to outgoing message, and continue
MPI_issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there is none
MPI _irecv Check if there is an incoming message, but do not block

CS 755 - Fall 2014 4-18

Publish/Subscribe

» special case of messaging

e notion of “gueue” replaced by arbitrary filter

 structured / topic
e unstructured / content

CS 755 - Fall 2014 4-19

Remote Procedure Call

transparent execution of remote functionality

example: Sun RPC aka ONC RPC

classic UNIX RPC system
* developed with/for Network File System (NFS)
avallable on most UNIX systems

see: man rpc

CS 755 - Fall 2014 4-20

Conventional Procedure Call

Main program's
local variables

Stack pointer

Main program's
local variables
‘_

nbytes

buf

fd

return address

read's local
variables

Int len = read(fd, buf, nbytes);

CS 755 - Fall 2014

4-21

RPC - Challenges

 machine architecture
e address space

e parameter passing

* independent failures

e goal: transparency

CS 755 - Fall 2014 4-22

Remote Invocation

Walit for result

ClieNt e————————
/ N
Call remote Return
procedure from call
Request Reply
Server -------—------— e—m e

Call local procedure Time —»
and return results

CS 755 - Fall 2014 4-23

RPC Detalls

1.Client procedure calls client stub locally.
2.Client stub builds message and calls local OS.

* marshalling. parameters -> message
3.Client OS sends message to server OS.

4.Server OS gives message to server stub.

5.Server stub unpacks parameters and calls
server routine.

* de/unmarshalling. message -> parameters

CS 755 - Fall 2014 4-24

RPC Detalls

6.Server routine executes and returns to stub.
7/.Server stub builds message and calls local OS.
8.Server OS sends message to client OS.
9.Client OS gives message to client stub.

10.Client stub unpacks result and returns to
client.

CS 755 - Fall 2014 4-25

Client machine

RPC Detalls

Client process

L "K=add(i,) —

proc: "add"

int: val(i)

int: val(j)

Client OS

1. Client call to

Server machine

Server process

Implementation
rocedure
P - of add
Server stub —
. Client stub ~ L k=add(ij) |
proc: "add"
2. Stub builds !n:: va:gg
message int: va
> A
proc: "add"
int: val(i) Server OS
int: val()) g,

6. Stub makes
local call to "add"

5. Stub unpacks
message

4. Server OS
hands message
to server stub

3. Message is sent

across the network

CS 755 - Fall 2014

4-26

Data Representation

transparency across platforms
 Sun RPC: eXtensible Data Representation (XDR)

hardware architecture
operating system
programming language
runtime environment

CS 755 - Fall 2014 4-27

Data Represenation

common example: integer representation
e little endian vs. big endian

others: float, string, structures...
dynamic data structures: list, tree, etc.

objects?

CS 755 - Fall 2014 4-28

Synchronous RPC

Client Wait for result

y

Call remote
procedure

Request

Server Call local procedure ~ 1'me —»
and return results

(@)

CS 755 - Fall 2014

4-29

Asynchronous RPC

Client Wait for acceptance

s\ 4 %

Call remote Return
procedure from call

Request Accept request

Server Call local procedure Time —»

()

CS 755 - Fall 2014

4-30

Two-Way Asynchronous RPC

Wait for Interrupt client
acceptance
Client ___Fi___ \
/ \
Call remote]fieturn ” o
rom ca eturn
EECLIE results Acknowledge
Accept
Request request
Server -—--——-=-——m——= s T
Call local procedure \ Time —»
Call client with
one-way RPC

CS 755 - Fall 2014 4-31

Development

Client code

[Uuidgen]

v

Interface
definition file

[IDL compiler]

l

C compiler
[)

v

Client
object file

Y

(Linker

Client
binary

CS 755 - Fall 2014

Server code

i

C compiler]

!

