Model of a Computer

- von Neumann model
- CPU
- control \& data path
- I/O
- user, storage, network
- memory
program \& data stored in memory

Trends and Challenges

Technology Trends

- electronics technology continues to evolve
- increased capacity and performance
- reduced cost


```
DRAM capacity
```

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated Circuit	900
1995	Very large scale IC (VLSI)	$2,400,000$
2005	Ultra large scale IC	$6,200,000,000$

Performance: Latency vs. Throughput

- Tim Horton's
- time to coffee vs. customers/hour
- low latency => high throughput
- but not vice versa
- faster coffee makers vs. more (and more space)
- latency (response time)
- completion time of specific task
- throughput
- total work done over time period

Performance

- reduce latency?
- faster processor
- better algorithm (software)
- more processors (needs parallelization)
- generally increases throughput
- increase throughput?
- more processors
- rearrange system components (scheduling): often increases latency

Efficiency Matters

- network-centric computing, Internet
-> large data centers
- hardware cheap, but
- power consumption -> heat
- heat -> cooling -> more power consumption
- money and environment costs
- often:
software performance (throughput) ~ efficiency

Moore's Law

- transistor density doubles every two years
- every year 1959-1975
- in the past
- transistor density translated into processing power
- almost double speed every 2 years...
- reduce latency, increase throughput
- recently: memory wall
- more recently: power wall

Memory Wall

CPU/Memory performance

Power Wall

- power $=$ capacitive load \times voltage $^{2} \times$ frequency
- cannot reduce voltage further (path length)
- cannot remove more heat

Uniprocessor Performance

Multiprocessors

- multicore microprocessors
- more than one processor per chip
- requires explicitly parallel programming
- compare with instruction level parallelism (hidden)
- hard to do
- programming for performance
- load balancing
- optimizing communication and synchronization

Amdahl's Law

- improve some part of a computer program
- or it's execution speed (e.g., through parallelization)

$$
T_{\text {improved }}=\frac{T_{\text {affected }}}{\text { improvement factor }}+T_{\text {unaffected }}
$$

- limits overall performance improvement

Amdahl's Law

Source: Wikimedia Commons

Trade-Offs

- almost everything in CS is a trade-off
- very few absolute truths
- "fast, good, or cheap - pick two"

