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1 INTRODUCTION

Network design problems are generally about finding a minimum cost subgraph that satisfies cer-
tain “connectivity” requirements. One of the most well studied problems is the survivable network
design problem [1, 22, 25, 26, 29], where the requirement is to have a specified number ru,v of edge-
disjoint paths between every pair of vertices u,v . Other combinatorial requirements are also well
studied in the literature, including vertex connectivity [7, 9, 13, 18, 33, 34] and shortest path dis-
tances [14, 15].

Some spectral requirements are also studied, including spectral expansion [2, 32], total effective
resistances [24, 40], and mixing time [5], but in general much less is known about these problems.
See Section 1.1 for more discussions of previous work.

In this article, we study a basic problem in designing networks with a spectral requirement—the
effective resistance between two vertices.

Definition 1.1 (The s-t Effective Resistance Network Design Problem). The input is an undirected
graphG = (V ,E), two specified vertices s, t ∈ V , and a budget k . The goal is to find a subgraphH of
G with at mostk edges that minimizes ReffH (s, t ), where ReffH (s, t ) denotes the effective resistance
between s and t in the subgraph H . See Section 2.2 for the definition of effective resistance and
Section 3.1 for a mathematical formulation of the problem.

The s-t effective resistance is an interpolation between s-t shortest path distance and s-t edge
connectivity. To see this, let f ∈ R |E | be a unit s-t flow in G and define the �p -energy of f as
Ep ( f ) := (

∑
e | fe |p )1/p , and let Ep (s, t ) := minf {Ep ( f ) | f is a unit s-t flow} be the minimum �p -

energy of a unit s-t flow that the graphG can support. Thomson’s principle (see Section 2.2) states
that ReffG (s, t ) = E2

2 (s, t ), so that a graph of small s-t effective resistance can support a unit s-t
flow with small �2-energy. Note that the shortest path distance between s and t is E1 (s, t ) (as the
�1-energy of a flow is just the average path length and is minimized by a shortest s-t path), and so
a graph with small E1 (s, t ) has a short path between s and t . Note also that the edge-connectivity
between s and t is equal to the reciprocal of E∞ (s, t ) (because if there are k edge-disjoint s-t paths,
we can set the flow value on each path to be 1/k), and so a graph with small E∞ (s, t ) has many
edge-disjoint s-t paths. As �2 is between �1 and �∞, the objective function Reff (s, t ) = E2

2 (s, t ) takes
both the s-t shortest path distance and the s-t edge-connectivity into consideration.

A simple property suggests that �2-energy may be even more desirable than �1 and �∞ as a
connectivity measure. Conceptually, adding an edge e toG would make s and t more connected. For
�1 and �∞, however, adding e would not yield a better energy if e does not improve the shortest path
and the edge connectivity, respectively. In contrast, the �2-energy would typically improve after
adding an edge, and so �2-energy provides a smoother quantitative measure that better captures
our intuition how well s and t are connected in a network.

Traditionally, the effective resistance has many useful probabilistic interpretations, such as the
commute time [8], the cover time [38], and the probability of an edge in a random spanning
tree [31]. These interpretations suggest that the effective resistance is a useful distance function
and have applications in the study of social networks. Recently, effective resistance has found sur-
prising applications in solving problems about graph connectivity, including constructing spectral
sparsifiers [47] (by using the effective resistance of an edge as the sampling probability), computing
maximum flow [11], finding thin trees for ATSP [3], and generating random spanning trees [39, 45].

Thomson’s principle [30] also states that the electrical flow between s and t is the unique flow
that minimizes the �2-energy (see Section 2.2). So, designing a network with small s-t effective
resistance has natural applications in designing electrical networks [16, 24, 28]. One natural for-
mulation is to keep at most k wires in the input electrical network to minimize Reff (s, t ), so that
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the electrical flow between s and t can still be sent with small energy while we switch off many
wires in the electrical network.

Based on the above reasons, we believe that the effective resistance is a nice and natural alter-
native connectivity measure in network design. More generally, it is an interesting direction to
develop techniques to solve network design problems with spectral requirements.

1.1 Main Results

Unlike the classical problems of shortest path and min-cost flow (corresponding to the �1 and �∞
versions of the problem), the s-t effective resistance network design problem is NP-hard.

Theorem 1.2. The s-t effective resistance network design problem is NP-hard.

On the other hand, we analyze a natural convex programming relaxation for the problem
(Section 3.1), and use it to design a constant factor approximation algorithm for the problem.

Theorem 1.3. There is a convex programming-based randomized algorithm that returns an

8-approximate solution in polynomial time with high probability for the s-t effective resistance net-

work design problem.

The algorithm crucially uses a nice characterization of the optimal solutions to the convex pro-
gram (Lemma 3.2) to design a randomized path-rounding procedure (Section 3.2) for Theorem 1.3.

A simple example shows that the integrality gap of the convex program is at least two. When
the budget k is much larger than the length of a shortest s-t path, we show how to achieve an
approximation ratio close to two with a randomized “short” path rounding algorithm (Section 3.5).

Theorem 1.4. There is a (2+O (ε ))-approximation algorithm for the s-t effective resistance network

design problem, when k ≥ 2dst/ε
10 where dst is the length of a shortest s-t path.

1.2 Other Results

We consider some variants of the s-t effective resistance network design problem, including the
weighted version, the dual version, and the problem on special graphs.

There is a natural weighted generalization of the s-t effective resistance network design problem,
where we associate a cost ce and resistance re to each edge e of the input graph.

Definition 1.5 (The Weighted s-t Effective Resistance Network Design Problem). The input is an
undirected graph G = (V ,E) where each edge e has a non-negative cost ce and a non-negative
resistance re , two specified vertices s, t ∈ V , and a cost budget k . The goal is to find a subgraph H
of G that minimizes ReffH (s, t ) subject to the constraint that the total edge cost of H is at most k .
In the following, we may refer to this problem as the weighted problem for simplicity.

In the weighted problem, the integrality gap of the convex program (Section 3.1) becomes un-
bounded, even when the cost on the edges are the same (ce = 1 for all e ∈ E). This suggests that
the weighted version may be strictly harder. Indeed, we show stronger hardness result for the
weighted problem assuming the small-set expansion conjecture [43, 44].

Theorem 1.6. Assuming the small-set expansion conjecture, it is NP-hard to approximate the

weighted s-t effective resistance network design problem within a factor of 2 − ε for any ε > 0, even

when ce = 1 for every edge e .

On the other hand, when the cost on the edges are the same, the following approximation follows
from the randomized path rounding algorithm in a black box manner.

Corollary 1.7. There is a convex programming-based O (R)-approximation randomized algo-

rithm for the weighted s-t effective resistance network design problem when ce = 1 for every edge

e , where R = maxe re/mine re is the ratio between the maximum and minimum resistance.
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As our problem is related to electrical network design, it is natural to consider the special case
when the input graph is a series-parallel graph. In this setting, we can use dynamic programming to
design an exact algorithm for the original problem, and a fully polynomial time approximation

scheme (FPTAS) for the weighted problem.

Theorem 1.8. There is an exact algorithm for the s-t effective resistance network design problem

with running time O ( |E | · k2) when the input graph is a series-parallel graph.

There is a (1 + ε )-approximation algorithm for the weighted s-t effective resistance network de-

sign problem when the input graph is a series-parallel graph. The running time of the algorithm is

O ( |E |7R2/ε2) where R = maxe re/mine re is the ratio between the maximum and minimum resistance.

By a simple preprocessing scaling step, we can assume that R is bounded by a polynomial, and so the

algorithm is a FPTAS for the weighted problem.

We note that the integrality gap examples in Section 3.1 are actually series-parallel graphs, and
so the dynamic programming algorithms go beyond the limitation of the natural convex program.
We leave it as an open problem whether the weighted problem admits a constant factor approxi-
mation algorithm (possibly by combining these techniques).

We also consider the “dual” problem, where we set the effective resistance as a hard constraint,
and the objective is to minimize the number of edges in the solution subgraph. We present similar
results as the original problem in Section 3.6.

1.3 Related Work

In the survivable network design problem, we are given an undirected graph and a connectivity
requirement ru,v for every pair of vertices u,v , and the goal is to find a minimum cost subgraph
such that there are at least ru,v edge-disjoint paths for all u,v . This problem is extensively studied
and captures many interesting special cases [1, 22, 25, 26]. The best approximation algorithm for
this problem is due to Jain [29], who introduced the technique of iterative rounding to design a
2-approximation algorithm. His result has been extended in various directions, including element-
connectivity [10, 19], directed graphs [21, 22], and with degree constraints [17, 20, 35, 36].

Other combinatorial connectivity requirements were also considered. A natural variation is to
require ru,v internally vertex disjoint paths for every pair of vertices u,v . This problem is much
harder to approximate [33, 34], but there are good approximation algorithms for global connec-
tivity [9, 18] and when the maximum connectivity requirement is small [7, 13]. Another natural
problem is to require a path of length lu,v between every pair of vertices u,v . This problem is also
hard to approximate in general but there are better approximation algorithms when every edge
has the same cost and the same length [15].

Spectral connectivity requirements were also studied, including algebraic connectivity [23, 32]
(closely related to graph expansion), total effective resistances [24], and mixing time [5]. In partic-
ular, Ghosh, Boyd and Saberi [24] studied the related problem of minimizing the sum of effective
resistances over all pairs of vertices. They gave a convex programming relaxation of the problem
but did not provide any result for the discrete optimization setting. Most of the earlier works only
proposed convex programming relaxations and heuristic algorithms, and approximation guaran-
tees are only obtained recently for the more general experimental design problems. When every
edge has the same cost, there is a (1+ε )-approximation algorithm for minimizing the total effective
resistance when the budget is at least Ω( |V |/ε ) [40], and there is a (1+ε )-approximation algorithm
for both maximizing the algebraic connectivity and minimizing the total effective resistance when
the budget is at least Ω( |V |/ε2) [2]. For general edge costs, subsequent to our work, there is a
randomized (1 + ε )-approximation algorithm for both maximizing the algebraic connectivity and
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minimizing the total effective resistance when the budget is at least Ω(cmax |V |/ε2) [37], where cmax

is the maximum edge cost in the input graph.
We remark that those methods in recent papers on experimental design [2, 37, 40] are closely re-

lated to the s-t effective resistance network design problem, where they consider each edge/vector
as a unit and use convex relaxation-based rounding techniques. In Reference [40], a probability
distribution on the edges/vectors is carefully designed for an dependent randomized rounding. Al-
though this technique can be used to minimize total effective resistance and to handle some more
general settings, it is highly unlikely that it can be applied to the s-t effective resistance network
design problem as the objective functions are very different. In References [2, 37], a potential func-
tion as in spectral sparsification is used to guide a local search algorithm to swap two edges/vectors
at a time to improve the current solution. These techniques can be applied to the s-t effective re-
sistance network design problem. However, they only work in the case when the solutions form
a spanning set so that the “contribution” of each individual edge/vector is well-defined. Thus, the
techniques in References [2, 37] only apply when k ≥ Ω( |V |/ε2) for the desired precision ε < 1.
In this article, the interesting regime is when k is much smaller than |V |. We have developed a
set of new techniques for analyzing and rounding the solutions to the convex program that will
hopefully find applications for solving related problems in the regime when k is small.

1.4 Techniques

Our main technical contribution is in designing rounding techniques for a convex programming
relaxation of our problem. There is a natural convex programming relaxation, by using the con-
ductance of the edges as variables, and writing the s-t effective resistance as the objective function
and noting that it is convex with respect to the variables (Section 3.1).

We show that optimal solutions of this convex program enjoy some nice properties.1 Given an
optimal fractional solution x∗ and the unit s-t electrical flow f ∗ supported in x∗, we derive from
the KKT optimality conditions that there is a flow-conductance ratio α > 0 such that f ∗e = αx∗e for
every fractional edge e with 0 < x∗e < 1 and f ∗e ≥ α for every integral edge e with x∗e = 1. The
flow-conductance ratio α is crucial in the rounding algorithm and the analysis.

Our approach is based on a randomized rounding procedure on s-t paths. Given x∗, we compute
the unit s-t electrical flow f ∗ supported in x∗, and decompose f ∗ as a convex combination of s-t
paths. The rounding algorithm has T = 1/α iterations (recall that α is the flow-conductance ratio
of the optimal solution x∗), where we pick a random path Pi from the convex combination in each
iteration, and return H := ∪T

i=1Pi as our solution. One difference from the previous techniques in
the literature is that each unit in the rounding algorithm is a s-t path, so in particular s and t are
always connected in our solution. Another difference is that our problem has some extra structure,
so that we can compute the electrical flow f ∗ to guide our rounding procedure, where the vari-
ables f ∗e are not in the convex program. These allow us to obtain a constant factor approximation
algorithm for all budget k ≥ dst (note that when k < dst there is no feasible integral solution).

In the analysis, we prove in Lemma 3.6 that the expected number of edges in H is at most k ,
and in Lemma 3.7 that the expected effective resistance is ReffH (s, t ) ≤ 2Reffx ∗ (s, t ). To bound
the expected effective resistance, we use Thomson’s principle and construct a unit s-t flow F to
show that ReffH (s, t ) ≤ EH (F ) ≤ 2Reffx ∗ (s, t ). To construct the unit s-t flow F , we keep the flow-
conductance ratio and send α units of flow on each sampled path Pi (i.e., fe = α and xe = 1).
The flow-conductance ratio plays a crucial role in the proofs of both lemmas. This is because the
rounding algorithm is based on the flow variables f ∗e , and thus the performance guarantees are in

1We can also show that there exists an optimal solution such that the fractional edges form a forest, but this is not included
in the article, as we have not used this property in the rounding algorithm.
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terms of f ∗e , but the ratio α allows us to relate them back to the variables x∗e in the convex program.
Combining the two lemmas give us a constant factor bicriteria approximation algorithm for the
problem. This can be turned into a true approximation algorithm by scaling down the budget to
k/2 and run the bicriteria approximation algorithm with some additional claims (Section 3.4).

The improvement on the approximation ratio when budget k is large comes from two observa-
tions. The first is that if k is much larger than the length of the shortest s-t path, then the number
of independent iterations in the rounding scheme is large (Lemma 3.3). The second is that we can
ignore some s-t paths in the flow decomposition with many fractional edges without affecting the
performance much. Combining these, we can apply a Chernoff-Hoeffding bound to show that the
number of edges is at most (1 + ε )k with high probability. Then it is not necessary to scale down
the budget by a factor of 2 and we can prove a stronger bound that the effective resistance is at
most 2 +O (ε ) times the optimal value.

1.5 Organization

In Section 2, we define the notations used in this article and cover background knowledge on effec-
tive resistances. We present the convex programming relaxation and our two rounding procedures
in Section 3, and the dynamic programming algorithm in Section 4. The NP-hardness and small
set expansion hardness results are provided in Section 5.

2 PRELIMINARIES

We introduce the notations and definitions for graphs and matrices in Section 2.1, and then we
define electrical flow and effective resistance and state some basic results in Section 2.2.

2.1 Graphs and Matrices

LetG = (V ,E) be an undirected graph with edge weightwe ≥ 0 on each edge e ∈ E. The number of
vertices and the number of edges are denoted by n := |V | andm := |E |. For a subset of edges F ⊆ E,
the total weight of edges in F is w (F ) :=

∑
e ∈F we . For a subset of vertices S ⊆ V , the set of edges

with one endpoint in S and one endpoint inV −S is denoted by δ (S ). For a vertexv , the set of edges
incident on a vertex v is δ (v ) := δ ({v}), and the weighted degree of v is deg(v ) := w (δ (v )). The
volume of a set vol(S ) :=

∑
v ∈S deg(v ) is defined as the sum of the weighted degrees of vertices in

S . The conductance of a set ϕ (S ) := w (δ (S ))/vol(S ) is defined as the ratio of the total weight on
the boundary of S to the total weighted degrees in S . For two disjoint subsets S1, S2 ⊆ V , the set of
edges with one endpoint in S1 and one endpoint in S2 is denoted by E (S1, S2).

In this article, an undirected graph G = (V ,E) with non-negative edge weights w ∈ RE is
interpreted as an electrical network, where each edge e is a resistor with conductance we (not to
be confused with the conductance ϕ (S ) of a set S as defined above), or equivalently with resistance
re := 1/we . The adjacency matrix A ∈ RV×V of the graph is defined as Au,v = wu,v for all u,v ∈ V .
The Laplacian matrix L ∈ RV×V of the graph is defined as L = D−AwhereD ∈ RV×V is the diagonal
degree matrix with Du,u = deg(u) for all u ∈ V . For each edge e = uv ∈ E, let be := χu − χv , where
χu ∈ Rn is the vector with one in the uth entry and zero otherwise (the orientation from u to v is
chosen arbitrarily). The Laplacian matrix can also be written as

L =
∑
e ∈E

webeb
T
e = BWBT ,

whereW = diag(w ) and B ∈ RV×E is the n-by-m matrix with be being the eth column.
Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L with corresponding orthonormal eigenvectors

v1,v2, . . . ,vn so that L =
∑n

i=1 λiviv
T
i . It is well-known that the Laplacian matrix is positive semi-

definite and λ1 = 0 with v1 = �1/
√
n as the corresponding eigenvector, and λ2 > 0 if and only if G
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is connected (see, e.g., Chapter 1 of Reference [12]). The pseudo-inverse of the Laplacian matrix L
of a connected graph is defined as

L† =
n∑

i=2

1

λi
viv

T
i ,

which maps every vector x orthogonal to v1 to a vector y such that Ly = x .