Server
object file

Client stub Header Server stub
#include #include
[C compiler] [C compiler]
Client stub Server stub
object file object file
Runtime Runtime
library library

A 4

Linker |

Server
binary

4-32

3. Lo

Client machine

Runtime

Directory machine

Client

/

Directory
server
A
5. Do RPC

Server machine

@ter service

™~

—

4. Ask for end point

Server

—

o &1
daemon

1. Register end point

D

™\ End point

CS 755 - Fall 2014

table

4-33

Client

Client machine

Distributed Objects

invokes
a method

Server machine

| Object
Client Server //
State
Same
interface Method
_ as object
e Soeon L 4 | Interface
Proxy SEtHE EiGE Skeleton
at object A
Client OS Server OS
\ i J
Network \

Marshalled invocation
is passed across network

CS 755 - Fall 2014

4-34

Object References

Machine A

Local
reference L1]

Local object

|

O1

Client code with ~

RMI to server at C
(proxy)

Remote
invocation with
L1 and R1 as
parameters

Remote

reference R1

Machine B

-’

|

02

LRemote object

New local
reference\

CS 755 - Fall

Machine C

2014

Copy of R1 to O2

B
Server code
(method implementation)

4-35

Other RPC-Type Systems

DCE -> DCOM/ODBC
CORBA

Java RMI

SOAP

Data Representation: XML

CS 755 - Fall 2014 4-36

What Is network security?

Authentication: sender, receiver want to confirm identity of
each other

Confidentiality: only sender, intended receiver should
“understand” message contents

* sender encrypts message
* receiver decrypts message

Message integrity: sender, receiver want to ensure message
not altered (in transit, or afterwards) without detection

Access and availablility: services must be accessible and
available to users

CS 755 - Fall 2014

4-37

Friends and enemies: Alice, Bob, Trudy

* well-known in network security world
* Bob, Alice (lovers!) want to communicate “securely”
* Trudy (intruder) may intercept, delete, add messages

Alice Bob
‘.".'_1'I'_
: channel data, control I::_ L{._ﬁ‘ﬁ
messages - s i
\ i)

secure secure data

data :
sender receiver

CS 755 - Fall 2014 4-38

Who might Bob, Alice be?

e ... well, real-life Bobs and Alices!

Web browser/server for electronic
transactions (e.g., on-line purchases)

on-line banking client/server

DNS servers

routers exchanging routing table updates

etc...

CS 755 - Fall 2014

4-39

There are bad guys (and girls) out there!

Q: What can a “bad guy” do?
A: a lot!

eavesdrop. intercept messages
actively insert messages into connection

Impersonation: can fake (spoof) source address
In packet (or any field in packet)

hijacking: “take over” ongoing connection by
removing sender or receiver, inserting himself in
place

denial of service: prevent service from being
used by others (e.g., by overloading resources)

CS 755 - Fall 2014 4-40

The language of cryptography

%'?Alice’st_ E=Bob's
encryption K decryption g%
A key I B key L:.:'-:f' :.E'f?
r'p:!'ﬂ-l

decryptlon plaintext
g algorithm |

plaintext (U7l ciphertext
—

algorithm

symmetric key crypto: sender, receiver keys identical

public-key crypto: encryption key public, decryption key secret
(private) — or vice versa

CS 755 - Fall 2014

4-41

Symmetric key cryptography

substitution cipher: substituting one thing for another
* monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqgrstuvwxyz
ciphertext: mnbvcxzasdfghjklpoiuytrewq

E.g.: Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgshc

Q: How hard to break this simple cipher?:
d brute force (how hard?)

d ciphertext-only vs known-plaintext vs chosen-plaintext

CS 755 - Fall 2014 4-42

Symmetric key cryptography

« &
(i
1A'B - 'Ef
-5:'!'5-.'
plaintext BEWERTUEClN ciphertext N[l plaintext
message, m. [Reieilgily algorithm |
K (m) m=K K (m))
A-B A-B A-B

symmetric key crypto: Bob and Alice share know same
(symmetric) key: Kap

* e.g., key is knowing substitution pattern in mono alphabetic
substitution cipher

* Q: how do Bob and Alice agree on key value?

CS 755 - Fall 2014 4-43

Symmetric key crypto: DES

DES: Data Encryption Standard

* US encryption standard [NIST 1993]
* 56-bit symmetric key, 64-bit plaintext input
* How secure is DES?

