Model of a Computer

Evaluating performance

- von Neumann model
- CPU
 - control & data path
- I/O
 - user, storage, network
- memory

program & data stored in memory

Trends and Challenges

Technology Trends

- electronics technology continues to evolve
 - increased capacity and performance
 - reduced cost

DRAM capacity

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated Circuit	900
1995	Very large scale IC (VLSI)	2,400,000
2005	Ultra large scale IC	6,200,000,000

Performance: Latency vs. Throughput

- Tim Horton's
 - time to coffee vs. customers/hour
 - low latency => high throughput
 - but not vice versa
 - faster coffee makers vs. more (and more space)
- latency (response time)
 - completion time of specific task
- throughput
 - total work done over time period

Performance

- reduce latency?
 - faster processor
 - better algorithm (software)
 - more processors (needs parallelization)
 - generally increases throughput
- increase throughput?
 - more processors
 - rearrange system components (scheduling): often increases latency

Efficiency Matters

- network-centric computing, Internet
 - -> large data centers
- hardware cheap, but
 - power consumption -> heat
 - heat -> cooling -> more power consumption
 - money and environment costs
- often:

software performance (throughput) ~ efficiency

Moore's Law

- transistor density doubles every two years
 - every year 1959-1975
- in the past
 - transistor density translated into processing power
 - almost double speed every 2 years...
 - reduce latency, increase throughput
- recently: memory wall
- more recently: power wall

Memory Wall

CPU/Memory performance

Developm

- power = capacitive load x voltage² x frequency
 - cannot reduce voltage further (path length)
 - cannot remove more heat

Uniprocessor Performance

Multiprocessors

- multicore microprocessors
 - more than one processor per chip
- requires explicitly parallel programming
 - compare with instruction level parallelism (hidden)
- hard to do
 - programming for performance
 - load balancing
 - optimizing communication and synchronization

Amdahl's Law

- improve some part of a computer program
 - or it's execution speed (e.g., through parallelization)

• limits overall performance improvement

Amdahl's Law

Source: Wikimedia Commons

Trade-Offs

- almost everything in CS is a trade-off
 - very few absolute truths
- "fast, good, or cheap pick two"