2.2 Electrical Flow and Effective Resistance

We start with defining a unit s-t flow on an undirected graphG = (V ,E). We first fix an orientation
of the edges of G arbitrarily. Let B ∈ RV×E be the matrix defined in Section 2.1 that is consistent
with this orientation. A unit s-t flow f : E → R is an m-dimensional vector that satisfies flow
conservation constraints:

Bf = χs − χt or equivalently
∑

e=uv : u ∈δ+ (v )

fe −
∑

e=uv : u ∈δ− (v )

fe =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 v = s

−1 v = t

0 otherwise,

where δ+ (v ) and δ− (v ) are the set of outgoing and incoming neighbours of v with respect to
the fixed orientation. Note that positive fe indicates the flow on e is in the same direction as the
orientation of e , while negative fe indicates the opposite.

The unit s-t electrical flow is a unit s-t flow f that also satisfies the Ohm’s law: There exists a
potential vector φ ∈ Rn such that for all e = uv ∈ E oriented from u to v ,

fe = we · (φ (u) − φ (v )).

Given a potential vector φ, we will use the orientation where all edges are pointing from the
high potential endpoint to the low potential endpoint, so that fe is nonnegative for all e ∈ E in the
rest of this article.

The effective resistance between s and t is defined as

Reff (s, t ) := φ (s ) − φ (t ),

which is the potential difference between s and t when one unit of electrical flow is sent from s
to t . The s-t effective resistance can be interpreted as the resistance of the whole graphG as a big
resistor when an electrical flow is sent from s to t .

One can write the effective resistance in terms of the Laplacian matrix. For u,v ∈ V , let buv =
χ

u − χ
v . Combining the flow conservation constraint and the Ohm’s law, it can be checked that

the potential vector φ ∈ RV of the unit s-t electrical flow is a solution to the linear system

L · φ = bst .

Note that φ = L†bst is a solution, and if G is connected then any solution is given by φ + c · �1 for
c ∈ R. Therefore, Reff (s, t ) = φ (s ) − φ (t ) is (uniquely) well-defined, and we can write

Reff (s, t ) = φ (s ) − φ (t ) = bT
stL
†bst .

The effective resistance can also be characterized by the energy of a flow. The energy of an s-t
flow f is defined as

E ( f ) :=
∑
e ∈E

f 2
e

we
=

∑
e ∈E

re f
2

e .

Thomson’s principle [30] states that the unit s-t electrical flow is the unique unit s-t flow that
minimizes the energy. This can be verified by writing down the optimality condition of the min-
imization problem. Moreover, this energy is exactly the s-t effective resistance. To see this, note
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that the flow value on edge uv in the unit s-t electrical flow satisfies f (uv ) = wuv · (φ (u)−φ (v )) =
wuv · bT

uvL
†bst , and thus

E ( f ) =
∑

uv ∈E

wuv (bT
uvL

†bst )2 = bT
stL
† ��

∑
uv ∈E

wuvbuvb
T
uv

�	L†bst = b
T
stL
†LL†bst = Reff (s, t ).

To summarize, we will use the following result from Thomson’s principle.

Fact 2.1 (Thomson’s Principle [30]). Let f ∗ be the unit electrical s-t flow in G. Then,

ReffG (s, t ) = min
f
{E ( f ) | f is a unit s-t flow in G} = E ( f ∗).

A corollary of Thomson’s principle is the following intuitive result known as the Rayleigh’s
monotonicity principle.

Fact 2.2 (Rayleigh’s Monotonicity Principle). The s-t effective resistance cannot increase if

the resistance of an edge is decreased.

We will also use the following result to write a convex programming relaxation of our problem.

Fact 2.3 ([24]). The s-t effective resistance is a convex function with respect to the conductance of

the edges.

3 CONVEX PROGRAMMING ALGORITHM

In this section, we analyze a convex programming relaxation for our problem in Definition 1.1.
We first describe the convex program and prove a characterization of the optimal solutions in
Section 3.1. We then present a randomized rounding algorithm using flow decomposition in
Section 3.2, and show that it is a constant factor bicriteria approximation algorithm in Section 3.3.
Then, we show how to convert the bicriteria approximation algorithm into a true approximation
algorithm in Section 3.4, and how to modify the algorithm slightly to achieve a better approxima-
tion guarantee when the budget k is large in Section 3.5. Finally, we discuss the dual problem of
minimizing the cost while satisfying the effective resistance constraint in Section 3.6.

3.1 Convex Programming Relaxation

The formulation is for the weighted problem, where each edge has a weightwe := 1/re . We intro-
duce a variable xe for each edge e to indicate whether e is chosen in our subgraph. Let

Lx :=
∑
e ∈E

xewebeb
T
e

be the Laplacian matrix of the fractional solution x , and Reffx (s, t ) be the s-t effective resistance of
the graph with conductance xewe on edge e ∈ E. The following is a natural convex programming
relaxation for the problem:

min
x ∈Rm

Reffx (s, t )

subject to
∑
e ∈E

cexe ≤ k,

0 ≤ xe ≤ 1, ∀e ∈ E.

(CP)

This is an exact formulation if xe ∈ {0, 1} for all e ∈ E. The objective function is convex in x
by Fact 2.3. The convex program can be solved in polynomial time by the ellipsoid method to in-
verse exponential accuracy, or by the techniques described in Reference [2] to inverse polynomial
accuracy, which are both sufficient for the rounding algorithm.
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Fig. 1. Integrality gap example with arbitrary cost and unit resistance.

Fig. 2. Integrality gap example with arbitrary resistance and unit-cost.

3.1.1 Integrality Gap Examples. We show some limitations of the convex program for general
we and ce . Figure 1 shows a simple example where the integrality gap is unbounded if the cost
could be arbitrary.

In this graph, the top path has length n−2 where each edge has cost 1/(n−2). The bottom path
has two edges with cost 1. The resistance of each edge is 1, and the budget is k = 1. The integrality
gap of this example is Ω(n). To see this, the integral solution can only afford the top path, and the
effective resistance is n−2. However, the fractional solution can set xe = 1/2 for each of the two
bottom edges, and the effective resistance of this fractional solution is 4.

Figure 2 shows another simple example where the integrality gap is unbounded if the edge costs
are the same but the resistances could be arbitrary.

In this example, the top path has length n−1 with each edge of resistance 1. The bottom path
has only one edge with resistance R. All edges have cost 1 and the budget k = n−2. The integral
solution can only afford the bottom path, with effective resistance R. The fractional solution can
set xe = (n−2)/(n−1) for each edge in the top path, with effective resistance O (n). When R � n,
the integrality gap could be arbitrarily large.

Even in the unit-cost unit-resistance case, the integrality gap is unbounded if k is smaller than
the s-t shortest path distance. Henceforth, in view of these observations, we assume the following
in the rest of this section.

Assumption 3.1. We assume that ce = we = re = 1 for every edge e ∈ E, which is the setting

of the s-t effective resistance network design problem, and the budget k is at least the shortest path

distance dst between s and t in the input graph.

The integrality gap of the convex program is still at least two with Assumption 3.1. For a simple
example, consider a graph with two vertex-disjoint s-t paths, each of length k/2+1, and the budget
is k . Then the optimal integral value is k/2 + 1 while the optimal fractional value is close to k/4,
and so the integrality gap gets arbitrarily close to two.

We will show that the integrality gap of the convex program is at most 8 with these assump-
tions. Note that just to connect s and t , then k must be at least the s-t shortest path distance. It is
interesting that this small additional assumption could reduce the integrality gap from unbounded
to a constant.

3.1.2 Characterization of Optimal Solutions. In the case ce = we = re = 1 for all edges e ∈
E, we will prove that the electrical flow f ∗ supported in the optimal solution x∗ to the convex

program (CP) satisfies a crucial property about the flow-conductance ratio f ∗e /x
∗
e .

Lemma 3.2 (Characterization of Optimal Solution). LetG = (V ,E) be the input graph with

ce = we = 1 for all edges e ∈ E. Let x∗ : E → R≥0 be an optimal solution to the convex program (CP).
Let EF ⊆ E be the set of fractional edges with 0 < x∗e < 1, and EI ⊆ E be the set of integral edges with
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x∗e = 1. Let f ∗ : E → R≥0 be the unit s-t electrical flow supported in x∗. There exists α > 0 such that

f ∗e = αx∗e ∀e ∈ EF and f ∗e ≥ α ∀e ∈ EI .

Proof. By removing edges with x∗e = 0, we can assume x∗e > 0 for every e ∈ E. By removing
isolated vertices, we can further assume that the nonzero edges form a connected graph. So, we
can write Reffx ∗ (s, t ) = bT

stL
†
x ∗bst , where Lx ∗ has rank n − 1 and the null space of Lx ∗ is span(�1).

Since bst ⊥ �1, we have Lx ∗L
†
x ∗bst = bst and L†x ∗bst ⊥ �1, which implies that L†x ∗bst = (Lx ∗+

1
n
J )−1bst

where J is the all-ones matrix. Let ∂e denote the partial derivative with respect to the variable xe ,
and using the fact that ∂A−1 = −A−1 (∂A)A−1 (see, e.g., Reference [41]), we derive

∂eReffx ∗ (s, t ) = ∂eb
T
st

(
Lx ∗ +

1

n
J
)−1

bst = −bT
st

(
Lx ∗ +

1

n
J
)−1

(∂eLx ∗ )
(
Lx ∗ +

1

n
J
)−1

bst

= −bT
stL
†
x ∗
��∂e

( ∑
e ∈E

x∗ewebeb
T
e

)�	L†x ∗bst = −bT
stL
†
x ∗beb

T
e L
†
x ∗bst = −(bT

stL
†
x ∗be )2,

where we used the assumption that we = 1 for all e ∈ E. With this, we write down the KKT
conditions for the convex program. Let μ be the dual variable for the budget constraint

∑
e ∈E cex

∗
e ≤

k , and λ+e and λ−e be the dual variables for the upper bound x∗e ≤ 1 and the nonnegative constraint
x∗e ≥ 0, respectively. The KKT conditions states if x∗ is an optimal solution to (CP), then there exist
λ+, λ− and μ such that∑

e ∈E

x∗e ≤ k, 0 ≤ x∗e ≤ 1 ∀e ∈ E, (Primal feasibility)

μ ≥ 0, λ+e ≥ 0 and λ−e ≥ 0 ∀e ∈ E, (Dual feasibility)

μ · ��k −
∑
e ∈E

x∗e�	 = 0, λ+e · (x∗e − 1) = 0 and λ−e · x∗e = 0 ∀e ∈ E, (Complementary slackness)

(bT
e L
†
x ∗bst )2 = λ+e − λ−e + ceμ = λ+e − λ−e + μ ∀e ∈ E, (Lagrangian optimality)

where we used the assumption that ce = 1 for all e ∈ E. For an integral edge with x∗e = 1, we
have λ−e = 0 by the complementary slackness condition. Since λ+e ≥ 0, it follows from the La-
grangian optimality condition that (bT

e L
†
x ∗bst )2 ≥ μ. For a fractional edge with 0 < x∗e < 1, we

have λ+e = λ−e = 0 by the complementary slackness condition, and therefore (bT
e L
†
x ∗bst )2 = μ by

the Lagrangian optimality condition. We can assume that μ > 0. Otherwise, μ = 0 implies that the
flow on all fractional edges are zero, and so we can delete them from the graph without affecting
the s-t effective resistance, and we have an integral solution.

Let φ be a potential vector of the electrical flow f ∗ supported in x∗. For an edge e = uv ∈ E,( f ∗e
x∗e

)2
= (φ (u) − φ (v ))2 =

(
bT

e L
†
x ∗bst

)2
,

where the first equality is by Ohm’s law and the assumption that wuv = 1 for all uv ∈ E, and the
second equality uses that Lx ∗φ = bst as explained in Section 2.2. The lemma then follows from the
above paragraph and writing μ as α2. �

The flow-conductance ratio α will be crucial in the rounding algorithm and its analysis. Intu-
itively, α measures the “effectiveness” of the fractional edges. A larger α means that the fractional
edges make more contributions when sending electrical flows from s to t. Lemma 3.2 says all
fractional edges are equally “effective”, and the integral edges are at least as “effective” as those
fractional edges.
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The following lemma shows an upper bound on α using the budget k and the shortest path
distance dst between s and t .

Lemma 3.3. Under the conditions in Assumption 3.1, it holds that α2 ≤ dst/k ≤ 1.

Proof. Let x∗ be an optimal solution to (CP), and f ∗ be the unit s-t electrical flow supported
in x∗. As k ≥ dst , a shortest path is a feasible solution to (CP), and thus Reffx ∗ (s, t ) ≤ dst . On the
other hand, by Thomson’s principle and Lemma 3.2,

Reffx ∗ (s, t ) =
∑
e ∈E

( f ∗e )2

x∗e
=

∑
e ∈EI

( f ∗e )2 +
∑

e ∈EF

( f ∗e )2

x∗e
≥

∑
e ∈EI

α2 +
∑

e ∈EF

α2x∗e = α2
∑
e ∈E

x∗e = α2k,

where the last equality holds, since we can assume
∑

e ∈E x
∗
e = k for the optimal solution x∗ without

loss of generality by Rayleigh’s principle (or, otherwise, we have an integral optimal solution). The
lemma follows by combining the upper bound and the lower bound. �

3.2 Randomized Path-Rounding Algorithm

Our rounding algorithm uses the unit electrical flow f ∗ supported in the optimal solution x∗ to
construct an integral solution. The property of x∗ and f ∗ in Lemma 3.2 is the key of the success of
the rounding algorithm.

Remark. In this subsection, we present the rounding algorithm assuming we have an exact opti-
mal solution x∗, to focus on the main ideas of the analysis. However, standard convex optimization
techniques (e.g., ellipsoid method) can only guarantee to return an approximately optimal solution
x to (CP) such that Reffx (s, t ) ≤ Reffx ∗ (s, t ) + ε in O (poly(n,m) log 1

ε
) time. We will explain the

modifications needed for rounding an approximately optimal solution in Appendix A.

The algorithm will first decompose the flow f ∗ as a convex combination of flow paths, and then
randomly choose the flow paths and return the union of the chosen flow paths as our solution. The
following lemma about flow decomposition is by the standard argument to remove one (fractional)
flow path at a time, which holds for any unit directed acyclic s-t flow.

Lemma 3.4 (Flow Decomposition). Given the unit s-t electrical flow f , there is a polynomial

time algorithm to find a set P of s-t paths with |P | ≤ |E | such that the flow vector f : E → R≥0 can

be written as a convex combination of the characteristic vectors of the paths in P, i.e.,

f =
∑
p∈P

vp · χp and
∑
p∈P

vp = 1 and vp > 0 for each p ∈ P,

where χp ∈ R |E | is the characteristic vector of the path p with one on each edge e ∈ p and zero

otherwise.

With the flow decomposition, we are ready to present the rounding algorithm.

Randomized Path Rounding Algorithm

(1) Let x∗ be an optimal solution to the convex program (CP). Let f ∗ be the unit s-t electrical
flow supported in x∗. Let α be the flow-conductance ratio defined in Lemma 3.2.

(2) Compute a flow decomposition P of f ∗ as defined in Lemma 3.4.
(3) For i from 1 to T := �1/α� do
• Let Pi be a random path from P where each path p ∈ P is sampled with probability
vp .

(4) Return the subgraph H formed by the edge set ∪T
i=1Pi .
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The following lemma shows that the rounding algorithm will always return a non-empty sub-
graph.

Lemma 3.5. Suppose the input instance satisfies the conditions in Assumption 3.1. Let x∗ be an

optimal solution to (CP) and α > 0 be the flow-conductance ratio as defined in Lemma 3.2. Then

1

α
≥ T ≥ 1

2α
> 0.

Proof. Since we assumed that the budget k is at least the length dst of a shortest s-t path, it
follows from Lemma 3.3 that α ≤ 1. This implies that

1

α
≥ T =

⌊ 1

α

⌋
≥ max

{
1,

1

α
− 1

}
=⇒ 1 ≥ Tα ≥ max{α , 1 − α } ≥ 1

2
.

�

3.3 Bicriteria Approximation

The analysis of the approximation guarantee goes as follows. First, we show that the expected
number of edges in the returned subgraph H is at most the budget k . Then, we prove that the
expected effective resistance of the returned subgraph is at most two times that of the optimal
fractional solution. Both of these steps use the flow-conductance ratio α crucially. These combine
to show that the randomized path rounding algorithm is a constant factor bicriteria approximation
algorithm.

Let x∗ be an optimal solution to (CP). Let EF and EI be the set of fractional edges and integral
edges in x∗. We assume that each edge e ∈ EI will be included in the subgraph H returned by the
rounding algorithm. We focus on bounding the number of edges in EF that will be included in H .

Lemma 3.6 (Expected Budget). Let x∗ be an optimal solution to (CP) when we = 1 for all edges

e ∈ E. Let Xe be an indicator variable of whether e is included in the returned subgraph H by the

rounding algorithm, Then,

E

⎡⎢⎢⎢⎢⎢⎣
∑

e ∈EF

Xe

⎤⎥⎥⎥⎥⎥⎦ ≤ Tα
∑

e ∈EF

x∗e ≤
∑

e ∈EF

x∗e .

Proof. Note that an edge e is contained in Pi with probability
∑

p∈P:p�e vp . By the union bound,
an edge e is included in the returned subgraph H by the rounding algorithm with probability

P(Xe = 1) ≤
T∑

i=1

∑
p∈P:p�e

vp = T
∑

p∈P:p�e
vp = T f ∗e , (3.1)

where the last equality holds by the property of the flow decomposition P of the electrical flow
f ∗ in Lemma 3.4.

By Lemma 3.2, f ∗e = αx∗e for each fractional edge e ∈ EF , and this implies that

P(Xe = 1) ≤ T f ∗e = Tαx
∗
e ∀e ∈ EF .

Therefore,

E

⎡⎢⎢⎢⎢⎢⎣
∑

e ∈EF

Xe

⎤⎥⎥⎥⎥⎥⎦ =
∑

e ∈EF

P(Xe = 1) ≤ Tα
∑

e ∈EF

x∗e =
⌊ 1

α

⌋
α

∑
e ∈EF

x∗e ≤
∑

e ∈EF

x∗e .

�
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The key step is to show that E[ReffH (s, t )] ≤ 2Reffx ∗ (s, t ). To prove this, we construct a unit s-t
flow F and show thatE[EH (F )] ≤ 2Reffx ∗ (s, t ), and hence by Thomson’s principleE[ReffH (s, t )] ≤
E[EH (F )] ≤ 2Reffx ∗ (s, t ). To construct the flow F , the idea is to follow the ratio α in the fractional
solution x∗ and send α units of flow on each path Pi selected.

Lemma 3.7 (Expected Effective Resistance). Suppose the input instance satisfies the conditions

in Assumption 3.1. Let x∗ be an optimal solution to (CP) and f ∗ be the unit s-t electrical flow supported

in x∗. The expected s-t effective resistance of the subgraph H returned by the rounding algorithm is

E [ReffH (s, t )] ≤
(
1 − 1

T
+

1

Tα

)
· Ex ∗ ( f

∗) =
(
1 − 1

T
+

1

Tα

)
· Reffx ∗ (s, t ) ≤ 2Reffx ∗ (s, t ).

Proof. Consider the flow vector F : E → R≥0 defined by sending α units of flow on each path Pi

chosen by the rounding algorithm, i.e., the random variable F =
∑T

i=1 α · χPi
with Fe = α ·#{Pi | 1 ≤

i ≤ T , Pi � e} for each edge e ∈ E. We would like to upper bound the expected energy EH (F ) to
upper bound ReffH (s, t ).

Each Pi is a random s-t path sampled from the flow decomposition P of the flow vector f ∗ :
E → R≥0 of the unit s-t electrical flow supported in x∗, and χPi

∈ Rm is its characteristic vector
with expected value

E[χPi
] =

∑
p∈P

vp · χp = f ∗.

Since each edge in H is of conductance one, the expected energy of F in H is

E [EH (F )] = E
⎡⎢⎢⎢⎢⎣
∑
e ∈E

F 2
e

⎤⎥⎥⎥⎥⎦ = E[〈F , F 〉] = E
⎡⎢⎢⎢⎢⎢⎣
〈 T∑

i=1

α · χPi
,

T∑
j=1

α · χPj

〉⎤⎥⎥⎥⎥⎥⎦ =
T∑

i=1

T∑
j=1

α2 · E[〈χPi
, χPj
〉].

As each path Pi is sampled independently, for i � j,

E[〈χPi
, χPj
〉] = 〈E[χPi

],E[χPj
]〉 = 〈f ∗, f ∗〉 =

∑
e ∈E

( f ∗e )2.

For i = j,

E[〈χPi
, χPi
〉] =

∑
p∈P

vp〈χp , χp〉 =
∑
p∈P

vp

∑
e ∈p

1 =
∑
e ∈E

∑
p∈P:p�e

vp =
∑
e ∈E

f ∗e ,

where the last equality follows from the property of the flow decomposition in Lemma 3.4. Com-
bining these two terms, it follows that

E [EH (F )] = α2T
∑
e ∈E

f ∗e + α
2T (T − 1)

∑
e ∈E

( f ∗e )2.

Thomson’s principle states that the ReffH (s, t ) is upper bounded by the energy of any one unit
s-t flow. Note that F is an s-t flow of Tα units, and Tα > 0 by Lemma 3.5. Scaling F to a one unit
s-t flow by dividing the flow on each edge by Tα gives an upper bound on

E[ReffH (s, t )] ≤ E [EH (F )]

T 2α2
=

1

T

∑
e ∈E

f ∗e +
(
1 − 1

T

) ∑
e ∈E

( f ∗e )2 (3.2)

≤ 1

Tα

∑
e ∈E

( f ∗e )2

x∗e
+

(
1 − 1

T

) ∑
e ∈E

( f ∗e )2

x∗e

=

(
1 − 1

T
+

1

Tα

)
· Ex ∗ ( f

∗)

=

(
1 − 1

T
+

1

Tα

)
· Reffx ∗ (s, t ),
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where the second inequality follows from Lemma 3.2 that f ∗e /x
∗
e ≥ α for every edge e ∈ E and also

x∗e ≤ 1 for every edge e ∈ E, and the last equality is from Thomson’s principle that Reffx ∗ (s, t ) =
Ex ∗ ( f

∗). Finally, notice that 1 − 1/T + 1/(Tα ) ≤ 2 as 1/α − 1 ≤ �1/α� = T . �

Combining Lemmas 3.6 and 3.7, it follows from a simple application of Markov’s inequality
that there is an outcome of the randomized path-rounding algorithm that uses at most 2k edges
with s-t effective resistance at most 4Reffx ∗ (s, t ). In the following, we apply Markov’s inequality
more carefully to show that the success probability is at least Ω(α ). In the next subsection, we will
argue that α can be assumed to be Ω(1/m) and so the path-rounding algorithm is a randomized
polynomial time algorithm.

Theorem 3.8 (Bicriteria Approximation). Suppose the input instance satisfies the conditions in

Assumption 3.1. Let x∗ be an optimal solution to (CP). Given x∗, the randomized path rounding algo-

rithm will return a subgraphH with at most 2k edges and ReffH (s, t ) ≤ 4Reffx ∗ (s, t ) with probability

at least Ω(α ).

Proof. First, we bound the probability that the subgraph H has more than 2k edges. Let Xe be
an indicator variable of whether the edge e is included in the returned subgraph H . Recall that
EF and EI denote the set of fractional edges and integral edges in x∗, respectively. We assume
pessimistically that all edges in EI will be included in the subgraph H returned by the rounding
algorithm. Then, by Markov’s inequality and Lemma 3.6,

Pr

(∑
e ∈E

Xe > 2k

)
≤ Pr

( ∑
e ∈EF

Xe > 2k − |EI |
)
≤
E

[∑
e ∈EF

Xe

]
2k − |EI |

≤
Tα

∑
e ∈EF

x∗e
2k − |EI |

≤ Tα

2
,

where the last inequality is by
∑

e ∈EF
x∗e ≤ k − |EI |.

Next, we bound the probability that ReffH (s, t ) > 4Reffx ∗ (s, t ). By Markov’s inequality and
Lemma 3.7,

Pr

(
ReffH (s, t ) > 4Reffx ∗ (s, t )

)
≤ 1

4

(
1 − 1

T
+

1

Tα

)
=
Tα + 1

4Tα
− 1

4T
≤ Tα + 1

4Tα
− Ω(α ),

where the last inequality is because T = �1/α� ≤ 1/α .
To prove the theorem, it remains to show that

Tα

2
+
Tα + 1

4Tα
≤ 1 ⇐⇒ 2(Tα )2 − 3(Tα ) + 1 = (2Tα − 1) (Tα − 1) ≤ 0,

which follows from Lemma 3.5. �

3.4 Constant Factor Approximation

We showed that the randomized path rounding algorithm is a bicriteria approximation algorithm.
To achieve a true approximation algorithm, a natural idea is to scale down the budget from k to
k/2 and apply the randomized path rounding algorithm. The following lemma takes care of the
case of k/2 < dst , when the shortest path assumption does not hold after scaling, by showing that
simply returning a shortest s-t path is already a good enough approximation.

Lemma 3.9. When the budget k is at least the length dst of a shortest s-t path, any s-t shortest path

is a (k/dst )-approximate solution for the s-t effective resistance network design problem.

Proof. When k ≥ dst , an s-t shortest path is a feasible solution to the problem with s-t effective
resistance at most dst . To prove the lemma, we will show that Reffx (s, t ) ≥ d2

st/k for any feasible
solution x to (CP), and so an s-t shortest path is already a (k/dst )-approximation.
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Let Gx be the graph G with fractional conductance xe on each edge e ∈ E. To show a lower
bound on Reffx (s, t ), we identify the vertices inGx to a form a path graph Px as follows: For each
i ≥ 0, let Ui be the set of vertices in G with shortest path distance i to s , where the shortest path
distance is defined where each edge in G is of length one. First, for each 0 ≤ i ≤ dst − 1, we
identify the vertices in Ui to a single vertex ui . Then, we identify all the vertices in ∪i≥dst

Ui to
a single vertex udst

. The path graph Px has vertex set {u0, . . . ,udst
} and edge set {ab ∈ E | a ∈

Ui and b ∈ Ui+1 for 0 ≤ i ≤ dst − 1}. For each edge e in Px , its conductance xe in Px is the same as
that inGx . As an electrical network, identifying two vertices uv is equivalent to adding an edge of
resistance zero between u and v . So, it follows from Rayleigh’s monotonicity principle (Fact 2.2)
that ReffGx

(s, t ) ≥ ReffPx
(u0,udst

) as s ∈ U0 and t ∈ Udst
.

As Px is a series-parallel graph, we can compute ReffPx
(s, t ) directly. For each 1 ≤ i ≤ dst , let

Ei be the set of parallel edges connecting ui−1 and ui in Px , and ci =
∑

e ∈Ei
xe be the effective

conductance between ui−1 and ui in Px . Then, by Fact 4.3,

ReffPx
(ui−1,ui ) =

1

ci
and ReffPx

(u0,udst
) =

dst∑
i=1

ReffPx
(ui−1,ui ) =

dst∑
i=1

1

ci
.

Note that
∑dst

i=1 ci =
∑dst

i=1

∑
e ∈Ei

xe ≤
∑

e ∈E xe ≤ k for any feasible solution x . Using Cauchy-
Schwarz inequality,

dst =

dst∑
i=1

√
ci ·

1
√
ci
≤

√√√
dst∑
i=1

ci ·

√√√
dst∑
i=1

1

ci
≤
√
k ·

√
ReffPx

(u0,udst
).

Therefore, we conclude that

ReffGx
(s, t ) ≥ ReffPx

(u0,udst
) ≥ d2

st/k . (3.3)

�

We are ready to prove our main approximation result.

Theorem 3.10. Suppose the input instance satisfies the conditions in Assumption 3.1. There is a

polynomial time 8-approximation algorithm for the s-t effective resistance network design problem.

Proof. If the budget k ≤ 2dst , then Lemma 3.9 shows that simply returning an s-t shortest path
would give a 2-approximation. Henceforth, we assume k ≥ 2dst .

Let opt(k ) be the objective value of an optimal solution x∗ to the convex program (CP) with bud-
get k , so Reffx ∗ (s, t ) = opt(k ). As 1

2x
∗ is a feasible solution to (CP) with budget 1

2k , by Thomson’s
principle,

opt

(
k

2

)
≤ Reff 1

2 x ∗ (s, t ) = b
T
st

(∑
e ∈E

x∗e
2
beb

T
e

)†
bst = 2bT

st

( ∑
e ∈E

x∗ebeb
T
e

)†
bst = 2Reffx ∗ (s, t ) = 2opt(k ).

Given the original budget k ≥ 2dst , our algorithm is to find an optimal solution z∗ to (CP) with
budget k/2 ≥ dst , and use the path-rounding algorithm with input z∗ to return a subgraph H . By
Theorem 3.8, with probability Ω(α ), the subgraph H satisfies

|E (H ) | ≤ 2
∑
e ∈E

z∗e ≤ 2

(
k

2

)
= k and ReffH (s, t ) ≤ 4opt

(
k

2

)
≤ 8opt(k ),

and so H is an 8-approximate solution to the s-t effective resistance network design problem.
Finally, we consider the time complexity of the algorithm. The number of iterations in the path

rounding algorithm is O (1/α ), and we need to run the path rounding algorithm O (1/α ) times to
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boost the success probability to a constant. This is a randomized polynomial time algorithm when
α = Ω(1/m).

In the following, we show that when α ≤ 1/(4m), it is easy to obtain a 2-approximate solution
without running the path-rounding algorithm. Let x∗ be an optimal solution to (CP) with budget
k , and f ∗ be the unit s-t electrical flow supported in x∗. Let P be the flow decomposition of f ∗ as
in Lemma 3.4. We call a path p ∈ P an integral path if every edge e ∈ p has x∗e = 1; otherwise,
we call p a fractional path. When α ≤ 1/(4m), we simply return the union of all integral paths as
our solution H . Clearly, H has at most k edges as it only contains integral edges. Next, we bound
ReffH (s, t ) by the energy of the flow supported in the integral paths. By Lemma 3.2, an edge e
with x∗e < 1 has f ∗e = αx∗e < α ≤ 1/(4m). This implies that each fractional path p has flow value
vp ≤ 1/(4m) in the flow decomposition. Since P has at most m paths (Lemma 3.4), the total flow
in the fractional paths is at most 1/4, and thus the total flow in the integral paths is at least 3/4. By
scaling the flow supported in the integral paths to a one unit s-t flow, we see that

ReffH (s, t ) ≤ Ex ∗ ( f
∗)

(3/4)2
≤ 2Ex ∗ ( f

∗) = 2Reffx ∗ (s, t ).

To summarize, in all cases includingk < 2dst and α ≤ 1/(4m), there is a polynomial time algorithm
to return an 8-approximate solution to the s-t effective resistance network design problem. �

We make two remarks about improvements of Theorem 3.10.

Remark 3.11 (Approximation Ratio). The analysis of the 8-approximation algorithm is not tight.
By a more careful analysis of the expected energy in Lemma 3.7 and the short path idea used in
Section 3.5, we can show that the approximation guarantee of the same algorithm in Theorem 3.10
is less than 5. However, the analysis is quite involved and not very insightful, so we have decided
to omit those details and only keep the current analysis.

Remark 3.12 (Deterministic Algorithm). Using the standard pessimistic estimator technique [42],
we can derandomize the path-rounding algorithm to obtain a deterministic 8-approximation algo-
rithm. The analysis is standard, and we omit the details that would take a few pages.

3.5 The Large Budget Case

In this subsection, we show how to modify the algorithm in Theorem 3.10 to achieve a better
approximation ratio when the budget is much larger than the s-t shortest path distance.

The observation is that when k � dst , then α is small by Lemma 3.3, and so there are many iter-
ations in the path-rounding algorithm. Since each iteration is independent, we can use Chernoff-
Hoeffding’s bound to prove a stronger bound on the probability that the number of edges in the
returned solution is significantly more than k (which outperforms the bound proved in Lemma 3.6
using Markov’s inequality). We can then show that the expected s-t effective resistance is close to
two times the optimal value by arguments similar to the proof of Lemma 3.7.

Modified Rounding Algorithm. For our analysis, we slightly modify the path-rounding algorithm
to ignore “long” paths in the flow decomposition, so that we have a worst case bound to apply
Chernoff-Hoeffding’s bound. Unlike the flow decomposition in Lemma 3.4, the short-path flow
decomposition definition is specific to the electrical flow of an optimal solution to (CP). In the fol-
lowing definition, c is a parameter (not to confused with the edge cost ce in the weighted problem)
that will be set to be 1/ε > 1 to achieve a (2 +O (ε ))-approximation.

Definition 3.13 (Short-Path Decomposition of Electrical Flow of Optimal Solution). Let x∗ be an
optimal solution to the convex program (CP). Let f ∗ be the unit s-t electrical flow supported in x∗.
Let α be the flow-conductance ratio defined in Lemma 3.2.
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Let P∗ be a flow decomposition of f ∗ as defined in Lemma 3.4. Let x∗F :=
∑

e ∈EF
x∗e be the total

fractional value on the fractional edges EF in the optimal solution x∗.
We call a path p ∈ P∗ a long path if p has at least cαx∗F edges in EF , i.e., |p ∩ EF | ≥ cαx∗F .

Otherwise, we call a path p ∈ P∗ a short path.
Let P := {p ∈ P∗ | p is a short path} be the collection of short paths in P∗. Let fP :=

∑
p∈P vp χp

be the s-t flow defined by the short paths, and vP :=
∑

p∈P vp be the total flow value of fP .

The modified algorithm is very similar to the randomized path-rounding algorithm in Section 3.3.
The only difference is that we only sample the paths in the short-path flow decomposition in
Definition 3.13, and we adjust the sampling probability of a path p tovp/vP so that the sum is one.

Randomized Short Path Rounding Algorithm

(1) Let x∗ be an optimal solution to the convex program (CP). Let f ∗ be the unit s-t electrical
flow supported in x∗. Let α be the flow-conductance ratio defined in Lemma 3.2.

(2) Compute a short-path flow decomposition P of f ∗ as described in Definition 3.13.
(3) For i from 1 to T = �1/α� do
• Let Pi be a random path from P where each path p ∈ P is sampled with probability
vp/vP .

(4) Return the subgraph H formed by the edge set ∪T
i=1Pi .

The following simple lemma shows that the total flow on the long paths is negligible when c is
large, which will be useful in the analysis.

Lemma 3.14. For the short-path flow decomposition in Definition 3.13, vP ≥ 1 − 1
c

.

Proof. Using αx∗e = f ∗e for e ∈ EF from Lemma 3.2 and the properties of the flow decomposition
P∗ of f ∗ in Lemma 3.4,

αx∗F =
∑

e ∈EF

f ∗e =
∑

p∈P∗
vp · |p ∩ EF | ≥

∑
p∈P∗−P

vp · |p ∩ EF | ≥ cαx∗F

∑
p∈P∗−P

vp = cαx
∗
F (1 −vP ),

where the last inequality is by the definition of long paths and the last equality is because f ∗ is a
unit s-t flow. �

Analysis of Approximation Guarantee. First, we consider the expected s-t effective resistance of
the returned subgraph H . Essentially the same proof as in Lemma 3.7 can give us the following
lemma. We only provide a sketched proof here.

Lemma 3.15. Suppose the input instance satisfies the conditions in Assumption 3.1. Let x∗ be an

optimal solution to (CP) and f ∗ be the unit s-t electrical flow supported in x∗. The expected s-t effective

resistance of the subgraph H returned by the randomized short path rounding algorithm is

E [ReffH (s, t )] ≤ 2

v2
P
Ex ∗ ( f

∗) =
2

v2
P

Reffx ∗ (s, t ),

where P is the short-path flow decomposition of f ∗ as described in Definition 3.13.

Proof Sketch. With the same idea in the proof of Lemma 3.7, we can define a random s-t flow
F with expectation E[F ] = fP/vP . Then, going through the same analysis until Equation (3.2), it
holds that

E[ReffH (s, t )] ≤ 1

T

∑
e ∈E

fP (e )

vP
+

(
1 − 1

T

) ∑
e ∈E

fP (e )2

v2
P
.
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We notice that fP ≤ f ∗ entry-wise by the definition of the short-path decomposition and vP ≤ 1.
Thus, the expected s-t effective resistance is further upper bounded by

E[ReffH (s, t )] ≤ 1

v2
P

�� 1

T

∑
e ∈E

f ∗e +
(
1 − 1

T

) ∑
e ∈E

( f ∗e )2�	 ≤ 2

v2
P
Ex ∗ ( f

∗),

where the last inequality follows by the same remaining analysis as in Lemma 3.7. �

The main difference in the analysis is to apply the following Hoeffding’s inequality (instead of
Markov’s inequality) to bound the probability that the returned subgraph has significantly more
than k edges.

Fact 3.16 (Hoeffding’s Ineqality). Let X1, . . . ,Xn ∈ [0,M] be independent random variables.

Let X =
∑n

i=1 Xi , and μ = E[X ], then for any δ > 0,

Pr(X ≥ (1 + δ )μ ) ≤ exp

(
−2δ 2μ2

nM2

)
.

Lemma 3.17. Suppose the input instance satisfies the conditions in Assumption 3.1. Let x∗ be an

optimal solution to (CP) and f ∗ be the unit s-t electrical flow supported in x∗. Let H be the subgraph

returned by the randomized short path rounding algorithm given x∗ as input, and |E (H ) | be the

number of edges in H . Then, for any δ > 0,

Pr ( |E (H ) | ≥ (1 + δ )k ) ≤ exp

(
−2δ 2

c2α

)
,

where c is the parameter in the short-path flow decomposition in Definition 3.13 and α is the flow-

conductance ratio of f ∗ and x∗ as defined in Lemma 3.2.

Proof. As in Lemma 3.6, we assume pessimistically that all integral edges EI will be included in
H , and so we focus on the fractional edges EF . LetXi,e be the indicator variable of whether the edge
e is sampled in the ith iteration of the short path rounding algorithm, and Xi,F :=

∑
e ∈EF

Xi,e be
the total number of fractional edges sampled in the ith iteration. LetXF be the total number of frac-
tional edges inH . Note thatXF ≤

∑T
i=1 Xi,F , since if some fractional edge was sampled in different

iterations, then we only count it once in XF . By linearity of expectation, E[XF ] ≤ ∑T
i=1 E[Xi,F ].

Let P∗ be the flow path decomposition of f ∗ in Lemma 3.4, and P be the short-path flow
decomposition of f ∗ as described in Definition 3.13. For an edge e , recall that ( fP )e :=

∑
p∈P:p�e vp

is the total flow value on e from the short paths in P. As we scaled the probability of each path
by 1/vP in the rounding algorithm, the probability that edge e is sampled in the ith iteration is
( fP )e/vP . Let f e := f ∗e − ( fP )e be the total flow value on e from the long paths in P∗ − P. The
expected value of Xi,F is

E[Xi,F ] =
∑

e ∈EF

E[Xi,e ] =
∑

e ∈EF

( fP )e

vP
=

∑
e ∈EF

f ∗e − f e

vP
=

∑
e ∈EF

αx∗e − f e

vP
.

By the definition of the long paths,∑
e ∈EF

f e =
∑

e ∈EF

∑
p∈P∗−P

vp =
∑

p∈P∗−P
vp · |p ∩ EF | ≥ cαx∗F

∑
p∈P∗−P

vp = cαx
∗
F (1 −vP ),

where we recall that x∗F =
∑

e ∈EF
x∗e . Therefore,

E[Xi,F ] =
∑

e ∈EF

αx∗e − f e

vP
≤ αx∗F ·

1 − c + cvP
vP

= αx∗F · (c −
c − 1

vP
) ≤ αx∗F ,

where the last inequality uses that vP ≤ 1 and c > 1. It follows that E[XF ] ≤ Tαx∗F ≤ x∗F .
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As each iteration is independent, the random variables Xi,F for 1 ≤ i ≤ T are independent.
Since we only use short paths, the maximum value of each Xi,F is at most cαx∗F . So, we can apply
Hoeffding’s inequality to show that

Pr
(
XF ≥ (1 + δ )x∗F

)
≤ exp ��−

2δ 2 (x∗F )2

Tc2α2 (x∗
F

)2
�	 ≤ exp

(
−2δ 2

c2α

)
.

Let XI be the total number of integral edges in H . As XI ≤ |EI |, we conclude that

Pr
(
|E (H ) | ≥ (1+δ )k

)
= Pr

(
XI +XF ≥ (1+δ ) ( |EI | +x∗F )

)
≤ Pr

(
XF ≥ (1+δ )x∗F

)
≤ exp

(
−2δ 2

c2α

)
.

�

As in Section 3.3, we can combine Lemmas 3.17 and 3.15 to show that the randomized short path
rounding algorithm is a bicriteria approximation algorithm.

Theorem 3.18. Suppose the input instance satisfies the conditions in Assumption 3.1. Suppose fur-

ther that k ≥ dst/ε
10, where ε > 0 is an error parameter satisfying ε ≤ η for a small constant η. Let x∗

be an optimal solution to (CP). Given x∗, the randomized short path rounding algorithm with c = 1/ε
will return a subgraph H with at most (1 + ε )k edges and ReffH (s, t ) ≤ (2 + 10ε ) · Reffx ∗ (s, t ) with

probability at least ε .

Proof. The additional assumption k ≥ dst/ε
10 implies that α ≤ ε5 by Lemma 3.3.

Setting c = 1/ε and δ = ε , it follows from Lemma 3.17 that

Pr( |E (H ) | ≥ (1 + ε )k ) ≤ exp

(
−2δ 2

c2α

)
≤ exp

(
−2

ε

)
< ε,

where the last inequality holds for ε > 0.
Since c = 1/ε , Lemma 3.14 implies that vP ≥ 1 − ε for the short-path flow decomposition in

Definition 3.13. Using Markov’s inequality and Lemma 3.15, for sufficiently small ε , we have

Pr
(
ReffH (s, t ) ≥ (2 + 10ε ) · Reffx ∗ (s, t )

)
≤ E [ReffH (s, t )]

(2 + 10ε ) · Reffx ∗ (s, t )

≤ 2

v2
P (2 + 10ε )

≤ 2

(1 − ε )2 (2 + 10ε )
< 1 − 2ε .

Therefore, with probability at least ε , the subgraphH returned by the randomized short path round-
ing algorithm satisfies both properties. �

Using the same arguments as in Section 3.4, we can turn the above bicriteria approximation
algorithm into a true approximation algorithm.

Theorem 3.19. Suppose the input instance satisfies the conditions in Assumption 3.1. Suppose fur-

ther that k ≥ 2dst/ε
10, where ε > 0 is an error parameter satisfying ε ≤ η for a small constant η.

There is a polynomial time (2+O (ε ))-approximation algorithm for the s-t effective resistance network

design problem.

Proof. As in the proof of Theorem 3.10, we apply the bicriteria approximation algorithm in
Theorem 3.18 with input x∗, an optimal solution to (CP) with the scaled-down budget k/(1 + ε ),
to return a subgraph H . As the new budget k/(1 + ε ) is still greater than dst/ε

10, by Theorem 3.18,
with probability at least ε the subgraph H satisfies |E (H ) | ≤ (1 + ε )k/(1 + ε ) = k and

ReffH (s, t ) ≤
(
2 +O (ε )

)
· opt

(
k

1 + ε

)
≤

(
2 +O (ε )

)
(1 + ε ) · opt(k ) ≤

(
2 +O (ε )

)
· opt(k ),

where we used the notations and arguments in Theorem 3.10.
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Fig. 3. Ω(n) integrality gap example.

For the time complexity, note that α ≤ ε5 by Lemma 3.3 and the large budget assumption, and so
we can assume that ε5 ≥ α ≥ 1/(4m), as otherwise there is a simple 2-approximation algorithm in
the case α ≤ 1/(4m) described in Theorem 3.10. Therefore, the success probability can be boosted
to a constant in polynomial number of executions of the bicriteria algorithm in Theorem 3.18. �

3.6 Cost Minimization with s-t Effective Resistance Constraint

In this subsection, we consider a “dual” problem of the s-t effective resistance minimization prob-
lem. In the dual problem, we are given a graph G = (V ,E) and a target effective resistance R,
and the objective is to find a subgraph H of minimum number of edges such that ReffH (s, t ) ≤
R. The same NP-hardness proof in Section 5.1 can be used to show that the dual problem is
NP-complete.

Using the same techniques for the s-t effective resistance minimization problem, we can obtain
a constant factor bicriteria approximation algorithm for this problem. As the proofs are very sim-
ilar, we will just state the results and highlight the differences. The main difference is that the
convex program has unbounded integrality gap, and as a consequence, we cannot turn the bicrite-
ria approximation algorithm into a true approximation algorithm as in the s-t effective resistance
network design problem. Using the same technique as in Theorem 3.10, however, we can return
an 8-approximation to the optimal number of edges without violating the effective resistance con-
straint, if we are allowed to buy up to four copies of the same edge (see Theorem 3.20).

Convex Programming Relaxation. We consider the following natural convex programming relax-
ation for the dual problem:

min
x ∈Rm

∑
e ∈E

xe

subject to Reffx (s, t ) = bT
stL
†
xbst ≤ R,

0 ≤ xe ≤ 1 ∀e ∈ E.

(DCP)

Integrality Gap Examples. Unlike the s-t effective resistance network design problem, the dual

convex program (DCP) has unbounded integrality gap. Consider the following example in
Figure 3, where the top path has length n−1, and the bottom path has only one edge. The tar-
get effective resistance is R = (n−1)2/((n−1)2 + ε ) for some constant ε > 0. Since R < 1, to satisfy
the effective resistance constraint, any integral solution must contain both paths and thus has cost
n. However, the fractional solution can set xe = ε/(n−1) for each edge in the top path and set
xe = 1 for the bottom edge. It can be checked that this fractional solution satisfies the constraint,
and the total cost is 1+ε . Therefore, the integrality gap of this example is Ω(n).

Optimal Solutions. Although the convex program (DCP) has a large integrality gap, the same
rounding technique can be used to obtain a constant factor bicriteria approximation algorithm.
Exactly the same characterization of the optimality conditions as in the s-t effective resistance
network design problem holds, such that any optimal solution satisfies the flow-conductance ratio
α > 0 as described in Lemma 3.2.
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Analogous to Lemma 3.3, we can prove an upper bound on α that

α2 ≤ R

dst
.

Analogous to Lemma 3.9, we can prove a lower bound on any optimal solution x that

opt :=
∑
e ∈E

xe ≥
d2

st

R
.

We can assume that R < dst , as otherwise a shortest s-t path is an optimal solution, and so we can
assume that 0 < α < 1.

Rounding Algorithm. The rounding algorithm is exactly the same as in Section 3.3. The same
proofs as in Lemmas 3.6 and 3.7 will imply that, with probability Ω(α ), the subgraph H returned
by the randomized path rounding algorithm satisfies

|E (H ) | ≤ 2
∑
e ∈E

x∗e and ReffH (s, t ) ≤ 4Reffx ∗ (s, t ),

where x∗ is an optimal solution to (DCP) and so |E (H ) | ≤ 2opt. The same lower bound on
α = Ω(1/m) as described in Theorem 3.10 applies, and so this is a randomized polynomial time
algorithm.

An Alternative Bicriteria Approximation Algorithm. In the s-t effective resistance network design
problem, we turn a bicriteria approximation algorithm into a true approximation algorithm, by
scaling down the budget k by a factor of two and running the bicriteria approximation algorithm.
For the proof, we argue opt(k/2) ≤ 2 · opt(k ) by scaling down an optimal solution x∗ with budget
k to a solution x∗/2 with budget k/2.

In the dual problem, we can also try a similar approach, by scaling down the target effective
resistance R by a factor of 4 and run the bicriteria approximation algorithm. However, we cannot
argue that opt(R/4) ≤ 4 · opt(R), as an optimal solution x∗ with effective resistance R may not be
able to scale up to 4x∗ with effective resistance R/4 because of the capacity constraints 0 ≤ xe ≤ 1
for e ∈ E. This approach would work if we are allowed to violate the capacity constraint by a factor
of 4.

Theorem 3.20. Given an weighted input graph G = (V ,E), there is a polynomial time algorithm

for the dual problem that returns a multi-subgraph H with |E (H ) | ≤ 8opt and ReffH (s, t ) ≤ R where

there are at most four parallel copies of each edge.

4 DYNAMIC PROGRAMMING ALGORITHMS FOR SERIES-PARALLEL GRAPHS

In this section, we will present the dynamic programming algorithms for solving the weighted s-t
effective resistance network design problem on series-parallel graphs. We first review the defini-
tions of series-parallel graphs in Section 4.1. Then, we present the exact algorithm in Theorem 1.8
when every edge has the same cost in Section 4.2, and the fully polynomial time approximation
scheme in Theorem 1.8 in Section 4.3.

4.1 Series-Parallel Graphs

Definition 4.1 (Two-terminal Series-parallel Graph). A two-terminal series-parallel graph (SP

graph) is a graph with two distinguished vertices (the source s and the target t ) that can be con-
structed recursively as follows:
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Fig. 4. An example of a SP-tree.

• Base case: A single edge (s, t )
• Compose step: IfG1 andG2 are two series parallel graphs with source si and target ti (i = 1, 2),

then we can combine them in two ways:
—Series-composition: We identify t1 with s2 as the same vertex, the source of the new graph

is s1 and the target is t2.
—Parallel-composition: We identify s1 with s2 as the same vertex and t1 with t2 as the same

vertex, the new source is s1 = s2 and the new target is t1 = t2.

Given the sequence of steps of constructing a series-parallel graph G, we can define a tree T
(SP-tree) as follows.

Definition 4.2 (SP-tree). An SP-tree of a given two-terminal series-parallel graph G is a binary
tree that is recursively defined as follows (see Figure 4 for an example):

• Leaf node: If G is a single edge, then T is a single node containing the edge.
• Recurse step:G is either a series-composition (S) or a parallel-composition (P) ofG1 andG2,

then T is a S-node (P-node) containing G, and its children are roots of the SP-trees of G1

and G2.

For a tree node v in a SP-tree T , let Gv be the subgraph that v represents, sv , tv be the two
terminals of Gv , and vl ,vr be its left and right child if v is an internal node. Note that the SP-tree
is a fully binary tree with 2m−1 nodes wherem is the number of edges in the graph.

Given a two-terminal SP graph, the corresponding SP-tree can be computed in O (n+m) time.
The linear time SP-graph recognition algorithm in Reference [48] will give us the construction
sequence of G, and we can build the SP-tree bottom-up.

4.2 Exact Algorithm for Unit-Cost

The following fact shows that the weighted s-t effective resistance can be computed easily from
the SP-tree.
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Fact 4.3 (Resistance of Series-parallel Network). Let G be a two-terminal SP graph and

each edge e has a non-negative resistance re . Let T be the corresponding SP-tree. For every tree node

v , we can compute the source-target effective resistance as follows:

Leaf node: ReffGv
(sv , tv ) = re if v is a leaf node with a single edge e ,

S-node: ReffGv
(sv , tv ) = ReffGvl

(svl
, tvl

) + ReffGvr
(svr
, tvr

),

P-node: ReffGv
(sv , tv ) =

ReffGvl
(svl
, tvl

) · ReffGvr
(svr
, tvr

)

ReffGvl
(svl
, tvl

) + ReffGvr
(svr
, tvr

)
.

We design the dynamic programming algorithm by defining the subproblems using the SP-tree
T . For every tree node v and b = 0, 1 . . .k , we define the subproblem

R (v,b) := min
H ⊆Gv

⎧⎪⎨⎪⎩ReffH (sv , tv ) |
∑
e ∈H

ce ≤ b
⎫⎪⎬⎪⎭ .

Since we assume that every edge e has cost ce = 1, there are at most 2mk subproblems, as the
SP-tree has at most 2m nodes and there are at most k possibilities for the cost of a subgraph.

It follows from the definition that R (vroot,k ) would be the optimal s-t effective resistance for our
problem. To compute R (v,b), with Fact 4.3, we can use the following recurrence, which exhausts
all possible distributions of the budget among the two children:

R (v,b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if v is a leaf node and b < ce ,

re if v is a leaf node and b ≥ ce ,

min
b′=0...b

R (vl ,b
′) + R (vr ,b − b ′) if v is a S-node,

min
b′=0...b

R (vl ,b
′) · R (vr ,b − b ′)

R (vl ,b ′) + R (vr ,b − b ′)
if v is a P-node.

As there are O (mk ) subproblems and each subproblem can be computed in O (k ) time, the time
complexity of this dynamic programming algorithm is O (mk2).

4.3 Fully Polynomial Time Approximation Scheme

In this subsection, we use dynamic programming to design a fully polynomial time approximation
scheme to prove Theorem 1.8. In the previous subsection, we assume that every edge has the
same cost to obtain an exact algorithm, by having a bounded number of subproblems in dynamic
programming. When the cost could be arbitrary, the number of subproblems can no longer be
bounded by a polynomial. Since the cost constraint must be satisfied, we do not change the cost of
the edges, but instead discretize the resistance of the edges and optimize over the cost. We show
that this gives an arbitrarily good approximation provided that the discretization is fine enough.

Rescaling: First, by rescaling, we assume that mine re = 1 and maxe re = U in G. Let m = |E |
and L = ε/m2 where ε > 0 is the error in the approximation guarantee. We further rescale the
resistance by setting re ← re/L. This rescaling ensures that for any subgraph of G in which s-t is
connected, the s-t effective resistance is upper bounded byUm/L (when all the edges are in series)
and is lower bounded by 1/(mL) (when all the edges are in parallel).

Subproblems and Recurrence: Let T be the SP-tree of G and let vroot be the root of T . We
define two similar sets of subproblems. For every tree node v and a value R ∈ [1/(mL),Um/L], we
define the subproblem

C (v,R) := min
H ⊆Gv

⎧⎪⎨⎪⎩
∑
e ∈H

ce | ReffH (sv , tv ) ≤ R
⎫⎪⎬⎪⎭.

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 22. Publication date: October 2022.



22:24 P. H. Chan et al.

Similar to the reasoning in the previous subsection, the subproblems satisfy the following recur-
rence relation:

C (v,R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ce if v is a leaf node with a single edge e and R ≥ re ,

∞ if v is a leaf node with a single edge e and R < re ,

min
R1,R2∈[1/(mL),U m/L]

{C (vl ,R1) +C (vr ,R2) | R1 + R2 ≤ R} if v is a S-node,

min
R1,R2∈[1/(mL),U m/L]

{C (vl ,R1) +C (vr ,R2) | R1R2

R1 + R2
≤ R} if v is a P-node.

Discretized subproblems: We cannot use dynamic programming to solve the above recurrence
relation efficiently as there are unbounded number of subproblems. Instead, we use dynamic pro-
gramming to compute the solution of all the “discretized” subproblems using the same recurrence
relation. For every integer R from �1/(mL)� to �Um/L�, we define

C (v,R) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ce if v is a leaf node with a single edge e and R ≥ �re �,
∞ if v is a leaf node with a single edge e and R < �re �,

min
R1,R2∈{ �1/(mL)� ... �U m/L� }

{C (vl ,R1) +C (vr ,R2) | R1 + R2 ≤ R} if v is a S-node,

min
R1,R2∈{ �1/(mL)� ... �U m/L� }

{C (vl ,R1) +C (vr ,R2) |
⌈

R1R2

R1 + R2

⌉
≤ R} if v is a P-node.

We can think of C (v,R) as the minimum cost required to select a subset of edges such that the
effective resistance between sv and tv is at most R, when the effective resistance is rounded up to
an integer during each step of the computation in the recurrence relation.

Algorithm and Complexity: After computing all C (v,R), the algorithm will return

min{R | C (vroot,R) ≤ k }

as the approximate minimum s-t effective resistance. Given a tree nodev , by trying all possible in-
tegral values of R1 and R2, we can compute the values ofC (v,R) for each possible R inO ((Um/L)2)

time. Therefore, the total running time of computing allC (v,R) isO (m)·((Um/L)2) = O (m7U 2/ε2).
To output the optimal edge set, we can store the optimal values of R1,R2 for each pair of (v,R) to
reconstruct the edge set.

Correctness and Approximation Guarantee: Since we have not changed the edge cost, the
solution returned by the algorithm will have total cost at most k . It remains to show that the s-t
effective resistance is at most (1+ ε ) times the optimal s-t effective resistance. For every tree node
v and every b ∈ [0,k], we define

R (v,b) := min{R | C (v,R) ≤ b,R ∈ [1/(mL),Um/L]},

R (v,b) := min{R | C (v,R) ≤ b,R ∈ {�1/(mL)�, . . . , �Um/L�}}.

It follows from the definitions that the optimal s-t effective resistance is R (vroot,k ), and the
output of our algorithm will be R (vroot,k ). The following lemma establishes the approximation
guarantee.

Lemma 4.4. For every tree node v and for every b ∈ [0,k], it holds that

R (v,b) ≤
(
1 +

ε |E (Gv ) |
m

)
R (v,b).

Proof. We prove the lemma by induction on the tree node of the SP-tree.
Base Case: Suppose v is a leaf node of T and Gv is a graph of a single edge e .
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• For b < ce , we have R (v,b) = R (v,b) = ∞,
• For b ≥ ce , we have R (v,b) = re , and

R (v,b) = �re � ≤ re + 1 = re +

( ε
m

) ( 1

mL

)
≤ re +

ε

m
re =

(
1 +

ε |E (Gv ) |
m

)
R (v,b),

where the second inequality uses the fact that every resistance is at least 1/(mL), and the last
equality uses |E (Gv ) | = 1 and re = R (v,b).

S-node: Suppose v is a S-node. For every b ∈ [0,k], we have

R (v,b) = min
b1,b2 |b1+b2=b

{R(vl ,b1) + R (vr ,b2)}

≤ min
b1,b2 |b1+b2=b

{(
1 +

ε |E (Gvl
) |

m

)
R (vl ,b1) +

(
1 +

ε |E (Gvr
) |

m

)
R (vr ,b2)

}

≤ min
b1,b2 |b1+b2=b

{(
1 +

ε |E (Gv ) |
m

)
(R (vl ,b1) + R (vr ,b2))

}

=

(
1 +

ε |E (Gv ) |
m

)
min

b1,b2 |b1+b2=b
{(R (vl ,b1) + R (vr ,b2))}

=

(
1 +

ε |E (Gv ) |
m

)
R (v,b),

where the first inequality follows from the induction hypothesis, and the second inequality follows
from the fact that max( |E (Gvl

) |, |E (Gvr
) |) ≤ |E (Gv ) | − 1.

P-node: Suppose v is a P-node. For every b ∈ [0,B], we have

R (v,b) = min
b1,b2 |b1+b2=b

{⌈
1

1/R (vl ,b1) + 1/R (vr ,b2)

⌉}
≤ min

b1,b2 |b1+b2=b

{⌈(
1 +

ε ( |E (Gv ) | − 1)

m

)
1

1/R (vl ,b1) + 1/R (vr ,b2)

⌉}
=

⌈(
1 +

ε ( |E (Gv ) | − 1)

m

)
R (v,b)

⌉
≤

(
1 +

ε ( |E (Gv ) | − 1)

m

)
R (v,b) + 1

=

(
1 +

ε ( |E (Gv ) | − 1)

m

)
R (v,b) +

ε

m

1

mL

≤
(
1 +

ε ( |E (Gv ) | − 1)

m

)
R (v,b) +

ε

m
R (v,b)

=

(
1 +

ε |E (Gv ) |
m

)
R (v,b),

where the first inequality follows from the induction hypothesis and the fact that max( |E (Gvl
) |,

|E (Gvr
) |) ≤ |E (Gv ) | − 1, and the last inequality holds as the minimum resistance of any subgraph

is at least 1/(mL).
Therefore, the lemma follows by induction on the SP-tree. �

By substituting v = vroot and b = k , we have

R (vroot,k ) ≤
(
1 +

mε

m

)
R (vroot,k ) = (1 + ε )R (vroot,k ),

which completes the proof of first part of Theorem 1.8.
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The following lemma shows that we actually do not lose too much by focusing on the input
graphs with polynomially bounded resistance ratio.

Lemma 4.5. Given any input graph G = (V ,E, {re }, {ce }) of the weighted problem with the

designated vertices s and t , within polynomial time, we can transform G into a graph G ′ =
(V ′,E ′, {r ′e }, {c ′e }) containing both s and t such that the following three conditions are satisfied.

(1) The graph G ′ is a subgraph of G, V ′ ⊆ V and E ′ ⊆ E. Moreover, for any edge e ∈ E ′, the

resistance does not decrease r ′e ≥ re and the cost does not change c ′e = ce .

(2) The ratio between maximum resistance and minimum resistance inG ′ is polynomially bounded,

in particular maxe ∈E′ r
′
e/mine ∈E′ r

′
e ∈ O (n7).

(3) The s-t effective resistance of an optimal solution in G ′ does not increase too much, i.e.,

opt(G ′) ≤ (1 + O (ε ))opt(G ), where opt(·) is the optimal value of an input graph and ε is

an arbitrary small constant.

Proof. Let P∗G (k ) be the minimum effective resistance of an s-t path in G with cost at most k .
We consider the following transformation procedure, given some small constant ε ,

• Delete all edges with resistance larger than mP∗G (k )/ε from E, i.e., E ′ = {e ∈ E : re ≤
mP∗G (k )/ε }.
• Round up the minimum resistance to εP∗G (k )/m2n, i.e., for any e ∈ E ′, set

r ′e =
⎧⎪⎪⎨⎪⎪⎩

ε

m2n
· P∗G (k ), if re ≤

ε

m2n
· P∗G (k ),

re , otherwise.

The first condition is satisfied trivially according to the transformation procedure. The second
condition is also satisfied as the ratio maxe ∈E′ r

′
e/mine ∈E′ r

′
e ≤ m3n/ε2, which is inO (n7) for small

constant ε .
It remains to prove the last condition. We start with a claim that P∗G (k ) is a polynomially bounded

approximation to the optimal s-t effective resistance opt(G ).

Claim. P∗G (k )/mn ≤ opt(G ) ≤ P∗G (k ).

Proof. The second inequality is easy as any s-t path with cost at most k is a feasible solution
to the weighted problem. We just focus on the first inequality.

Let H be an optimal solution with input G, then any s-t path in H has total resistance at least
P∗G (k ). As any simple s-t path has at most n edges, there must be an edge with resistance at least
P∗G (k )/n in any simple s-t path. This implies there must be an s-t cut (S,T ) inH such that all edges
e ∈ δ (S ) have resistance at least P∗G (k )/n.

Now, we identify all vertices in S andT , respectively, to form a new graph H ′ with two vertices
and multiple parallel edges between these two vertices. Note that there are at mostm such parallel
edges and each edge has resistance at least P∗G (k )/n as it belongs to the cut δ (S ). Thus, the s-t
effective resistance in H ′ is lower bounded by ReffH ′ (s, t ) ≥ P∗G (k )/mn.

According to Rayleigh’s monotonicity principle (Fact 2.2), identifying vertices never increases
the effective resistance, hence opt(G ) = ReffH (s, t ) ≥ ReffH ′ (s, t ) ≥ P∗G (k )/mn. �

With the above claim, we are ready to show that deleting edges with large resistances and
rounding up edges with small resistances do not change the optimal value too much.

Let H be an optimal solution of G, i.e., ReffH (s, t ) = opt(G ) and cost (H ) ≤ k . To prove a lower
bound on opt(G ), we first perform the deletion step on H to get H1 ⊆ H . Then, with the rounding
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up step on H1, we obtain H2 ⊆ G ′. We are going to show each of these steps does not increase the
s-t effective resistance too much:

ReffH1 (s, t ) ≤ (1 + 2ε ) · opt(G ) and ReffH2 (s, t ) ≤ ε · opt(G ) + ReffH1 (s, t ).

As H2 has the same cost as H1, which is less than cost of H , H2 is a feasible solution for G ′. Com-
bining together, we establish the third condition of the Lemma, opt(G ′) ≤ (1 + 3ε ) · opt(G ).

We prove ReffH1 (s, t ) ≤ (1 + 2ε ) · opt(G ) first. Let f be the unit s-t electrical flow on H . We are
going to modify f into a unit s-t flow supported on H1. Consider an edge e in H with resistance
re ≥ mP∗G (k )/ε , the potential difference between the two endpoints of e is re · fe , which is at most
the potential difference between s and t , i.e., ReffH (s, t ) ≤ P∗G (k ). Thus, the flow fe on edge e is
at most P∗G (k )/re ≤ ε/m. Since there are at most m edges with resistance re ≥ mP∗G (k )/ε , with
standard argument to remove one fractional s-t flow path at a time, we can obtain an s-t flow
f ′ ≤ f with flow value at least 1−ε and f ′e = 0 on any edge e with resistance re ≥ mP∗G (k )/ε . Note
that f ′ is supported onH1 and the energy of f ′ onH1 is the same as the energy onH , which is less
than the energy of f . After rescaling f ′ to an unit s-t flow, the EH1 ( f ′) is at most EH ( f )/(1−ε )2 ≤
(1 + 2ε ) · opt(G ). By Thomson’s principle (Fact 2.1), ReffH1 (s, t ) ≤ EH1 ( f ′) ≤ (1 + 2ε ) · opt(G ).

Then, we move on to show that ReffH2 (s, t ) ≤ ε · opt(G ) + ReffH1 (s, t ). Let f ′′ be the unit s-t
electrical flow on H1. Again, by Thomson’s principle (Fact 2.1), the s-t effective resistance of H2 is
bounded by the energy of f ′′ on H2:

ReffH2 (s, t ) ≤ EH2 ( f ′′) =
∑

e ∈H2

r ′e · ( f ′′e )2 =
∑

re ≤ε ·P ∗
G

(k )/m2n

ε · P∗G (k )

m2n
· ( f ′′e )2 +

∑
re >ε ·P ∗

G
(k )/m2n

re · ( f ′′e )2

≤ m ·
ε · P∗G (k )

m2n
+

∑
e ∈H1

re · ( f ′′e )2 ≤ ε · opt(G ) + ReffH1 (s, t ).

The first inequality on the second line holds as f ′′e ≤ 1 in the unit s-t electrical flow. The second
inequality on the second line is because of the claim P∗G (k )/mn ≤ opt(G ) and f ′′ is the unit s-t
electrical flow on H1.

We have established opt(G ′) ≤ (1+3ε ) ·opt(G ), and almost finish the proof of the lemma except
that we do not know how to calculate the exact value of P∗G (k ) efficiently. Fortunately, finding an
affordable s-t path with effective resistance P∗G (k ) is equivalent to the so called Restricted Shortest
Path problem, which admits an FPTAS [27]. By using a (1 ± ε )-estimation of P∗G (k ), the same
analysis works only with a slightly worse dependence on ε . As finding approximate P∗G (k ), deleting
and rounding up edges all run in polynomial time, we can transform G to G ′ efficiently. �

Given an input graph G of the weighted problem and a fixed arbitrary small constant ε , with a
polynomial time preprocessing as suggested in Lemma 4.5, we end up with a graph G ′ with poly-
nomially bounded resistance ratio. Then, with the discretized dynamic programming algorithm,
we return a feasible H ′ ⊆ G ′ in polynomial time, such that ReffH ′ (s, t ) ≤ (1+ ε ) · opt(G ′). LetH be
a graph the same as H ′, but with the original resistance (from G) on each edge. Since we did not
increase any edge resistance from H ′ to H (Lemma 4.5), ReffH (s, t ) ≤ ReffH ′ (s, t ) by monotonicity
principle (Fact 2.2). Again, according to Lemma 4.5, we have

ReffH (s, t ) ≤ (1 + ε ) · opt(G ′) ≤ (1 +O (ε ))opt(G ).

As a conclusion, we have an FPTAS for the weighted problem on SP-graphs, completed the whole
proof of Theorem 1.8.
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Fig. 5. An illustration of the construction of the graph G from a 3DM instance.

5 HARDNESS RESULTS

In this section, we first prove that the s-t effective resistance network design problem is NP-hard
in Section 5.1. Then, we prove that the weighted problem is APX-hard assuming the small-set
expansion conjecture in Section 5.2.

5.1 NP-Hardness

We will prove Theorem 1.2 in this subsection. The following is the decision version of the problem.

Problem 5.1 (s-t Effective Resistance Network Design).

Input: An undirected graph G = (V ,E), two vertices s, t ∈ V , and two parameters k and R.

Question: Does there exist a subgraph H of G with at most k edges and ReffH (s, t ) ≤ R?

We will show that this problem is NP-complete by a reduction from the 3-Dimensional Match-

ing (3DM) problem.

Problem 5.2 (3-Dimensional Matching).

Input: Three disjoint sets of elements X = {x1, . . . ,xq },Y = {y1, . . . ,yq },Z = {z1, . . . , zq }; a

set of triples T ⊆ X × Y × Z where each triple contains exactly one element in X ,Y ,Z .

Question: Does there exist a subset of q pairwise disjoint triples in T ?

Reduction: Given an instance of 3DM with {(X ,Y ,Z ),T }, let τ = |T | and denote the triples
by T = {T1, . . . ,Tτ }.

We construct a graph G = (V ,E) as follows (see Figure 5 for an illustration):

Vertex Set: The vertex set V is the disjoint union of five sets {s}, {t },VA, VB , and D. Each
vertex in VA corresponds to a triple in T , that is VA = {T1, . . . ,Tτ }. Each vertex in VB cor-
responds to an element in X ∪ Y ∪ Z , that is VB = {x1, . . . ,xq ,y1, . . . ,yq , z1, . . . , zq }. Let
l = 3τ + 3q. The set D consists of τ · l “dummy” vertices {di, j | 1 ≤ i ≤ τ , 1 ≤ j ≤ l }. So, there
are totally τ + 3q + 2 + τ (3τ + 3q) vertices inG, which is polynomial in the input size of the
3DM instance.
Edge Set: The edge set E is the disjoint union of three edge sets F1, F2 and P defined as follows.
There are 3τ edges in F1, where we have three edges (T ,xa ), (T ,yb ) and (T , zc ) for each triple
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Fig. 6. The subgraph H when the 3DM instance has q disjoint triples.

Fig. 7. The subgraph H when U is non-empty.

T = (xa ,yb , zc ) ∈ T . There are 3q edges in F2, where there is an edge from each vertex in
VB to t . There are τ (l + 1) edges in P , where there is a path Pi := (s,di,1,di,2, . . . ,di,l ,Ti ) for
each tripleTi ∈ T , 1 ≤ i ≤ τ . So, there are totally 3τ + 3q + τ (3τ + 3q + 1) edges in E, which
is polynomial in the input size of the 3DM instance.

The following claim completes the proof of Theorem 1.2.

Lemma 5.3. Let k = q(l + 1) + 3τ + 3q and R = (3(l + 1) + 2)/3q. The 3DM instance has q disjoint

triples if and only if the graph G has a subgraph H with at most k edges and ReffH (s, t ) ≤ R.

Proof. One direction is easy. If there are q disjoint triples in the 3DM instance, say {T1, . . . ,Tq },
then H will consist of the q paths P1, . . . , Pq , the 3q edges in F1 incident on T1, . . . ,Tq , and all the
3q edges in F2. There are (l+1)q+3q+3q ≤ k edges inH , and ReffH (s, t ) = (l+1)/q+1/3q+1/3q =
(3(l + 1) + 2)/3q = R, as in the graph in Figure 6.

The other direction is more interesting. If there do not existq disjoint triples in the 3DM instance,
then we need to argue that ReffH (s, t ) > R for any H with at most k edges. First, note that k <
(q + 1) (l + 1), and so the budget is not enough for us to buy more than q paths. As it is useless
to buy only a proper subset of a path, we can thus assume that H consists of q paths and all the
edges in F1, F2. H has a total of exactly q(l + 1) + 3τ + 3q = k edges. For any such H , we will argue
that ReffH (s, t ) > R. Without loss of generality, assume that H consists of P1, . . . , Pq and all edges
in F1 and F2. As T1, . . . ,Tq are not disjoint, there are some vertices in VB that are not neighbors of
T1 ∪ . . . ∪Tq . Call those verticesU .

We consider the following modifications of H to obtain H ′, and use ReffH ′ (s, t ) to lower bound
ReffH (s, t ). For every pair of vertices in VB , we add an edge of zero resistance. For each edge inci-
dent on Tq+1, . . . ,Tτ , we decrease its resistance to zero. By the monotonicity principle, the modi-
fications will not increase the s-t effective resistance, as we either add edges with zero resistance
or decrease the resistance of existing edges. The modifications are equivalent to contracting the
vertices with zero resistance edges in between, and so H ′ is equivalent to the graph in Figure 6.
Therefore, we have ReffH (s, t ) ≥ ReffH ′ (s, t ) ≥ R.
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We will prove that one of the inequalities in ReffH (s, t ) ≥ ReffH ′ (s, t ) ≥ R must be strict when
U � ∅ (Figure 7). To argue the strict inequality, we look at the unit s-t electrical flow f in H and
consider two cases.

• If there exists some vertex u ∈ U with no incoming electrical flow, then we can delete such
a vertex without changing ReffH (s, t ). But then in the modified graph H ′, the number of
parallel edges to t is now strictly smaller than 3q, and therefore ReffH ′ (s, t ) > R.
• If there exists some vertex u ∈ U with some incoming electrical flow, then f (Tju) > 0 for

some j ≥ q + 1. Since we have decreased the resistance of such an edge Tju to 0, the energy
of f in H ′ is strictly smaller than the energy of f in H . By Thomson’s principle, we have
ReffH ′ (s, t ) ≤ EH ′ ( f ) < EH ( f ) = ReffH (s, t ).

Since the 3DM instance has no q disjoint triples, it follows that U � ∅ and thus one of the above
two cases must apply. In either case, we have ReffH (s, t ) > R and this completes the proof of the
other direction. �

5.2 Improved Hardness Assuming Small-Set Expansion Conjecture

In this subsection, we will prove Theorem 1.6 that it is NP-hard to approximate the weighted s-
t effective resistance network design problem within a factor smaller than 2. First, we will state
the small-set expansion conjecture and its variant on bipartite graphs, and present an overview
of the proof in Section 5.2.1. Next, we will reduce the bipartite small-set expansion problem to
the weighted s-t effective resistance network design problem in Section 5.2.2, and then reduce
the small-set expansion problem to the bipartite small-set expansion problem in Section 5.2.3 to
complete the proof.

5.2.1 The Small-Set Expansion Conjecture and Proof Overview. The gap small-set expansion
problem was formulated by Raghavendra and Steurer [43]. We use the version stated in Refer-
ence [44].

Definition 5.4 (Gap Small-Set Expansion Problem [43, 44]). Given an undirected graphG = (V ,E),
two parameters 0 < β < α < 1 and δ > 0, the (α , β )-gap δ -small-set expansion problem, denoted
by SSEδ (α , β ), is to distinguish between the following two cases:

• Yes: There exists a subset S ⊆ V with vol(S ) = δ vol(V ) and ϕ (S ) ≤ β .
• No: Every subset S ⊆ V with vol(S ) = δ vol(V ) has ϕ (S ) ≥ α .

It is conjectured in Reference [43] that the gap small-set expansion problem becomes harder
when δ becomes smaller.

Conjecture 5.5 (Small-Set Expansion Conjecture [43, 44]). For any ε ∈ (0, 1
2 ), there exists

sufficiently small δ > 0 such that SSEδ (1 − ε, ε ) is NP-hard even for regular graphs.

It is known that the small-set expansion conjecture implies the Unique Game Conjecture

(UGC) [43] and is equivalent to some variant of the UGC, i.e., the conjecture that UGC still holds
when the input constraint graphs are required to be small-set expanders (see Reference [44] for
more details).

We will show the SSE-hardness of the weighted s-t effective resistance network design problem
in two steps, and use the small-set expansion problem on regular bipartite graphs as an intermedi-
ate problem.

Proposition 5.6. For any ε > 0, there is a polynomial time reduction from SSEδ (1 − ε, ε ) on

d-regular graphs to SSEδ (1 − 16ε, ε ) on d-regular bipartite graphs.

ACM Transactions on Algorithms, Vol. 18, No. 3, Article 22. Publication date: October 2022.



Network Design for s-t Effective Resistance 22:31

Proposition 5.7. Given an instance of SSEδ (α , β ) on a d-regular bipartite graph B, there is a

polynomial time algorithm to construct an instance of the weighted s-t effective resistance network

design problem with graph G and cost budget k satisfying the following properties.

• If B is a Yes-instance, then there is a subgraph H of G with cost at most k and

ReffH (s, t ) ≤ 2

(1 − β )dk
.

• if B is a No-instance, then every subgraph H of G with cost at most k has

ReffH (s, t ) ≥ 2

(1 − α
2 )dk

.

The two propositions immediately lead to the following theorem.

Theorem 5.8. For any ε ′ > 0, it is NP-hard to approximate the weighted s-t effective resistance

network design problem to within a factor of 2−ε ′, assuming that SSEδ (1−ε, ε ) is NP-hard on regular

graphs for sufficiently small ε > 0.

Proof. First, given a d-regular instance of SSEδ (1 − ε, ε ), we apply Proposition 5.6 to obtain a
d-regular bipartite instance of SSEδ (1−16ε, ε ). Then, we apply Proposition 5.7 with α = 1−16ε and
β = ε and see that the ratio between the s-t effective resistance of the No-case and the Yes-case is
at least

(1 − β )dk

(1 − α
2 )dk

=
1 − ε
1
2 + 8ε

=
2(1 − ε )

1 + 16ε
> 2 − ε ′,

for sufficiently small ε . �

The hardness result of the general weighted s-t effective resistance network design problem
in Theorem 1.6 follows from Theorem 5.8 directly. For the hardness of the special setting where
ce = 1 for all e ∈ E, we provide more details in Remark 5.10 after we presented the reduction to
the weighted s-t effective resistance network design problem.

In the remaining of this section, we will prove Proposition 5.7 in Section 5.2.2 and Proposition 5.6
in Section 5.2.3.

5.2.2 From Bipartite Small-set Expansion to Weighted s-t Effective Resistance Network Design.

We prove Proposition 5.7 in this subsection. In the Yes-case of bipartite Small-set Expansion

(SSE), we use the small dense subgraph (from the small low conductance set) to construct a small
subgraph with small s-t effective resistance. In the No-case of bipartite SSE, we argue that every
small subgraph has considerably larger s-t effective resistance.

Construction: Given an SSEδ (α , β ) instance with a d-regular bipartite graph B = (VX ,VY ;EB ),
we construct an instance of the weighted s-t effective resistance network design problem with
graph G = (V ,E) as follows. See Figure 8 for an illustration.

Vertex Set: The vertex set V of G is simply the disjoint union of {s},VX ,VY , {t }.
Edge Set: The edge set E ofG is the disjoint union of three edge sets Es ,EB ,Et . The edge set
Es has |VX | edges, where there is an edge from s to each vertex v ∈ VX . The edge set Et has
|VY | edges, where there is an edge from each vertex v ∈ VY to t .
Costs and Resistances: Every edge e in EB has ce = 0 and re = 1. Every edge e ∈ Es ∪ Et

has ce = 1 and re = 0.
Budget: The cost budget k is δ |VX ∪VY |.
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Fig. 8. Reduction from bipartite small set expansion to weighted s-t effective resistance network design.

Fig. 9. In the Yes-case, the solid edges are included in H and the dashed edges are deleted.

Yes-case: Suppose B is a Yes-instance of SSEδ (α , β ). Since B is regular, there exist subsets X ⊆
VX and Y ⊆ VY such that |X ∪Y | = δ |VX ∪VY | = k and ϕB (X ∪Y ) ≤ β . We construct the subgraph
H of G as follows.

Subgraph H : The subgraph H includes all the edges from s to X , all the edges from X to Y ,
and all the edges from Y to t . Since edges from X to Y are of cost zero, the total cost in H is
equal to |X | + |Y | = k .

The following claim will complete the proof of the first item of Proposition 5.7.

Lemma 5.9. ReffH (s, t ) ≤ 2/((1 − β )dk ).

Proof. Since B is a d-regular bipartite graph, we have

d ( |X | + |Y |) = volB (X ∪ Y ) = |δB (X ∪ Y ) | + 2|EB (X ,Y ) |,

where EB (X ,Y ) denotes the set of edges with one endpoint in X and one endpoint in Y . Since
ϕB (X ∪ Y ) ≤ β , we have |δB (X ∪ Y ) | ≤ β · volB (X ∪ Y ) = dβ ( |X | + |Y |). Hence, the number of
edges between X and Y is

|EB (X ,Y ) | = d ( |X | + |Y |) − |δB (X ∪ Y ) |
2

≥ 1

2
(1 − β )d ( |X | + |Y |) = 1

2
(1 − β )dk .

In terms of s-t effective resistance, H is equivalent to the graph in Figure 9, where Z = (VX \X ) ∪
(VY \Y ) is the set of vertices not in X and Y . Notice that the edges from s to X and from Y to t have
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Fig. 10. The subgraph H ′ is obtained by identifying the subsets X ,Y ,Z into single vertices.

zero resistance and edges from X and Y have resistance one. By removing the edges and vertices
associated to Z , we can upper bound ReffH (s, t ) ≤ 2/((1 − β )dk ). �

No-case: We will prove the second item of Proposition 5.7 by arguing that every subgraph of
B with total cost at most k has considerably larger s-t effective resistance. Since all the edges
between VX and VY have zero cost and adding edges never increases s-t effective resistance (by
Rayleigh’s monotonicity principle), we can assume without loss of generality that any solution H
to the weighted s-t effective resistance network design problem takes all edges between VX and
VY and also takes exactly k edges from Es ∪ Et . Consider an arbitrary subgraph H with the above
properties. Let X ⊆ VX be the set of neighbors of s and Y ⊆ VY be the set of neighbors of t , with
|X | + |Y | = k . Let ϕ := ϕB (X ∪Y ). Note that ϕ ≥ α as we are in the No-case where ϕB (X ∪Y ) ≥ α
for every |X ∪ Y | = k . Using the same calculation as above, we have

|EB (X ,Y ) | = 1

2
(1 − ϕB (X ∪ Y ))dk =

1

2
(1 − ϕ)dk .

The subgraph H is shown in Figure 10, where Z = (VX \X ) ∪ (VY \Y ) is the set of vertices not in X
and Y , and the edges within Z are not shown. To lower bound ReffH (s, t ), we modify H to obtain
H ′ and argue that ReffH (s, t ) ≥ ReffH ′ (s, t ) and then show a lower bound on ReffH ′ (s, t ).

To obtain H ′ from H , we simply identify the three subsets of vertices X ,Y ,Z to three vertices,
which is equivalent to adding a clique of zero resistance edges to each of these three subsets. By
Rayleigh’s monotonicity principle, this could only decrease the s-t effective resistance, and so we
have ReffH (s, t ) ≥ ReffH ′ (s, t ).

In terms of s-t effective resistance, the subgraph H ′ is equivalent to the graph with two paths
between X and Y (with parallel edges): one path P1 of length one with |EB (X ,Y ) | parallel edges
between X and Y , another path P2 of length two with |EB (X ,Z ) | parallel edges between X and Z
and |EB (Z ,Y ) | parallel edges between Z and Y . To lower bound ReffH ′ (s, t ), we lower bound the
resistance of P1 and P2, denoted by r (P1) and r (P2). Note that

r (P1) =
1

EB (X ,Y )
=

2

(1 − ϕ)dk
.

For r (P2), let x = |δB (X ,Z ) | and y = |δB (Y ,Z ) |, then

r (P2) =
1

x
+

1

y
=

1

x + y
· (x + y)2

xy
=

1

x + y
·
(
x

y
+
y

x
+ 2

)
≥ 4

x + y
=

4

ϕdk
,

where the inequality holds, since a + 1/a ≥ 2 for any a > 0, and the last equality holds, because
x + y = |δB (X ∪ Y ) | = ϕdk . Finally, by Fact 4.3,

ReffH (s, t ) ≥ ReffH ′ (s, t ) =
1

1/r (P1) + 1/r (P2)
≥ 1

1
2 (1 − ϕ)dk + 1

4ϕdk
=

2

(1 − ϕ/2)dk
≥ 2

(1 − α/2)dk
,
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where the last inequality is because we are in the No-case. This completes the proof of the second
item of Proposition 5.7.

Remark 5.10. In this subsection, we show the hardness of the weighted s-t effective resistance
network design problem, when the edge cost and the edge resistance could be arbitrary. Using a
similar argument as in the proof of Theorem 1.2, the reduction can be modified to the unit-cost
case if we replace the edges from s toVX andVY to t by sufficiently long paths (so that the cost of
connecting s to a vertex inVX is much larger than the cost of connecting a vertex inVX to a vertex
in VY ). Therefore, the same (2 − ε )-SSE-hardness also holds in the case when every edge has the
same cost.

5.2.3 From Small Set Expansion to Bipartite Small Set Expansion. We prove Proposition 5.6 in
this subsection.

Construction: Given an instance SSEδ (1 − ε, ε ) on a d-regular graph G = (V ,E), we construct
a d-regular bipartite graph B = (VX ,VY ;EB ) as follows. For each vertex v in V , we create a vertex
vX ∈ VX and a vertex vY ∈ VY , so that |VX | = |VY | = |V |. For each edge uv ∈ E, we add two edges
uXvY and uYvX to EB . It is clear from the construction that B is d-regular.

Correctness: To prove Proposition 5.6, we will establish the following two claims.

(1) Yes-case: If there is a set S ⊆ V with |S | = δ |V | and ϕG (S ) ≤ ε inG, then there exist X ⊆ VX

and Y ⊆ VY with |X | + |Y | = δ ( |VX | + |VY |) and ϕB (X ∪ Y ) ≤ ε in B.
(2) No-case: If every set S ⊆ V with |S | = δ |V | has ϕG (S ) ≥ 1 − ε in G, then every sets X ⊆ VX

and Y ⊆ VY with |X | + |Y | = δ ( |VX | + |VY |) has ϕB (X ∪ Y ) ≥ 1 − 16ε in B.

Yes-case: Let S ⊆ V be a subset with |S | = δ |V | and ϕG (S ) ≤ ε in G. Let SX := {vX | v ∈ S }
and SY := {vY | v ∈ S }, with |S | = |SX | = |SY |. By construction, an edge uv ∈ δG (S ) if and only
if both uXvY and vXuY are in δB (SX ∪ SY ), and thus |δB (SX ∪ SY ) | = 2|δG (S ) |. Since |SX ∪ SY | =
|SX | + |SY | = 2|S | and B is d-regular, we have

ϕB (SX ∪ SY ) =
|δB (SX ∪ SY ) |
volB (SX ∪ SY )

=
|δB (SX ∪ SY ) |
d ( |SX | + |SY |)

=
2|δG (S ) |

2d |S | = ϕG (S ) ≤ ε .

No-case: Consider arbitrary subsetsX ⊆ VX andY ⊆ VY with |X |+ |Y | = δ ( |VX |+ |VY |) = 2δ |V |.
To lower bound ϕB (X ∪Y ), we will upper bound |EB (X ,Y ) |. We partitionX into groupsX1, . . . ,Xa

where every group except the last group is of size δ |V |/2 and the last group is of size at most δ |V |/2.
We partition Y into groups Y1, . . . ,Yb in a similar way. The following claim uses the small-set
expansion property in G to show that there is no small dense subset in B.

Lemma 5.11. Suppose G is a No-instance of SSEδ (1 − ε, ε ). Then, for any 1 ≤ i ≤ a and 1 ≤ j ≤ b,

|EB (Xi ,Yj ) | ≤ εδd |V |.

Proof. We first argue that there is no small dense subset inG, and then we will use it to bound
|EB (Xi ,Yj ) |. Suppose S ⊆ V with |S | = δ |V |. As G is a No-instance, we know that ϕG (S ) ≥ 1 − ε
and thus |δG (S ) | ≥ (1 − ε ) volG (S ) = (1 − ε )d |S |. Since d |S | = volG (S ) = |δG (S ) | + 2|EG (S, S ) |, it
follows that |EG (S, S ) | ≤ εd |S |/2 = εδd |V |/2. Note that this also implies trivially that |EG (Z ,Z ) | ≤
εδd |V |/2 for any Z with |Z | ≤ δ |V |.

Given Xi and Yj , let Z := {v ∈ G | vX ∈ Xi or vY ∈ Yj }. In other words, Z is the set of vertices
in G that have at least one copy in Xi ∪ Yj in B. Since each Xi and Yj is of size at most δ |V |/2,
it follows that |Z | ≤ δ |V |. Also, note that |EB (Xi ,Yj ) | ≤ 2|EG (Z ,Z ) |, as each edge in EB (Xi ,Yj )
corresponds to one edge in EG (Z ,Z ) while each edge in EG (Z ,Z ) is corresponded to at most two
edges in EB (Xi ,Yj ). Therefore, we can apply the bound in the previous paragraph to conclude that
|E (Xi ,Yj ) | ≤ 2|EG (Z ,Z ) | ≤ εδd |V |. �
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We now use the lemma to bound |EB (X ,Y ) |. Since |X | + |Y | = 2δ |V |, it follows that a ≤ 4 and
b ≤ 4, and therefore

|EB (X ,Y ) | ≤
a∑

i=1

b∑
j=1

|EB (Xi ,Yj ) | ≤ abεδd |V | ≤ 16εδd |V |.

As B is bipartite,

|δB (X ∪ Y ) | = volB (X ∪ Y ) − 2|EB (X ,Y ) | ≥ 2δd |V | − 32εδd |V | = 2(1 − 16ε )δd |V |.

Therefore, we have

ϕB (X ∪ Y ) =
|δB (X ∪ Y ) |
volB (X ∪ Y )

≥ 2(1 − 16ε )δd |V |
2δd |V | = 1 − 16ε .

This completes the proof of Proposition 5.6. We remark that a more careful argument gives
|EB (X ,Y ) | ≤ 6εδd |V | and thus ϕB (X ∪ Y ) ≥ 1 − 6ε , but this constant does not matter for the
proof of Theorem 5.8.

6 CONCLUDING REMARKS

We have formulated a new and natural network design problem and presented some hardness and
algorithmic results. It opens up a number of interesting problems to be studied.

(1) For the s-t effective resistance network design problem, we conjecture that the integrality
gap of the convex program is exactly two. As mentioned in Remark 3.11, the analysis of
the 8-approximation is not tight, and we can show that the same algorithm achieves an
approximation ratio strictly smaller than 5. It would be good to close the gap completely.

(2) The weighted case of arbitrary costs and arbitrary resistances is wide open. It will be in-
teresting if there are stronger convex programming relaxations for the problem (perhaps
adding some knapsack constraint as suggested by the dynamic programming algorithms for
series-parallel graphs).

(3) As in survivable network design, one could study the general problem when there are mul-
tiple source-sink pairs and each pair has a different effective resistance requirement. It will
be very interesting if it is still possible to achieve a constant factor approximation in this
general setting.

(4) An interesting intermediate problem is to find a minimum cost network so that the maximum
effective resistance over pairs (the resistance diameter) is minimized. This is an analog of the
global connectivity problem in traditional network design.

A more open-ended direction is to unify and extend the techniques for network design prob-
lems with spectral requirements. The subsequent work [37] has made some progress towards this
direction, where we provide a spectral approach to incorporate not only effective resistance con-
straints but also other spectral requirements (e.g., algebraic connectivity, graph expansion, etc.)
and unstructured non-negative linear constraints into network design. Nevertheless, the result in
this article is not subsumed by the one in Reference [37], as we have discussed in Section 1.3. The
effective resistance network design problems in the regime of small k are still very interesting
problems to investigate.
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APPENDIX

A RANDOMIZED ROUNDING WITH APPROXIMATELY OPTIMAL SOLUTION

In this Appendix, we show how to use an approximately optimal solution of the convex pro-
gram (CP) to design the rounding algorithm. We use Assumption 3.1 (ce = we = 1 for all e ∈ E) in
this section.

Ideally, we would like to argue that if x : E → R≥0 is an approximately optimal solution of (CP),
then there exist dual variables λ+e , λ

−
e , μ ≥ 0 such that, together with x , the KKT conditions are ap-

proximately satisfied. Thus, the crucial properties about the flow-conductance ratios in Lemma 3.2
are also approximately satisfied. However, if xe (or 1−xe ) is small, the approximate complementary
slackness condition does not directly imply that λ−e (or λ+e ) is small, and we cannot conclude that all
fractional edges have similar flow-conductance ratios. Due to this technical issue, we need some
extra efforts to handle those edges with xe close to the 0/1 boundary. We modify the randomized
path rounding algorithm as follows.

Randomized Path Rounding Algorithm with Approximately Optimal Solution

(1) Set ε ← 1/ poly(n,m) and δ ← 1/ poly(n,m) � ε .
(2) Let x be an approximately optimal solution to the convex program (CP) such that

Reffx (s, t ) ≤ opt(k ) + ε and
∑

e ∈E xe ≤ k and xe ∈ [0, 1] for all e ∈ E. Let f be the
unit s-t electrical flow supported in x .

(3) Let e ∈ E be an arbitrary edge with δ < xe < 1−δ . We use αest ← fe/xe to estimate the
flow-conductance ratio α defined in Lemma 3.2.

(4) Compute a flow decomposition P of f as defined in Lemma 3.4.
(5) For i from 1 to T := max{1, �1/αest�}2do
• Let Pi be a random path from P where each path p ∈ P is sampled with probability
vp .

(6) Return the subgraph H formed by the edge set ∪T
i=1Pi .

The approximately optimal solution x can be obtained inO (poly(m,n) log 1
ε

) time with standard
convex optimization techniques, e.g., Ellipsoid method (see, e.g., Theorem 5.2.1 in Reference [4]).
The whole algorithm runs in polynomial time if αest = Ω(1/ poly(n,m)).

To analyze the modified algorithm, we first establish some properties of the approximately op-
timal solutions in Section A.1 as an analog of Lemma 3.2. Based on these properties, we provide a
sketched analysis of the modified randomized path rounding algorithm in Section A.2.

A.1 Characterizing Approximately Optimal Solutions

Lemma A.1 (Characterization of Approximately Optimal Solution). Given an accuracy

parameter 0 < ε � 1, let x : E → R≥0 be an approximately optimal solution of the convex pro-

gram (CP) such that Reffx (s, t ) ≤ opt(k )+ε ,
∑

e ∈E xe ≤ k , and xe ∈ [0, 1] for all e ∈ E, where opt(k )
is the optimal value of (CP).

Let 1 � δ � ε be a parameter that measures the distance from the 0/1 boundaries. Let EI ⊆ E
be the set of almost-one edges with xe ∈ [1 − δ , 1], let EF ⊆ E be the set of fractional edges that are

staying away from the 0/1 boundaries with δ < xe < 1 − δ , and let EZ ⊆ E be the set of close-to-zero

edges with xe ∈ (0,δ]. Let f : E → R≥0 be the unit s-t electrical flow supported in x . There exists

2We take the maximum as αest might slightly larger than 1 due to the estimation error.
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α ≥ 0 such that

f 2
e

x2
e

≥ α2 − 20n
√
ε ∀e ∈ EI ,

����� f
2

e

x2
e

− α2
����� ≤ 20n

√
ε

δ
∀e ∈ EF , and fe ≤ 2nδ ∀e ∈ EZ .

Intuitively, the above characterization says that the edges in EI and EF approximately satisfy
the properties about the flow-conductance ratios in Lemma 3.2. Meanwhile, those tiny fractional
edges in EZ only support very small amount of electrical flow, hence they will not have significant
impact in the analysis of the approximation ratio.

To prove Lemma A.1, we need to refine the proof of the necessity of KKT conditions. We first
briefly recall the theory of Lagrangian duality (see, e.g., Reference [6]). Given the primal convex
program in (CP), we introduce nonnegative dual variables λ+, λ− : E → R≥0 and μ ≥ 0. By adding
some penalty terms according to the constraints, the Lagrange function with respect to (CP) is
defined as

L(x , λ+, λ−, μ ) := Reffx (s, t ) +
∑
e ∈E

λ+e (xe − 1) −
∑
e ∈E

λ−e xe + μ

(∑
e ∈E

xe − k
)
.

The Lagrangian dual problem is defined as

max
λ+,λ−,μ≥0

inf
x
L(x , λ+, λ−, μ ).

Notice that the primal (CP) satisfies Slater’s condition, thus strong duality holds and there exist an
optimal primal solution x∗ and an dual optimal solution λ+, λ−, μ ≥ 0 such that

L(x∗, λ+, λ−, μ ) = Reffx ∗ (s, t ) = inf
x
L(x , λ+, λ−, μ ). (A.1)

In the following, we fix the optimal solution x∗ : E → R≥0 and the optimal dual solution
λ+, λ−, μ ≥ 0 that attain the strong duality. We assume that we are given an approximately optimal
solution x : E → R≥0 of (CP) such that

Reffx (s, t ) ≤ Reffx ∗ (s, t ) + ε ≤ n + ε,
∑
e ∈E

xe ≤ k, and xe ∈ [0, 1] for all e ∈ E, (A.2)

where Reffx ∗ (s, t ) ≤ n follows as x∗ is an optimal solution of (CP) and any shortest s-t path (of
length at most n) is a feasible solution.

The general idea of deriving an approximate version of KKT conditions for x is relatively sim-
ple. However, we need to deal with some technical issues such as differentiability of Reffx (s, t )
and estimations on the second derivatives of Reffx (s, t ). In the remaining of this subsection, we
first state some useful facts in Section A.1.1. Then, we prove approximate Lagrangian optimality
condition and approximate complementary slackness condition in Section A.1.2. Finally, we finish
the proof of Lemma A.1 in Section A.1.3.

A.1.1 Useful Facts. We start with a lemma about the differentiability of Reffx (s, t ).

Lemma A.2 (See, e.g., Lemma 2.4.6 in Reference [49] for a Proof). If s and t are connected in

the graph formed by the support of x and xe > 0 for some given edge e ∈ E, then ∂eReffx (s, t ) exists

and ∂eReffx (s, t ) = −(bT
stL
†
xbe )2.

Then, we provide an upper bound on the second derivative ∂2
e Reffy (s, t ) for any y : E → R≥0.

Lemma A.3. For any y : E → R≥0 such that s and t are connected in the graph formed by the

support of y, if ye > 0, then ∂2
e Reffy (s, t ) exists and

∂2
e Reffy (s, t ) = 2

(
bT

stL
†
ybe

)2 (
bT

e L
†
ybe

)
≤ 2y−1

e

(
bT

stL
†
ybst

)2
.
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Proof. By Lemma A.2, ∂2
e Reffy (s, t ) = −∂e (bT

stL
†
ybe )2. Let the two endpoints of e be u and v .

Since ye > 0, u and v are either contained in the same component as s and t , or both of them are
in another component.

Ifu andv are in a different component than the component that contains s and t , then bT
stL
†
ybe =

0 as L†y can be rearranged as a block diagonal matrix with all four entries (s,u), (s,v ), (t ,u), (t ,v )

being 0. Thus, ∂2
e Reffy (s, t ) = −∂e (bT

stL
†
ybe )2 = 0, and the lemma holds.

If u andv are within the same component as s and t , then we can restrict to this component and
assume the support of y is a connected graph without loss of generality. With similar argument as
in the proof of Lemma 3.2, using the fact that ∂A−1 = A−1 (∂A)A−1, it follows that

−∂e
(
bT

stL
†
ybe

)2
= −2

(
bT

stL
†
ybe

) (
bT

st

(
∂eL

†
y

)
be

)
= 2

(
bT

stL
†
ybe

) (
bT

stL
†
x

(
beb

T
e

)
L†xbe

)
= 2

(
bT

stL
†
ybe

)2 (
bT

e L
†
ybe

)
.

To upper bound bT
e L
†
ybe , observe that, for any edge e ∈ E with ye > 0, bT

e L
†
ybe is the effective

resistance between the two endpoints of e , which is upper bounded by the resistance of the edge
e , and thus

bT
e L
†
ybe ≤ y−1

e . (A.3)

Finally, we observe that |bT
stL
†
ybe | is the potential difference between the two endpoints of e

when we send the unit electrical flow from s to t , which is less than the potential difference between
s and t , and thus ���bT

stL
†
ybe

��� ≤ Reffy (s, t ) = bT
stL
†
ybst . (A.4)

The lemma follows by combining the above two bounds. �

A.1.2 Approximate Optimality Conditions. Now, we are ready to derive the approximate
Lagrangian optimality condition and approximate complementary slackness condition.

Lemma A.4 (Approximate Lagrangian Optimality Condition). Any primal approximately

optimal solution x and the dual optimal solution λ+, λ−, μ satisfy the inequality

(
∂eL(x , λ+, λ−, μ )

)2
=

((
bT

stL
†
xbe

)2
− λ+e + λ−e − μ

)2
≤ 2εMe for all e ∈ E with xe > 0,

where Me := 10x−1
e (2n2 + |λ+e − λ−e |).

Proof. According to the strong duality Equation (A.1), it holds that Reffx ∗ (s, t ) = L(x∗, λ+, λ−,
μ ), i.e., the optimal solution x∗ of (CP) is also an optimal solution of infx L(x , λ+, λ−, μ ). Thus,

L(x∗, λ+, λ−, μ ) ≤ L(x , λ+, λ−, μ ) = Reffx (s, t ) +
∑
e ∈E

λ+e (xe − 1) −
∑
e ∈E

λ−e xe + μ

(∑
e ∈E

xe − k
)

(A.5)

≤ Reffx (s, t ) ≤ Reffx ∗ (s, t ) + ε = L(x∗, λ+, λ−, μ ) + ε,

where the first inequality in the second line follows by the fact that the penalty terms in the
Lagrange function are non-positive for the given primal solution x and dual solution λ+, λ−, μ ≥ 0.
This implies that the approximately optimal solution x of (CP) is also an approximately optimal
solution of infx L(x , λ+, λ−, μ ). Intuitively, we expect the derivative ∂eL(x , λ+, λ−, μ ) to be small,
and we quantify this rigorously in the following.

In the following, we fix an edge e ∈ E with xe > 0. Let д(xe ) := L(x , λ+, λ−, μ ), where we treat
L(x , λ+, λ−, μ ) as a univariate function in xe with all other variables fixed. Notice that д′(xe ) =
∂eL(x , λ+, λ−, μ ).
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For any given h ∈ R, if д is twice differentiable on the interval between xe and xe + h, then by
Taylor’s theorem, it holds that

д(xe + h) = д(xe ) + д′(xe )h +
1

2
д′′(a)h2,

for some a in the interval between xe and xe + h. Taking h = −д′ (xe )
Me

, it follows that

д (xe + h) = д(xe ) − (д′(xe ))2

Me
+
д′′(a) (д′(xe ))2

2M2
e

=⇒ 1

Me

(
1 − д′′(a)

2Me

)
(д′(xe ))2 ≤ ε, (A.6)

where the implication follows as д(xe ) = L(x , λ+, λ−, μ ) is ε-close to the optimal value of
infx L(x , λ+, λ−, μ ).

To make sure that д is twice differentiable and the second derivative is bounded on the interval
between xe and xe +h, we first show that the whole interval is bounded away from 0. In particular,
we claim that xe + h ≥ xe

2 > 0.
Since Reffx (s, t ) ≤ n + ε is bounded, s and t are connected in the support of x . Thus, by

Lemma A.3, for e ∈ E with xe > 0, д′(xe ) exists and

д′(xe ) = −
(
bT

stL
†
xbe

)2
+ λ+e − λ−e + μ .

Hence, it follows that

|h | = |д
′(xe ) |
Me

≤
(bT

stL
†
xbe )2 + μ + |λ+e − λ−e |

Me
≤

(bT
stL
†
xbst )2 + μ + |λ+e − λ−e |

Me
,

where the last inequality follows by Equation (A.4). Notice that bT
stL
†
xbst ≤ n + ε , and μ ≤ 1 by the

characterization of α in Lemma 3.3. Together with the definition of Me , |h | ≤ xe

2 for ε < 1. Thus,
we have established the claim that xe + h ≥ xe

2 > 0.
Since the whole interval between xe and xe + h is at least xe

2 > 0, д is twice differentiable over
the whole interval by Lemma A.3. By the same lemma, for any a ∈ Rwithin the interval, it follows
that

д′′(a) = ∂2
e Reffx ′ (s, t ) ≤ 2(x ′e )−1

(
bT

stL
†
x ′bst

)2
,

where x ′ is the same as x except that x ′e = a ≥ xe

2 .

It remains to upper bound bT
stL
†
x ′bst . Since Lx and L′x has the same null space, by Sherman-

Morrison formula [46],

L†x ′ =
(
Lx + (a − xe )beb

T
e

)†
= L†x −

(a − xe )L†xbeb
T
e L
†
x

1 + (a − xe )bT
e L
†
xbe

.

Thus,

bT
stL
†
x ′bst = b

T
stL
†
xbst −

(a − xe ) (bT
stL
†
xbe )2

1 + (a − xe )bT
e L
†
xbe

= bT
stL
†
xbst +

(xe − a) (bT
stL
†
xbe )2

1 − (xe − a)bT
e L
†
xbe

.

If a − xe > 0, then bT
stL
†
x ′bst ≤ bT

stL
†
xbst ≤ n + ε . Otherwise, we upper bound the additive term by

(xe − a) (bT
stL
†
xbe )2

1 − (xe − a)bT
e L
†
xbe

≤
xe

2 (bT
stL
†
xbe )2

1 − xe

2 b
T
e L
†
xbe

≤ xe (bT
stL
†
xbe )2 ≤ (bT

stL
†
xbst )2,

where the first inequality follows by a ≥ xe

2 , the second inequality follows by bT
e L
†
xbe ≤ x−1

e as
in Equation (A.3), and the last inequality follows by xe ≤ 1 and Equation (A.4).
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Hence, in both cases, it holds that bT
stL
†
x ′bst ≤ 2bT

stL
†
xbst . Plugging back to the upper bound of

д′′(a), for ε less than some small constant, it follows that

д′′(a) ≤ 2(x ′e )−1
(
bT

stL
†
x ′bst

)2
≤ 4x−1

e

(
2bT

stL
†
xbst

)2
≤ 4x−1

e (2n + 2ε )2 ≤ 20x−1
e n2.

Therefore, д′′ (a)
2Me

≤ 20x−1
e n2

20x−1
e (2n2+ |λ+e−λ−e |)

≤ 1
2 . The lemma follows by Equation (A.6). �

Lemma A.5 (Approximate Complementary Slackness). Given the primal approximately opti-

mal solution x , and the dual optimal solution λ+, λ−, μ, the following conditions hold:

0 ≤ μ
(
k −

∑
e ∈E

xe

)
≤ ε and 0 ≤ λ+e (1 − xe ) ≤ ε, 0 ≤ λ−e xe ≤ ε, for all e ∈ E.

Proof. By Equation (A.5) and strong duality Equation (A.1), it follows that

Reffx ∗ (s, t ) ≤ L(x , λ+, λ−, μ ) = Reffx (s, t ) +
∑
e ∈E

λ+e (xe − 1) −
∑
e ∈E

λ−e xe + μ

(∑
e ∈E

xe − k
)

≤ Reffx ∗ (s, t ) + ε +
∑
e ∈E

λ+e (xe − 1) −
∑
e ∈E

λ−e xe + μ

(∑
e ∈E

xe − k
)
,

where the last inequality follows by Reffx (s, t ) ≤ Reffx ∗ (s, t ) + ε . Thus,∑
e ∈E

λ+e (1 − xe ) +
∑
e ∈E

λ−e xe + μ

(
k −

∑
e ∈E

xe

)
≤ ε .

Notice that λ+e (1 − xe ) ≥ 0, λ−e xe ≥ 0 and μ (k −∑
e xe ) ≥ 0 as x is a feasible solution. Hence, the

lemma follows. �

A.1.3 Proof of Lemma A.1.

Proof. By Lemma A.4, it holds that

−
√

2εMe ≤ (bT
stL
†
xbe )2 − λ+e + λ−e − μ ≤

√
2εMe for all e ∈ E with xe > 0,

where Me = 10x−1
e (2n2 + |λ+e − λ−e |).

For any given δ ∈ [ε, 1
2 ), we handle edges in the three categories EI ,EF and EZ separately.

We first consider those edges with δ < xe < 1 − δ , i.e., e ∈ EF . For any e ∈ EF , we have
0 ≤ λ+e , λ

−
e ≤ ε/δ by Lemma A.5. Thus, |λ+e − λ−e | ≤ ε/δ ≤ 1 and Me ≤ 10δ−1 (2n2 + ε/δ ), which

implies

|(bT
stL
†
xbe )2 − μ | ≤ ε

δ
+

√
40εn2

δ
+

20ε2

δ 2
≤ 2

√
80εn2

δ
≤ 20n

√
ε

δ
.

Then, we consider those almost-one edges in EI with xe ∈ [1 − δ , 1]. For any edge e ∈ EI , by
Lemma A.5, we have 0 ≤ λ−e ≤ ε (1− δ )−1 ≤ 2ε (note that we do not have control over the value of
λ+e ≥ 0). Since

√
a + b ≤

√
a +
√
b for a,b ≥ 0,√

2εMe ≤
√

40ε (2n2 + |λ+e − λ−e |) ≤ 9n
√
ε +

√
40ελ+e +

√
40ελ−e ≤ 10n

√
ε +

√
40ελ+e ,

where the last inequality holds as λ−e ≤ 2ε and ε � 1. Thus, it follows that

(bT
stL
†
xbe )2 ≥ μ + λ+e − λ−e − 10n

√
ε −

√
40ελ+e ≥ μ − 20n

√
ε,

where the last inequality follows as λ−e ≤ 2ε and λ+e −
√

40ελ+e ≥ −10ε for any λ+e ≥ 0.
Finally, we consider those almost-zero edges in EZ with 0 < xe ≤ δ . We use a simpler argument

to bound the value of fe

xe
. Notice that fe

xe
= |bT

stL
†
xbe | ≤ Reffx (s, t ) as in Equation (A.4). Since

Reffx (s, t ) ≤ n + ε for the approximately optimal solution x , fe ≤ (n + ε )xe ≤ 2nδ , as desired.
We finish the proof of the lemma by taking α =

√
μ. �
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A.2 Analysis of the Randomized Path Rounding Algorithm with Approximately

Optimal Solution

We use the properties of the approximately optimal solution in Lemma A.1 to analyze the modi-
fied randomized path rounding algorithm. As the analysis essentially follows the same flow as in
Sections 3.3 and 3.4, we only provide sketched arguments in this subsection.

We first assume EF � ∅ (i.e., αest is well-defined) and αest = Ω(1/m). In this case, αest is a good
estimation of the flow-conductance ratio α defined in Lemma 3.2. In particular, by Lemma A.1 and
the definition of αest, it holds that

α2 − 20n
√
ε/δ ≤ α2

est ≤ α2 + 20n
√
ε/δ .

We set the parameters δ , ε to be inverse polynomially small, e.g.,

δ =
1

nm3
and ε =

1

n3m11
.

Then, the additive error term 20n
√
ε/δ = O ( 1

m4 ). Thus, when αest = Ω( 1
m

), it holds that(
1 −O

( 1

m

))
α ≤ αest ≤

(
1 +O

( 1

m

))
α . (A.7)

Therefore, by Lemma A.1, it holds that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
fe ≥

(
1 −O

(
1
m

))
αestxe , ∀e ∈ EI ,

fe =
(
1 ±O

(
1
m

))
αestxe , ∀e ∈ EF ,

fe ≤ 2nδ = O
(

1
m3

)
, ∀e ∈ EZ .

(A.8)

With the above observations, we can upper bound the expected number of edges and the ex-
pected s-t effective resistance of the graph returned by the rounding algorithm.

Lemma A.6. Let x be an approximately optimal solution to (CP) defined in Equation (A.2). Let

Xe be an indicator variable of whether e is included in the returned subgraph H by the rounding

algorithm, Then, when αest = Ω(1/m), it holds that

E

⎡⎢⎢⎢⎢⎢⎣
∑

e ∈EF

Xe

⎤⎥⎥⎥⎥⎥⎦ ≤
(
1 +O

( 1

m

)) ∑
e ∈EF

xe and E

⎡⎢⎢⎢⎢⎢⎣
∑

e ∈EZ

Xe

⎤⎥⎥⎥⎥⎥⎦ ≤ mT · max
e ∈EZ

fe ≤ O
( 1

m

)
.

Furthermore,

E

⎡⎢⎢⎢⎢⎣
∑
e ∈E

Xe

⎤⎥⎥⎥⎥⎦ ≤
(
1 +O

( 1

m

))
k .

Proof Sketch. Following the same argument as in Lemma 3.6, it holds that Pr(Xe = 1) ≤ T fe
for all e ∈ E (see (3.1)). Then, we can use the bounds of fe in Equation (A.8) to derive the first part
of the lemma. Since all edges in EI have xe ≥ 1−δ ≥ 1−1/m, E[

∑
e ∈EI

Xe ] ≤ (1+O (1/m))
∑

e ∈EI
xe .

Thus, the second part of the lemma follows. �

Lemma A.7. Let x∗ be an optimal solution to (CP), x be an approximately optimal solution to (CP)
defined in Equation (A.2), and f be the unit s-t electrical flow supported in x . When αest = Ω(1/m),
the expected s-t effective resistance of the subgraph H returned by the rounding algorithm is

E [ReffH (s, t )] ≤ 2
(
1 +O

( 1

m

))
Reffx ∗ (s, t ).
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Proof Sketch. Following the same idea as in the proof of Lemma 3.7, we upper bound
the expected s-t effective resistance of the returned subgraph H by constructing a random s-
t flow (i.e., sending αest units of flow along each sampled path). The same analysis leads us to
Equation (3.2), i.e.,

E[ReffH (s, t )] ≤ 1

T

∑
e ∈E

fe +
(
1 − 1

T

) ∑
e ∈E

f 2
e .

The second term can still be upper bounded by(
1 − 1

T

) ∑
e ∈E

f 2
e ≤

(
1 − 1

T

) ∑
e ∈E

f 2
e

xe
≤

(
1 − 1

T

)
Ex ( f ).

The first term needs some special treatment, where we handle the edges in EI ∪ EF and EZ sepa-
rately:

1

T

∑
e ∈E

fe =
1

T
���

∑
e ∈EI∪EF

fe +
∑

e ∈EZ

fe
��	 ≤

(1 +O ( 1
m

))

Tαest

∑
e ∈EI∪EF

f 2
e

xe
+O

( 1

Tm2

)

≤
(
1 +O

( 1

m

)) Ex ( f )

Tαest
+O

( 1

m

)
Ex ( f ),

where the first inequality follows Equation (A.8) that fe ≥ (1−O (1/m))αestxe ≥ αestxe/(1+O (1/m))
for e ∈ EI ∪ EF and fe ≤ O (1/m3) for e ∈ EZ , and the second inequality follows by T ≥ 1
and Equation (3.3) that Ex ( f ) = Reffx (s, t ) ≥ 1/k ≥ 1/m.

By combining the upper bounds of the two terms and noticing that 1
2 ≤ Tαest ≤ 1 + O (1/m)

(which follows by a similar argument as in Lemma 3.5),

E[ReffH (s, t )] ≤
(
1 +

1

Tαest
− 1

T
+O

( 1

m

))
Ex ( f ).

The lemma then follows by a similar argument as in the proof of Lemma 3.7 and the fact that
Ex ( f ) ≤ Reffx ∗ (s, t ) + ε . �

Then, following similar arguments as in the proof of Theorems 3.8 and 3.10, we have a random-
ized polynomial time constant approximation algorithm when EF � ∅ and αest = Ω(1/m).

It remains to deal with the cases where EF = ∅ or αest ≤ 1/4m. In both cases, we can simply
return all edges in EI . We first note that the number of edges in EI is at mostk asxe ≥ 1−δ > 1−1/m
and

∑
e ∈EI

xe ≤ k . Then, by Lemma A.1, we can upper bound fe ≤ 1/2m for all edges e ∈ E \EI

when EF = ∅ or αest ≤ 1/4m. With a similar argument that deals with the case of α ≤ 1/4m in the
proof of Theorem 3.10, returning all edges in EI gives us a constant approximate solution.
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