* DES Challenge: 56-bit-key-encrypted phrase
(“Strong cryptography makes the world a safer
place”) decrypted (brute force) in 4 months

* no known “backdoor” decryption approach
* making DES more secure:

* use three keys sequentially (3-DES) on each datum
* use cipher-block chaining

CS 755 - Fall 2014 4-44

AES: Advanced Encryption Standard

* new (Nov. 2001) symmetric-key NIST
standard, replacing DES

* processes data in 128 bit blocks
* 128, 192, or 256 bit keys

* brute force decryption (try each key) taking
1 sec on DES, takes 149 trillion years for
AES

CS 755 - Fall 2014 4-45

Public key cryptography

!

symmetric key crypto public key cryptography ¢
* requires sender, receiver 7 radically different

know shared secret key approach [Diffie-
* Q: how to agree on key in Hellman76, RSA78]

first place (particularly if 7 sender, receiver do

never “met”)? not share secret key

O public encryption key
known to all

O private decryption key
known only to receiver

CS 755 - Fall 2014 4-46

Public key cryptography

G= K Bob’s public

B key
@? K" Bob’s private
: B key
|
: ~ ;._-;-h
! E,__.:‘:r:f*‘:.s,
v oo

plaintext JCUER%EEIN ciphertext ofdaailel) plaintext
message, m [ele[elgidlsy <) algorithm BERBRIELE

B m = K (K™ (m))
B B

CS 755 - Fall 2014 4-47

Public key encryption algorithms

Requirements:

(1) need K, (-) and K, (9 such that
KK (m)) = m

B
@ given K;, cannot easily compute

Kg

RSA: Rivest, Shamir, Adleman algorithm

CS 755 - Fall 2014 4-48

RSA: another important property

The following property will be very useful later:

KK (m)) = m = K_(K_(m))
use public key use private key
first, followed by first, followed by

private key public key

Result is the same!

CS 755 - Fall 2014 4-49

Message Integrity

Bob receives msg from Alice, wants to ensure:
* message originally came from Alice
* message not changed since sent by Alice

Cryptographic Hash:
* takes input m, produces fixed length value, H(m)
* e.g., asin Internet checksum

* computationally infeasible to find two different messages, X,
y such that H(x) = H(y)

* equivalently: given m = H(x), (x unknown), can not determine Xx.
* note: Internet checksum fails this requirement!

CS 755 - Fall 2014 4-50

Internet checksum: poor crypto hash
function

Internet checksum has some properties of hash function:
» produces fixed length digest (16-bit sum) of message
» |S many-to-one

But given message with given hash value, it is easy to find
another message with same hash value:

message ASCII format message ASCII format
I OoOU11 49 4F 55 31 I OoOU29 49 4F 55 39
0 0 . 9 30 30 2E 39 0 0 . 1 30 30 2E 31
9 B OB 39 42 4F 42 9 B OB 39 42 4F 42

B2 C1 D2 AC —_ different messages _——B2 C1 D2 AC

but identical checksums!
CS 755 - Fall 2014 4-51

Digital Sighatures

cryptographic technigue analogous to hand-written
sighatures.

* sender (Bob) digitally signs document, establishing he is
document owner/creator.

* verifiable, nonforgeable: recipient (Alice) can prove to
someone that Bob, and no one else (including Alice), must
have signed document

CS 755 - Fall 2014 4-52

Digital Sighatures

simple digital signature for message m:
* Bob “signs” m by encrypting with his private key Kg,
creating “signed” message, Kg(m) ~

' - Bob’s private -
Bob’s message, m = K, or P K (m)

Dear Alice Bob'

. ob’s message,
Oh, how | have missed : :
you. I think of you all public key m, signed
the time! ...(blah blah —> | Sgleaailelgi— | (encrypted) with
blah) algorithm his private key
Bob

CS 755 - Fall 2014 4-53

Digital Signatures (more)

« suppose Alice receives msg m, digital signature Kg(m)

* Alice verifies m signed by Bob by applying Bob’s public key
K3 to Kg(m) then checks K#(Kg(m)) = m.

e if K§(Kg(m)) = m, whoever signed m must have used Bob’s
private key.

Alice thus verifies that:

» Bob signed m.

» No one else signed m.

» Bob signed m and not m'.
non-repudiation:

v Alice can take m, and signature Kgz(m) to court and prove
that Bob signed m.

CS 755 - Fall 2014 4-54

Digital signature

Alice verifies signature and integrity

Bob sends digitally signed of digitally signed message:
message:

large

message — » encrypted
m H(m) msg digest
et Ko(H(m))
glez large
signature mesgage ’ l
(encrypt) m Bob’s digital

public 5 &
key K+ signature
B

encrypted
v msg digest l
? Ka(H(m))
H(m) H(m)
@ ___________________________ \equal /
= ?

CS 755 - Fall 2014 4-55

Symmetric vs. Public Key

 symmetric (shared) key

* |less computational overhead
e public/private key

e easier to set up
 typical compromise

* both: key “wear-and-tear”, information leakage
e use private key during session setup
* negotiate shared key for session duration

CS 755 - Fall 2014 4-56

Authentication

Goal: Bob wants Alice to “prove” her identity to
him

Protocol apl.0: Alice says “l am Alice”

Failure scenario??

CS 755 - Fall 2014 4-57

Authentication

Goal: Bob wants Alice to “prove” her identity to
him

Protocol apl.0: Alice says “l am Alice”

i in a network, -
”u-.;ﬂ_{ Bob can not “see” Alice, so
[:
L Trudy simply declares
herself to be Alice
“I am Alice”

CS 755 - Fall 2014 4-58

Authentication: another try

Protocol ap2.0: Alice says “l am Alice” in an IP packet
containing her source IP address

Alice’s N . ,
IP address | | @am Alice e
[A
"'-_' . . .
£ Failure scenario??

CS 755 - Fall 2014 4-59

Authentication: another try

Protocol ap2.0: Alice says “l am Alice” in an IP packet
containing her source IP address

=
-y
”ar.:;ﬁ- Trudy can create
e a packet “spoofing”
/ Alice’s address
Alice’s . .
IP address lam Alice

CS 755 - Fall 2014 4-60

Authentication: another try

Protocol ap3.0: Alice says “l am Alice” and sends her
secret password to “prove” it.

ice’ Alice's |,,,, .
Alice’s I'm Alice” | ——

IP addr | password A,
(T AE
-
i ' i0?77?
Alice’s G Failure scenario?:
«— OK

IP addr

CS 755 - Fall 2014 4-61

Authentication: another try

Protocol ap3.0: Alice says “l am Alice” and sends her
secret password to “prove” it.

Alice’s Alice’s

IP addr | password I'm Alice

A
‘u-H__“‘,-Ef playback attack: Trudy
Alice’s 5 records Alice’s packet
IP addr and later
/ plays it back to Bob
Alice’s | Alice’s |.,, C
IP addr | password I'm Alice
CS 755 - Fall 2014 4-62

Authentication: yet another try

Protocol ap3.1: Alice says “l am Alice” and sends her
encrypted secret password to “prove” it.

Alice’s |encrypted|,,,, C
IP addr | password| | M AllCe”| T ia,
(S
-
i ' i0?77?
Alice’s G Failure scenario?:
— OK
IP addr

CS 755 - Fall 2014 4-63

Authentication: another try

Protocol ap3.1: Alice says “l am Alice” and sends her
encrypted secret password to “prove” it.

Alice’s |encrypted
IP addr | password

“I'm Alice” | ——

Alice’s
IP addr

s
TR
s S
A
Alice’s |encrypted|,,,, c
IP addr | password I'm Alice

CS 755 - Fall 2014

record
and
playback
still works!

4-64

Authentication: yet another try

Goal: avoid playback attack
Nonce: number (R) used only once -in-a-lifetime

ap4.0: to prove Alice “live”, Bob sends Alice nonce, R. Alice
must return R, encrypted with shared secret key

“ am Alice”

ﬁ%”_“
AR =

K (R) Alice is live, and
— 23 onlyAlice knows
key to encrypt
nonce, so it must
be Alice!

CS 755 - Fall 2014 4-65

Failures, drawbacks?

Authentication: ap5.0

ap4.0 requires shared symmetric key
* can we authenticate using public key techniques?
ap5.0: use nonce, public key cryptography

“am Alice”

— + -
% rs' T a (KR =R

— could have the privat
“send me your public key” private

< + key, that encrypted R
K such that
U* _|_ -
Ka (KA(R)) =
A'CA

CS 755 - Fall 2014 4-66

ap5.0: security hole

Man (woman) in the middle attack: Trudy poses as Alice (to
Bob) and as Bob (to Alice)

Send m I|<c_|_key T

>
v

Trudy gets « KT(
-
+ m =K (K (m))
A K (M) sends n t& Alice
o= K (K+ (m)) encrypted with

A A Alice’s public key
CS 755 - Fall 2014 4-67

ap5.0: security hole

Man (woman) in the middle attack: Trudy poses as Alice (to
Bob) and as Bob (to Alice)

Difficult to detect:
d Bob receives everything that Alice sends, and vice versa. (e.q.,

so Bob, Alice can meet one week later and recall conversation)
d problem is that Trudy receives all messages as well!

CS 755 - Fall 2014 4-68

Public Key Certification

public key problem:

* When Alice obtains Bob’s public key (from web site, e-maill,
diskette), how does she know it is Bob’s public key, not
Trudy’s?

solution:
* trusted certification authority (CA)

CS 755 - Fall 2014 4-69

Certification Authorities

* Certification Authority (CA): binds public key to particular
entity, E

* E registers its public key with CA.
* E provides “proof of identity” to CA.
* CAccreates certificate binding E to its public key.

e certificate containing E’s public key digitally signed by CA: CA says
“This is E’s public key.”

T+
K~r(K —7
Bob’'s @#> digital CA(B)
public signature K"
key K \ M (encrypt) , B
nl - = certificate for
Bob’'s private ~ -))
identifying ;- Jﬁf gf / key KCA Bob S public key,
information 2 signed by CA

CS 755 - Fall 2014 4-70

Certification Authorities

* when Alice wants Bob’s public key:
* gets Bob’s certificate (Bob or elsewhere).
* apply CA’s public key to Bob’s certificate, get Bob’s

public key
- —
K~a(K) digital Bob’s
KB CA B 2 signature »@?public
4 (decrypt) KB key
A
CA @‘f
public
KC

CS 755 - Fall 2014 4-71

A certificate contains:

—+ Serial number (unigue to issuer)

* Info aboutcertificate owner)including algorithm and key
value itself (nof shown

O info about certificate
issuer

3% Edit A Certification Authority - Netscape =T 5 valid d
This Certificate belongs to: This Certificate was issued by: hC ates
Class 1 Public Primary Certification Class 1 Public Primary Certification O d|g|ta| Signatu re by
Authority Authority .
VeriSign, Inc. VeriSign, Inc. Issuer
us us

||| Serial Number: 00:CD:BA: 7F:56:F0:DF:E4:BC:54:FE:22: AC:B3: 72:AA:55 —

This Certificate is valid from Sun Jan 28, 1996 to Tue Aug 01, 2028 ™

Certificate Fingerprint: <—
Q7:60:E8:57:5F:D3:50:47:E5:43:0C:94:36:8A:B0:62

This Certificate belongs to a Certifying Authority
[Accept this Certificate Authority for Certifying network sites

v Accept this Certificate Authority for Certifying e-mail users
[Accept this Certificate Authority for Certifying software developers

[Warn before sending data to sites certified by this authority

QK Cancel

4-72

	Slide 1
	Slide 2
	Slide 3
	DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 4 Communication
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	What is network security?
	Friends and enemies: Alice, Bob, Trudy
	Who might Bob, Alice be?
	There are bad guys (and girls) out there!
	The language of cryptography
	Symmetric key cryptography
	Slide 43
	Symmetric key crypto: DES
	AES: Advanced Encryption Standard
	Public key cryptography
	Slide 47
	Public key encryption algorithms
	RSA: another important property
	Message Integrity
	Internet checksum: poor crypto hash function
	Digital Signatures
	Slide 53
	Digital Signatures (more)
	Slide 55
	Slide 56
	Authentication
	Slide 58
	Authentication: another try
	Slide 60
	Slide 61
	Slide 62
	Authentication: yet another try
	Slide 64
	Slide 65
	Authentication: ap5.0
	ap5.0: security hole
	Slide 68
	Public Key Certification
	Certification Authorities
	Slide 71
	A certificate contains:

