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Abstract. We present new edge splitting-off results maintaining all-pairs edge-connectivities of
an undirected graph. We first give an alternate proof of Mader’s theorem, and use it to obtain a
deterministic Õ(m + rmax

2 · n2)-time complete edge splitting-off algorithm for unweighted graphs,
where rmax denotes the maximum edge-connectivity requirement. This improves upon the best
known algorithm by Gabow by a factor of Ω̃(n). We then prove a new structural property, and use
it to further speed up the algorithm to obtain a randomized Õ(m+ rmax

3 ·n)-time algorithm. These
edge splitting-off algorithms can be used directly to speed up various graph algorithms.
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1. Introduction. The edge splitting-off operation plays an important role in
many basic graph problems, in both proving theorems and obtaining efficient algo-
rithms. Splitting-off a pair of edges (xu, xv) means deleting these two edges and
adding a new edge uv if u �= v. This operation was introduced by Lovász, who
showed that splitting-off can be performed to maintain the global edge-connectivity of
a graph.

Theorem 1.1 (Lovász [18, 19]). Let G = (V,E) be an undirected graph that has
at least k ≥ 2 edge-disjoint paths between s and t for all s, t ∈ V − {x}. If the degree
of x is even, then some edge pair (xu, xv) can be split off so that in the resulting graph
there are still at least k edge-disjoint paths between s and t for all s, t ∈ V − {x}.

Mader extended Lovász’s result significantly to prove that splitting-off can be
performed to maintain the local edge-connectivity for all pairs.

Theorem 1.2 (Mader [20]). Let G = (V,E) be an undirected graph that has at
least r(s, t) edge-disjoint paths between s and t for all s, t ∈ V − {x}, and has at least
two edge-disjoint paths between x and each of its neighbors. If the degree of x is not
equal to 3, then some edge pair (xu, xv) can be split off so that in the resulting graph
there are still at least r(s, t) edge-disjoint paths between s and t for all s, t ∈ V −{x}.

These splitting-off theorems have applications in various graph problems. Lovász
[18] and Mader [20] used their splitting-off theorems to derive Nash-Williams’ graph
orientation theorems [24]. Subsequently, these theorems and their extensions have
found applications in a number of problems, including edge-connectivity augmentation
problems [9, 7, 3], network design problems [13, 16, 6], tree packing problems [1, 17, 5],
and graph orientation problems [11].

Efficient splitting-off algorithms have been developed to give fast algorithms for
the above problems [12, 23, 3, 21, 5]. However, most of the efficient algorithms have
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1186 LAP CHI LAU AND CHUN KONG YUNG

been developed only in the global edge-connectivity setting, even though there are
important applications in the more general local edge-connectivity setting.

In this paper, we present new edge splitting-off results maintaining all-pairs edge-
connectivities. First we give an alternate proof of Mader’s theorem (Theorem 1.2).
Based on this, we develop a faster deterministic algorithm for edge splitting-off main-
taining all-pairs edge-connectivities (Theorem 1.3). Then, we prove a new structural
property (Theorem 1.4), and use it to design a randomized procedure to further
speed up the splitting-off algorithm (Theorem 1.3). These algorithms improve the
best known algorithm [12] by a factor of Ω̃(n), and can be applied directly to speed
up various graph algorithms that use edge splitting-off.

In the following, we consider an undirected graph G = (V,E). We often write
a single vertex set {x} as x. The degree of a vertex set S ⊂ V is denoted by d(S).
The neighbor set of a vertex v is denoted by N(v), and a vertex in N(v) is called
a v-neighbor. Denote by r(s, t) the edge-connectivity requirement between s, t ∈ V ,
and by rmax = maxs,t∈V−x r(s, t) the maximum edge-connectivity requirement. The
connectivity requirement is global if r(s, t) = k for all s, t ∈ V ; otherwise it is local.
An edge uv ∈ E is a cut edge if the edge-connectivity between u and v is 1.

1.1. Efficient complete edge splitting-off algorithm. Mader’s theorem can
be applied repeatedly until d(x) = 0, when d(x) is even and there is no cut edge
incident on x. This is called a complete edge splitting-off at x (or a vertex splitting-off
at x), which is a key subroutine in algorithms for connectivity augmentation, graph
orientation, and tree packing.

A straightforward algorithm to compute a complete splitting-off sequence is to
attempt splitting-off (xu, xv) for every pair u, v ∈ N(x), and then checking whether
the connectivity requirements are violated by computing all-pairs edge-connectivities
in the resulting graph, and repeating this procedure until d(x) = 0.

Several efficient algorithms have been proposed for the complete splitting-off prob-
lem, but only Gabow’s algorithm [12] can be used in the local edge-connectivity setting
with running time O(rmax

2 ·n3). Our algorithms improve the running time of Gabow’s
algorithm by a factor of Ω̃(n). In applications where rmax is small, the improvement
of the randomized algorithm could be a factor of Ω̃(n2).

Theorem 1.3. In the local edge-connectivity setting, there is a deterministic
Õ(m+ rmax

2 · n2)-time algorithm and a randomized Õ(m+ rmax
3 · n)-time algorithm

for the complete edge splitting-off problem in unweighted graphs.

1.2. Techniques. Mader’s theorem shows the existence of one admissible edge
pair, whose splitting-off maintains the local edge-connectivity requirements of the
graph. Given an edge xv, we say an edge xw is a non-admissible partner of xv if
(xv, xw) is not admissible. Our proof of Mader’s theorem is based on the notion of a
non-admissible set: a subset U ⊆ N(x) is called a non-admissible set if (xu, xv) is not
admissible for every u, v ∈ U . Using the 3-dangerous set structure in [6], we prove in
Lemma 3.1 that under the conditions of Mader’s theorem, every non-admissible set
is contained in some proper vertex subset S ⊂ V − x with d(S) ≤ rmax +1. A simple
argument then shows that a small degree vertex subset cannot contain all x-neighbors.
Hence, there must exist an admissible edge pair, proving Mader’s theorem.

Our edge splitting-off algorithms are conceptually very simple, which can be seen
as refinements of the straightforward algorithm. There are two main steps in the
improvement. The first is to reduce the number of splitting-off attempts, and the
second is to check the edge-connectivities more efficiently after each splitting-off at-
tempt. In section 3.2, we show how to find a complete edge splitting-off sequence by
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EFFICIENT EDGE SPLITTING-OFF ALGORITHMS 1187

using at most O(|N(x)|) splitting-off attempts, instead of O(|N(x)|2) attempts by the
straightforward algorithm. This is based on the notion of a non-admissible set and
the alternative proof of Mader’s theorem in section 3.1.

In section 3.4, we show how to reduce the problem of checking local edge-
connectivities for all pairs to the problem of checking edge-connectivities from a partic-
ular indicator vertex. This allows us to check at most O(n) pairs to determine whether
the edge-connectivities are preserved, instead of checking O(n2) pairs which requires
Ω(n2) time, which would be too slow. To guarantee the existence of an indicator ver-
tex, we preprocess the graph by contracting appropriate vertex sets, and show that it
will be an indicator vertex throughout the algorithm. Using the sparsifying algorithm
by Nagamochi and Ibaraki [22, Theorem 2.6] and the fast Gomory–Hu tree algorithm
by Bhalgat et al. [4] (Theorem 2.6), we can obtain a compact representation of the lo-
cal edge-connectivity information in Õ(r2max ·n) time. Then, it only takes O(n) time to
check the local edge-connectivities from an indicator vertex. Hence we can efficiently
determine whether the local edge-connectivity requirements are satisfied in Õ(r2max ·n)
time. This gives us the deterministic splitting-off algorithm in Theorem 1.3.

Mader’s theorem shows the existence of one admissible pair on a vertex x. We
strengthen his result by proving a tight upper bound on the number of non-admissible
partners of a given edge xv which may be of independent interest.

Theorem 1.4. Suppose there is no cut edge incident on x and rmax ≥ 2. Then
the number of non-admissible partners for any given edge xv is at most 2rmax − 2.

This improves the result of Bang-Jensen and Jordán [2] by a factor of rmax, and
the bound is the best possible as there are examples for achieving it (see Figure 4.2).
The proof of Theorem 1.4 is based on a new inductive argument and will be presented
in section 4. Theorem 1.4 implies that when d(x) is considerably larger than rmax,
most of the edge pairs incident on x are admissible. Therefore, we can split off many
edge pairs randomly in parallel before checking the edge-connectivities once. This
gives us the randomized splitting-off algorithm in Theorem 1.3.

1.3. Applications. Our edge splitting-off algorithms can be used directly to
improve the running time of various graph algorithms [24, 9, 13, 12, 17, 6]. We will
take the edge-connectivity augmentation problem as an example to illustrate this.
Consider an unweighted graph G = (V,E) and edge-connectivity requirements r(s, t)
for all s, t ∈ V . The edge-connectivity augmentation problem asks for a smallest set
F of new edges such that for all s, t ∈ V , there are r(s, t) edge disjoint paths between
s and t in G′ = (V,E+F ). Frank [9] gave a simple algorithm by using edge splitting-
off. There are two main steps in the algorithm: (i) first add an external vertex x
and a minimum set of edges incident to x so that edge-connectivity requirements are
satisfied for all s, t ∈ V in G′; (ii) then perform a complete edge splitting-off at x to
obtain G′ = (V,E + F ). The best known implementation of Frank’s algorithm is by
Gabow [12], which requires O(rmax

2n3) time. Using our edge splitting-off algorithm,
the second step takes only Õ(m+ rmax

2n2) time. The first step is not more difficult
than an edge splitting-off problem. A minimal set of edges can be found by first
adding excessive edges and then removing the redundant ones. It is similar to a pre-
processing step of our algorithm, which removes as many pairs of (xu, xu) as possible
for every u ∈ V −x. Therefore, the total complexity can be improved from O(rmax

2n3)
to Õ(m+ rmax

2n2).

2. Preliminaries. Let G = (V,E) be a graph. ForX,Y ⊆ V , denote by δ(X,Y )
the set of edges with one endpoint in X − Y and the other endpoint in Y − X and
d(X,Y ) := |δ(X,Y )|, and also define d̄(X,Y ) := d(X ∩ Y, V − (X ∪ Y )). For X ⊆ V ,
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1188 LAP CHI LAU AND CHUN KONG YUNG

define δ(X) := δ(X,V −X) and the degree of X as d(X) := |δ(X)|. Denote the degree
of a vertex as d(v) := d({v}). Also denote the set of neighbors of v by N(v), and call
a vertex in N(v) a v-neighbor.

Let λ(s, t) be the maximum number of edge-disjoint paths between s and t in
V , and let r(s, t) be an edge-connectivity requirement for s, t ∈ V . The connectivity
requirement is global if r(s, t) = k for all s, t ∈ V ; otherwise it is local. We say a
graph G satisfies the connectivity requirements if λ(s, t) ≥ r(s, t) for any s, t ∈ V .
The requirement r(X) of a set X ⊆ V is the maximum edge-connectivity requirement
between u and v with u ∈ X and v ∈ V − X . By Menger’s theorem, to satisfy
the requirements, it suffices to guarantee that d(X) ≥ r(X) for all X ⊂ V . The
surplus s(X) of a set X ⊆ V is defined as d(X) − r(X). A graph satisfies the edge-
connectivity requirements if s(X) ≥ 0 for all ∅ �= X ⊂ V − x, since r(x, v) = 0 for all
v in the complete edge splitting-off problem where x is the vertex to be split off. For
X ⊂ V − x, X is called dangerous if s(X) ≤ 1 and tight if s(X) = 0. A dangerous
set is maximal if it is not a proper subset of any other dangerous set. The following
proposition will be used throughout our proofs.

Proposition 2.1 (see [10, Proposition 2.3]). For X,Y ⊆ V at least one of the
following inequalities holds:

s(X) + s(Y ) ≥ s(X ∩ Y ) + s(X ∪ Y ) + 2d(X,Y ),(2.1a)

s(X) + s(Y ) ≥ s(X − Y ) + s(Y −X) + 2d̄(X,Y ).(2.1b)

In this paper, we consider multigraphs, i.e., there can be multiple copies of an
edge uv. We define the capacity of an edge pair to be the number of copies of the
edge pair that can be split off while satisfying edge-connectivity requirements. In our
algorithms, we always split off an edge pair to its capacity. Following the definition of
Gabow [12], we say that a splitting-off operation at x voids a vertex u if d(x, u) = 0
after the splitting-off.

2.1. Admissible pair and dangerous set. In edge splitting-off problems, the
objective is to split off a pair of edges incident on a designated vertex x to maintain
the edge-connectivity requirements for all other pairs in V − x. For this purpose, we
may assume that the edge-connectivity requirements between x and other vertices are
zero, i.e., r(V − x) = 0, and thus the set V − x is not a dangerous set. The following
simple proposition characterizes the relation between admissible pair and dangerous
set.

Proposition 2.2 (see [10, Claim 3.1]). A pair xu, xv is not admissible if and
only if u, v are contained in a dangerous set.

The following lemma proved in [6] shows that if the conditions in Mader’s theorem
are satisfied, then there is no “3-dangerous-set structure” as shown in Figure 2.1. This
lemma is important in the efficient edge splitting-off algorithm.

Lemma 2.3 (see [6, Lemma 2.7]). If d(x) �= 3 and there is no cut edge incident
on x, then there are no maximal dangerous sets X,Y, Z and u, v, w ∈ N(x) with
u ∈ X ∩ Y , v ∈ X ∩ Z, w ∈ Y ∩ Z, and u, v, w /∈ X ∩ Y ∩ Z.

The next lemma is about a known reduction step of contracting tight sets, which
will be useful in preprocessing the graph to obtain an indicator vertex. Suppose there
is a nontrivial tight set T , i.e., T is a tight set and |T | ≥ 2. Clearly there are no
admissible pairs xu, xv with u, v ∈ T . Let G/T be the graph obtained by contracting
T into a single vertex t. It is the graph arising fromG by removing vertex set T , adding
a new vertex t, and adding d(v, T ) parallel edges between t and v for every v ∈ V −T .
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EFFICIENT EDGE SPLITTING-OFF ALGORITHMS 1189

Fig. 2.1. The 3-dangerous-set structure.

Define the connectivity requirement r(t, v) as maxu∈T r(u, v) while other connectivity
requirements remain the same. The following lemma says that one can consider the
admissible pairs in G/T without losing any information about the admissible pairs in
G. This lemma is useful in proofs to assume that every tight set is a singleton and is
useful in algorithms to allow us to make progress by contracting nontrivial tight sets.
The proof is provided in the appendix.

Lemma 2.4 (see [20], [10, Claim 3.2]). Let T be a nontrivial tight set. For any
x-neighbor w in G/T , let w′ be the corresponding vertex in G if w �= t, and let w′ be
any x-neighbor in T in G if w = t. Suppose (xu, xv) is an admissible pair in G/T ;
then (xu′, xv′) is an admissible pair in G.

2.2. Gomory–Hu tree. As a key tool in checking local edge-connectivity, we
need to construct a Gomory–Hu tree [14], which is a compact representation of all
pairwise edge-connectivities. Let G = (V,E) be an undirected graph. A Gomory–Hu
tree of G is a weighted tree T = (V, F ) such that for every pair s, t ∈ V , the weight of
a min-cut separating them is the same in G and in T . In other words, the local edge-
connectivity between s, t ∈ V in G is equal to the weight of the minimum weighted
edge on the s-t path in T . In a partial Gomory–Hu tree Tk of G [15], vertices s, t ∈ V
are represented by the same node in Tk if the local edge-connectivity between them
is at least k in G; otherwise, they are represented by different nodes and the local
edge-connectivity between them equals the weight of the minimum weighted edge on
the s-t path in Tk. With a (partial) Gomory–Hu tree, it takes only linear time to
check the local edge-connectivity between a pair of vertices. Bhalgat et al. [4] gave a
fast randomized algorithm to construct a partial Gomory–Hu tree. We will use the
following theorem by setting k = rmax. The following result can be obtained by using
the algorithm in [15], with the fast tree packing algorithm in [4].

Theorem 2.5 (see [15, 4]). A partial Gomory-Hu tree Tk can be constructed in
Õ(km) expected time.

Nagamochi and Ibaraki [22] gave a fast algorithm to find a sparse subgraph that
satisfies edge-connectivity requirements, which will be used in section 3.3 as a prepro-
cessing step. This allows us to reduce the number of edges to O(rmax · n). Hence we
can construct a partial Gomory–Hu tree Trmax in Õ(rmax

2n) time.
Theorem 2.6 (see [22, Lemma 2.1]). There is an O(m)-time algorithm to con-

struct a subgraph with O(rmax ·n) edges that satisfies all the connectivity requirements.

2.3. Hypothesis. Throughout this paper, we assume that there is no cut edge
incident on x. This holds at the input graph by our assumption (a condition of Mader’s
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theorem), and so the local edge-connectivity between each pair of x-neighbors is at
least two. Therefore, we can reset the connectivity requirement between u and v as
max{r(u, v), 2} for all u, v ∈ N(x), and hence splitting-off any admissible pair would
maintain the property that there is no cut edge incident on x.

Hypothesis 2.7. There is no cut edge incident on x.
As mentioned earlier, we assume that r(x) = 0 for simplicity. We can handle the

case with nonzero r(x) by a few extra steps. First we add a new vertex x′ and r(x)
copies of xx′ edges (or r(x) + 1 copies to keep d(x) even). Then we can just apply
the edge splitting-off results in this paper. After a complete edge splitting-off at x,
we simply remove x and rename x′ to x. Similarly, when d(x) is odd (and r(x) < 3),
we can add a new vertex x′ and three copies of xx′ edges. Therefore, we can always
assume d(x) to be even in a complete edge splitting-off algorithm. Note that these
two assumptions are not essential in some structural results, such as Theorem 1.4.

3. Efficient complete edge splitting-off algorithm. Here we present the
deterministic splitting-off algorithm as stated in Theorem 1.3. First we present an
alternative proof of Mader’s theorem in section 3.1. Extending the ideas in the al-
ternative proof we show how to find a complete edge splitting-off sequence by only
O(|N(x)|) edge splitting-off attempts in section 3.2. Then, in section 3.3, we show
how to efficiently perform one edge splitting-off attempt, by doing some preprocessing
and applying some fast algorithms to check edge-connectivities. Combining these two
steps yields an Õ(m+ rmax

2 · n2) randomized algorithm for the complete splitting-off
problem. Finally, in section 3.6, we describe how to modify some steps in section 3.3
to obtain an Õ(m+ rmax

2 · n2) deterministic algorithm for the problem.

3.1. Mader’s theorem. We present an alternative proof of Mader’s theorem,
which can be extended to obtain an efficient algorithm. Recall that non-admissible
sets are subsets of x-neighbors with no admissible pair inside. The following lemma
about non-admissible sets can be used directly to derive Mader’s theorem.

Lemma 3.1. Suppose d(x) �= 3. Then, for any non-admissible set U ⊆ N(x) with
|U | ≥ 2, there is a dangerous set containing U .

Proof. We prove the lemma by a simple induction. The statement holds trivially
for |U | = 2 by Proposition 2.2. Consider U = {u1, u2, . . . , uk+1} ⊆ N(x), where
every pair (ui, uj) is non-admissible. By induction, since every pair (ui, uj) is non-
admissible, there are maximal dangerous sets X,Y such that {u1, . . . , uk−1, uk} ⊆ X
and {u1, . . . , uk−1, uk+1} ⊆ Y . Since (uk, uk+1) is non-admissible, by Proposition 2.2,
there is a dangerous set Z containing uk and uk+1. If uk+1 /∈ X and uk /∈ Y and there
is some ui /∈ Z by the maximality of X and Y , then X,Y , and Z form a 3-dangerous-
set structure with u = ui, v = uk, w = uk+1. By Lemma 2.3, this 3-dangerous-set
structure does not exist. Hence either X,Y , or Z contains U .

To prove Mader’s theorem, consider a vertex x ∈ V with d(x) �= 3 and there is
no cut edge incident on it. Suppose that there is no admissible pair incident on x.
Then, by Lemma 3.1, there is a dangerous set D containing all the vertices in N(x).
But this is impossible since

r(V −D − x) = r(D) ≥ d(D)− 1 = d(V −D − x) + d(x)− 1 ≥ d(V −D − x) + 1,

contradicting that the connectivity requirements are satisfied in G. This completes
the proof.

3.2. An upper bound on splitting-off attempts. Extending the ideas in the
proof of Lemma 3.1, we present an algorithm to find a complete splitting-off sequence
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by making at most O(|N(x)|) splitting-off attempts (to split off to capacity). In the
algorithm, we maintain a non-admissible set C: initially C = ∅, and at each iteration,
we try to add one x-neighbor into C. The algorithm will apply one of the following
three operations guaranteed by the following lemma. Here we assume that {u} is
a non-admissible set for every u ∈ N(x). This can be achieved by a preprocessing
step that splits off every (u, u) to capacity (i.e., removes as many admissible pairs of
(xu, xu) as possible).

Lemma 3.2. Suppose that C is a non-admissible set and there is a vertex u ∈
N(x)−C. Then, using at most three splitting-off attempts, at least one of the following
operations can be applied:

(1) splitting-off an edge pair to capacity that voids an x-neighbor,
(2) deducing that every pair in C ∪ {u} is non-admissible and adding u to C,
(3) contracting a tight set T containing at least two x-neighbors.
Proof. We consider three cases based on the size of C. When |C| = 0, we simply

assign C = {u}. When |C| = 1, pick the vertex v ∈ C, and split off (u, v) to capacity.
Either case (1) applies when either u or v becomes void, or case (2) applies in the
resulting graph after (u, v) is split off to capacity. Hence, when |C| ≤ 1, either case
(1) or case (2) applies after only one splitting-off attempt.

The interesting case is when |C| ≥ 2 and let v1, v2 ∈ C. Since C is a non-
admissible set, by Lemma 3.1, there is a maximal dangerous set D containing C.
First, we split off (u, v1) and (u, v2) to capacity. If case (1) applies, then we are done,
so we assume that none of the three x-neighbors voids, implying that (u, v1) and
(u, v2) are non-admissible in the resulting graph G′ after splitting-off these edge pairs
to capacity. Note that the edge pair (v1, v2) is also non-admissible since non-admissible
edge pair in G remains non-admissible in G′. By Lemma 3.1, there exists a maximal
dangerous set D′ covering the non-admissible set {u, v1, v2}. Then inequality (2.1b)
cannot hold for D and D′, since that would imply

1+1 ≥ s(D)+s(D′) ≥ s(D−D′)+s(D′−D)+2d̄(D,D′) ≥ 0+0+2d(x, {v1, v2}) ≥ 2·2.

Therefore inequality (2.1a) must hold for D and D′, hence 1 + 1 = s(D) + s(D′) ≥
s(D∩D′)+s(D∪D′). This implies that either D∪D′ is a dangerous set for which case
(2) applies, since C∪{u} is contained in a dangerous set and hence every pair is a non-
admissible pair by Proposition 2.2, or D ∩D′ is a tight set for which case (3) applies
since v1 and v2 are x-neighbors. To distinguish between case (2) and case (3), we
check the existence of any tight set containing v1 and v2 by one splitting-off attempt of
(xv1, xv2), as v1, v2 are contained in a tight set if and only if after splitting-off one copy
of (xv1, xv2) the connectivity requirement of some pair is violated by two.1 Therefore,
by making at most three splitting-off attempts ((xu, xv1), (xu, xv2), (xv1, xv2)), one
of the three operations can be applied.

The following result can be obtained by applying Lemma 3.2 repeatedly.
Lemma 3.3. The algorithm computes a complete edge splitting-off sequence using

at most O(|N(x)|) numbers of splitting-off attempts.
Proof. The algorithm maintains the property that C is a non-admissible set,

which holds at the beginning when C = ∅. It is clear that in case (2) the set C

1In section 3.5 we show how to find such a tight set efficiently by looking at a Gomory–Hu tree.
It is not essential to contract tight sets in splitting-off attempts, although it is easier to explain in this
way. In case (3) of Lemma 3.2, we just need the conclusion that the two x-neighbors are contained
in some tight set. This allows us to group those two x-neighbors and handle them together in the
rest of the algorithm using Lemma 2.4.
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remains non-admissible. In case (1), by splitting-off an admissible pair, every pair of
vertices in C remains non-admissible. Also, in case (3), by contracting a tight set,
every pair of vertices in C remains non-admissible by Lemma 2.4.

The algorithm terminates when there is no vertex in N(x) − C. At that time,
if C = ∅, then we have found a complete splitting-off sequence; if C �= ∅, then by
Mader’s theorem (or by the proof in section 3.1), this happens only if d(x) = 3 and
d(x) is odd at the beginning. In any case, the longest splitting-off sequence is found
and the given complete edge splitting-off problem is solved.

It remains to prove that the total number of splitting-off attempts in the whole
algorithm is at most O(|N(x)|). To see this, we claim that each of the operations
in Lemma 3.2 will be performed at most |N(x)| times. Indeed, cases (1) and (3)
will be applied at most |N(x)| times since each application reduces the number of
x-neighbors by at least one, and case (2) will be applied at most |N(x)| times since
each application reduces the number of x-neighbors in N(x)− C by one.

3.3. Algorithm outline. The following is an outline of the whole algorithm
for the complete splitting-off problem. First we use the O(m) time algorithm in
Theorem 2.6 by Nagamochi and Ibaraki [22] to construct a subgraph ofG with O(rmax·
n) edges satisfying the connectivity requirements. To find a complete splitting-off
sequence, we can thus restrict our attention to maintaining the local edge-connectivity
in this subgraph. In the next preprocessing step, we reduce the problem further to an
instance where there is a particular indicator vertex. A vertex t �= x is an indicator
vertex if for any pair of vertices u, v ∈ V − x with λ(u, v) ≤ rmax, then it holds that
λ(u, v) = min{λ(u, t), λ(v, t)}. With an indicator vertex t, to check the change in
local edge-connectivity for all pairs with λ(u, v) ≤ rmax, we only need to check the
edge-connectivity from t to every vertex v with λ(v, t) ≤ rmax.

An indicator vertex is the key in checking the violation of connectivity require-
ment with only O(n) queries (instead of O(n2) queries). To obtain an instance with
an indicator vertex, we compute a partial Gomory–Hu tree Trmax and contract ap-
propriate tight sets. Recall that each edge of a Gomory–Hu tree represents a min-cut
in the original graph. With a potential indicator vertex t, we can easily identify any
u, v ∈ V − x with λ(u, v) ≤ rmax and λ(u, v) > min{λ(u, t), λ(v, t)}. For such a pair
(u, v), either v is on the u-t path or u is on the v-t path in Trmax . In any case, we can
contract the corresponding tight set to eliminate a vertex pair that violates the indi-
cator property of t. We will present the details in section 3.4. The total preprocessing
time is at most Õ(m + rmax

2 · n), by using the fast Gomory–Hu tree algorithm in
Theorem 2.5.

After these two preprocessing steps, we can perform a splitting-off attempt (split
off a pair to capacity) efficiently. For a vertex pair (u, v), we replace min{d(x, u), d(x, v)}
copies of xu and xv by copies of uv, and then determine the maximum violation of
connectivity requirements by constructing a partial Gomory–Hu tree and checking the
edge-connectivities from the indicator vertex t to every other vertex. If q is the max-
imum violation of the connectivity requirements, then exactly min{d(x, u), d(x, v)} −
�q/2� copies of (xu, xv) are admissible. The details will be discussed in section 3.5.
Therefore, using Theorem 2.5, one splitting-off attempt can be performed in Õ(rmax ·
m+n) = Õ(rmax

2 ·n) expected time. By Lemma 3.3, the complete splitting-off prob-
lem can be solved by at most O(|N(x)|) = O(n) splitting-off attempts. Hence we
obtain the following result.

Theorem 3.4. The complete edge splitting-off problem can be solved in Õ(m +
rmax

2 · |N(x)| · n) = Õ(m+ rmax
2 · n2) expected time.
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This algorithm can be derandomized to a deterministic one with the same running
time. The details will be discussed in section 3.6.

3.4. Indicator vertex. We will show how to reduce the problem into an in-
stance with a particular indicator vertex t �= x, with the property that if λ(u, v) ≤ rmax

for u, v �= x, then λ(u, v) = min{λ(u, t), λ(v, t)}. Hence, if we could maintain the lo-
cal edge-connectivity from t to v for every v ∈ V − x with λ(v, t) ≤ rmax, then the
connectivity requirements for every pair in V − x will be satisfied. Furthermore, by
maintaining the local edge-connectivity, the indicator vertex t will remain an indicator
vertex, and therefore this procedure needs to be executed only once. Without loss
of generality, we assume that the connectivity requirement for each pair of vertices
u, v ∈ V − x is equal to min{λ(u, v), rmax}, and r(x, v) = 0 for every v ∈ V − x.

First, we compute a partial Gomory–Hu tree Trmax in Õ(rmax ·m) time by The-
orem 2.5, which is Õ(rmax

2 · n) after applying the sparsifying algorithm in Theo-
rem 2.6. Recall that each node in Trmax represents a subset of vertices in G, and the
edge-connectivities between these vertices are at least rmax. In the following, we will
use a capital letter (say, U) to denote both a node in Trmax and the corresponding
subset of vertices in G. If Trmax has only one node, then this means that the local
edge-connectivity between every pair of vertices in G is at least rmax. In this case,
any vertex t �= x is an indicator vertex. So assume that Trmax has at least two nodes.
Let X be the node in Trmax that contains x in G, let U1, . . . , Up be the nodes adjacent
to X in Trmax , and let XU1 be the edge in Trmax with largest weight among XUi for
1 ≤ i ≤ p.

Suppose X contains a vertex t �= x in G. The idea is to contract tight sets so
that t will become an indicator vertex in the resulting graph. For any edge XUi in
Trmax , let T

′
i be the component of Trmax that contains Ui when XUi is removed from

Trmax . We claim that each U∗
i := ∪U∈T ′

i
U is a tight set in G; see Figure 3.1. By

the definition of a Gomory–Hu tree, the local edge-connectivity between any vertex
ui ∈ Ui and t is equal to the edge weight of XUi in Trmax . Also, by the definition of a
Gomory–Hu tree, dG(U

∗
i ) is equal to the weight of edge XUi in Trmax . Therefore, U

∗
i

is a tight set in G, because r(ui, t) = λ(ui, t) = d(U∗
i ) for some pair ui, t ∈ V − x. By

Proposition 2.2, we can contract each U∗
i into a single vertex ui for 1 ≤ i ≤ p without

losing any information about admissible pairs in G. Since each U∗
i becomes a single

vertex, the vertex t becomes an indicator vertex in the resulting graph.
Suppose X contains only x in G, i.e., X = x. Then U∗

1 may not be a tight set,
since there may not exist a pair u, v ∈ V − x with r(u, v) = λ(u, v) = d(U∗

1 ). (Note
that there is a vertex v with λ(x, v) = d(U∗

1 ), but r(x, v) = 0 for every vertex v.)
In this case, we contract some tight sets so that any vertex in U1 will become an
indicator vertex. Let W1 �= x, . . . ,Wq �= x be the nodes (if any) adjacent to U1 in

Fig. 3.1. The case when X contains a vertex t �= x. In this case each U∗
i is a tight set. After

contracting each U∗
i into a single vertex, the vertex t becomes an indicator vertex.
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Fig. 3.2. The case when X contains only x. In this case each U∗
i is a tight set for 2 ≤ i ≤ p,

and each W ∗
j is a tight set for 1 ≤ j ≤ q. After contracting each U∗

i for 2 ≤ i ≤ p and each W ∗
j for

1 ≤ j ≤ q into a single vertex, any vertex t ∈ U1 becomes an indicator vertex.

Trmax ; see Figure 3.2. By using similar arguments as before, it can be shown that
each U∗

i is a tight set for 2 ≤ i ≤ p (through ui ∈ Ui and u1 ∈ U1). Therefore we can
contract each U∗

i into a single vertex ui for 2 ≤ i ≤ p. Similarly, we can argue that
each W ∗

j (defined analogously as U∗
i ) is a tight set, and hence we can contract each

W ∗
j into a single vertex wj for each 1 ≤ j ≤ q. We can see that any vertex t ∈ U1

is an indicator vertex in the resulting graph, because λ(t, v) ≥ min{λ(w, v), rmax} for
any pair of vertices v, w since XU1 is the edge with the largest weight in T .

Henceforth, we can consider this resulting graph instead of G for the purpose of
computing a complete splitting-off sequence, and using t as the indicator vertex to
check connectivities. The running time of this procedure is dominated by the partial
Gomory–Hu tree computation, which is at most Õ(rmax

2 · n).
3.5. Splitting-off to capacity. We show how to split off a pair u, v of x-

neighbors to capacity efficiently. Let G′ be the graph obtained from G by splitting-off
min {d(x, u), d(x, v)} copies of the edge pair (xu, xv). Let t be the indicator ver-
tex as defined in section 3.4. By the definition of t, if the edge-connectivity re-
quirement from t to every vertex v ∈ V − x (which is equal to min{λ(v, t), rmax})
is satisfied, then the local edge-connectivity for every pair u, v ∈ V − x is satis-
fied. Let q = maxw∈V−x {r(w, t) − λG′(w, t)} be the maximum violation of the edge-
connectivity requirement from t in G′. Let G′′ be the graph obtained from G by
splitting-off min{d(x, u), d(x, v)} − �q/2� copies of the edge pair (xu, xv). We show
in the following claim that the edge-connectivity requirement from t to every vertex
v ∈ V − x is satisfied in G′′. This implies that exactly min{d(x, u), d(x, v)} − �q/2�
copies of the edge pair (xu, xv) are admissible in G.

Claim 3.5. For any vertex s ∈ V − x, it holds that λG′′ (s, t) ≥ r(s, t) in G′′.
Proof. By Menger’s theorem, we only need to check that dG′′(X) ≥ r(s, t) for

any X separating s and t. The edge-connectivity requirements are satisfied in G, and
so we have dG(X) ≥ r(s, t). The splitting-off operation decreases the degree of X if
and only if u, v ∈ X . By definition, q ≥ r(s, t) − λG′(s, t) ≥ r(s, t) − dG′(X). On the
other hand, we have dG′′(X) ≥ dG′(X) + q, since �q/2� copies of the edge pair are
“unsplit.” Therefore dG′′(X) ≥ r(s, t).

To check the maximum violation, we compute a partial Gomory-Hu tree Trmax in
Õ(rmax

2 · n) time. Then we can easily compute q = maxv∈V −x {r(v, t) − λG′(v, t)} in
O(n) time. Therefore, splitting-off a pair to capacity can be implemented in Õ(rmax

2 ·
n) time. Furthermore, u and v are contained in a tight set in G′′ if and only if q =
maxv∈V−x {r(v, t)− λG′(v, t)} is even. Hence, we can use one splitting-off attempt
to check the existence of any tight set containing u and v, as needed in Lemma 3.2.
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Finally, we remark that one can identify the violating cut (i.e., a dangerous set or a
tight set) easily from the Gomory–Hu tree.

3.6. Deterministic algorithm. We describe how to modify the randomized
algorithm in Theorem 3.4 to obtain a deterministic algorithm with the same running
time. Every step in the algorithm is deterministic except the Gomory–Hu tree con-
struction in Theorem 2.5. The randomized Gomory–Hu tree construction is used in
two places. First it is used in finding an indicator vertex in section 3.4, and for this
purpose it is executed only once. Here we can replace it by a slower deterministic
partial Gomory–Hu tree construction algorithm. It is well known that a Gomory–Hu
tree can be computed using at most n− 1 max-flow computations [14]. By using the
Ford–Fulkerson flow algorithm, one can obtain an O(rmax

2 · n2)-time deterministic
algorithm to construct a partial Gomory–Hu tree Trmax .

The randomized partial Gomory-Hu construction is also used in every splitting-
off attempt to check whether the connectivity requirements are satisfied. With the
indicator vertex t, this task reduces to checking the edge-connectivities from t to other
vertices, and there is a fast deterministic algorithm for this simpler task by Bhalgat
et al. [4].

Theorem 3.6 (see [4]). Given an undirected graph G and a vertex t, there is
an Õ(rmax · m)-time deterministic algorithm to compute min{λG(t, v), rmax} for all
vertices v ∈ G.

Thus, we can replace the randomized partial Gomory–Hu tree algorithm by this
algorithm, and so Theorem 3.4 still holds deterministically. Hence there is a deter-
ministic Õ(m+ rmax

2 · n2) time algorithm for the complete splitting-off problem.

4. Structural property and randomized algorithm. Before we give the
proof of Theorem 1.4, we first show how to use it in a randomized edge splitting-off
procedure to speed up the algorithm. By Theorem 1.4, when the degree of x is much
larger than 2rmax, even a random edge pair will be admissible with probability at
least 1 − 2rmax/(d(x) − 1). Using this observation, we show how to reduce d(x) to
O(rmax) in Õ(m + rmax

3 · n) time. Then, by Theorem 3.4, the remaining edges can
be split off in Õ(m+ rmax

2 · d(x) · n) = Õ(m+ rmax
3 · n) time. So, the total running

time of the complete splitting-off algorithm is improved to Õ(m+ rmax
3 · n), proving

Theorem 1.3.
The idea is to split off many random edge pairs in parallel, before checking if

some connectivity requirement is violated. Suppose that 2l+q−1 < d(x) ≤ 2l+q and
2l−1 < rmax ≤ 2l for some positive integers l and q. To reduce d(x) to 2l+q−1, we
need to split off at most 2l+q−1 x-edges. Since each x-edge has fewer than 2rmax

non-admissible partners by Theorem 1.4, the probability that a random edge pair is
admissible is at least

(d(x) − 1)− 2rmax

d(x) − 1
≥ 2l+q−1 − 2l

2l+q−1
=

2q−1 − 1

2q−1
.

Now, consider a random splitting-off operation that split off at most 2q−2 edge pairs
at random in parallel. The operation is successful if all the edge pairs are admissible.
After each operation, we run the checking algorithm as in section 3.5 to determine
whether this operation is successful. Consider an iteration that repeats the operation
until an operation succeeds. The probability for the operation to succeed is at least

(2
q−2−1
2q−2 )2

q−2

= Ω(1). The expected number of operations in an iteration is O(1).

Hence, the expected runtime for an iteration is Õ(rmax
2 · n).
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Since each iteration reduces the degree of x by 2q−2, with at most 2l+1 = O(rmax)
iterations, we can then reduce d(x) to 2l+q−1, i.e., reduce d(x) by half. This procedure
is applicable as long as q ≥ 3. Therefore, we can reduce d(x) to 2l+2 by using this
procedure for O(log n) times. The total expected runtime is thus Õ(m+ 2l+1 · logn ·
rmax

2 · n) = Õ(m+ rmax
3 · n).

4.1. Proof of Theorem 1.4. In this section, we prove that each edge has
at most 2rmax − 2 non-admissible partners. Given an edge pair (xv, xw), if it is a
non-admissible pair, then there is a dangerous set D with {xv, xw} ⊆ δ(D) by Propo-
sition 2.2, and we say such a dangerous set D covers xv and xw. Let P be the
set of non-admissible partners of xv in the initial graph. Our goal is to show that
|P | ≤ 2rmax − 2. This bound is the best possible as there are examples achieving it
(see Figure 4.2).

Let DP be a minimal set of maximal dangerous sets such that (i) each set D ∈ DP

covers the edge xv, and (ii) each edge in P is covered by some set D ∈ DP . DP is
minimal so that no smaller collection of maximal dangerous sets satisfies these two
properties. The structure of DP is illustrated in Figure 4.1. We prove the theorem
by considering different values of |DP |.

The theorem follows immediately if |DP | ≤ 1. When |DP | = 2, let DP = {X,Y }.
By Proposition 4.1, d(X ∩ Y,X − Y ), d(X ∩ Y, Y − X) ≥ 1 as X,Y are dangerous
sets. Since d(D) ≤ rmax + 1 and D covers xv for each D ∈ DP , we have d(x,X −
Y ), d(x, Y −X) ≤ rmax − 1, proving |P | ≤ 2rmax − 2.

Fig. 4.1. A minimal collection of maximal dangerous set that covers all non-admissible partners
of xv.

Fig. 4.2. The example when xu has 2rmax − 2 non-admissible partners. Apart from x, u has
rmax − 1 neighbors, and each of them has one edge connecting to u and two edges connecting to x.
The configuration of v is the same as that of u. We can see that λ(u, v) = rmax. If we split off
(xu, xu′) for any u′ ∈ N(u), then d({u, u′}) = rmax − 1. Hence, xu′ is a non-admissible partner of
xu for every u′ ∈ N(u).
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The interesting case is |DP | ≥ 3. We first prove in Lemma 4.5 that |DP | ≤
rmax − 1. Then, we use an inductive argument to show that |P | ≤ rmax − 1 + |DP |.
These give |P | ≤ 2rmax − 2 and prove the theorem. The following propositions are
used whose proofs are provided in the appendix for completeness.

Proposition 4.1 (see [2, Lemma 5.4]). For any disjoint vertex sets S1, S2 with
d(S1, S2) = 0 and d(x, S1) ≥ 1 and d(x, S2) ≥ 1, S1 ∪ S2 is not a dangerous set.

Proposition 4.2 (see [2, Lemma 5.4]). If d(x, v) ≥ 2, then inequality (2.1a)
holds for two dangerous sets X,Y containing v.

Lemma 4.3 (see [2, Lemma 5.4]). If |DP | ≥ 3, then inequality (2.1a) holds for
every X,Y ∈ DP .

Lemma 4.4 (see [25, Lemma 2.6]). If |DP | ≥ 3, then X ∩ Y = {v} and is a tight
set for any X,Y ∈ DP .

We assume there is no cut edge incident on x (Hypothesis 2.7) and rmax ≥ 2
as required in the proof by Theorem 1.4. By contracting nontrivial tight sets, each
edge in P is still a non-admissible partner of xv by Lemma 2.4. Henceforth, we may
assume that all tight sets are singletons.

4.1.1. An upper bound on |DP |. The following proof uses very similar ideas
as in [2, 25].

Lemma 4.5. |DP | ≤ rmax − 1 when |DP | ≥ 3.

Proof. Suppose |DP | ≥ 3. By Lemma 4.4, we have X ∩ Y = {v} for any X,Y ∈
DP . For each set X ∈ DP , we have d(x, v) ≥ 1 and d(x,X − v) ≥ 1 by the minimality
of DP . Therefore, we must have d(v,X − v) ≥ 1 by Proposition 4.1. By Lemma 4.4,
X − v and Y − v are disjoint for each pair X,Y ∈ DP . Since d(v,X − v) ≥ 1 for each
X ∈ DP and d(x, v) ≥ 1, it follows that |DP | ≤ d(v) − 1. By Lemma 4.4, {v} is a
tight set, and thus |DP | ≤ d(v)− 1 ≤ rmax − 1.

4.1.2. An inductive argument. When |DP | ≥ 3, we prove |P | ≤ rmax − 1 +
|DP | by induction on |DP |. We first outline the inductive argument. By the minimality
of DP , we can argue that there exists an admissible pair in P . After splitting-off such
pair, |P | is reduced by two. We prove in Lemma 4.6 that |DP | is also reduced by at
least two. By repeating this reduction, the remaining edges in P are covered by one
or two dangerous sets at the end. Then, we can conclude that |P | ≤ rmax − 1+ |DP |.
In the following, we will provide the details of the inductive argument.

The theorem follows immediately if d(x,X − v) = 1 for every dangerous set
X ∈ DP . Hence, we assume that there is a dangerous set A ∈ DP with d(x,A−v) ≥ 2;
this property will be used only at the very end of the proof. For any B ∈ DP −A, there
exist x-neighbors a ∈ A ∩ P, b ∈ B ∩ P such that the edge pair (xa, xb) is admissible.
Otherwise, by Lemma 3.1, there exists a dangerous set covering (A ∪ B) ∩ P , which
contradicts the minimality of DP .

After splitting-off (xa, xb), let the resulting graph be G′ and P ′ = P − {xa, xb}.
Let DP ′ be a set of maximal dangerous sets such that (i) each set D ∈ DP ′ covers the
edge xv, (ii) each edge in P ′ is covered by some set D ∈ DP ′ The following lemma
shows that there exists some DP ′ such that |DP ′ | ≤ |DP | − 2.

Lemma 4.6. When |DP | ≥ 3, the edges in P ′ can be covered by a set DP ′ of
maximal dangerous sets in G′ such that (i) each set in DP ′ covers xv, (ii) each edge
in P ′ is covered by some set in DP ′ , and (iii) |DP ′ | ≤ |DP | − 2.

Proof. We use the dangerous sets in DP to construct DP ′ . By Lemma 4.3,
each pair of sets in DP satisfies inequality (2.1a). By the minimality of DP , we
have s(A ∪ B) = 2 before splitting-off (xa, xb). Hence A ∪ B is a tight set after
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splitting-off. Contract A ∪ B into v. By Lemma 2.4, each e ∈ DP is still a non-
admissible partner of xv in G′. Therefore, for each C ∈ DP , P ∩C + v is still a non-
admissible set. By Lemma 3.1, there exists a dangerous set covering P ∩C + v in G′.
Hence, there exists DP ′ , a collection of at most |DP −A−B| maximal dangerous sets
covering P ′.

Remove and replace some of the maximal dangerous sets inDP ′ so that it becomes
the smallest set to satisfy properties (i) and (ii). Recall that we chose A with d(x,A−
v) ≥ 2, and hence d(x, v) ≥ 2 after the splitting-off and contraction of tight sets.
Therefore, by Proposition 4.2, inequality (2.1a) holds for every two maximal dangerous
sets in DP ′ .

By induction, when |DP | ≥ 3, we have |P | = |P ′| + 2 ≤ rmax − 1 + |DP ′ | + 2 ≤
rmax − 1 + |DP |. In the base case with |DP | = 3, only one dangerous set leaves after
splitting-off. Hence |P | = |P ′|+2 ≤ (rmax +1)− 1+ 2 ≤ rmax − 1+ |DP |. In another
base case with |DP | = 2, inequality (2.1a) holds for C,D ∈ DP . The argument in
Lemma 4.6 can be used to show that the edges in P ′ are covered by one tight set after
splitting-off (xa, xb). Thus |P | = |P ′| + 2 ≤ rmax − 1 + 2 ≤ rmax − 1 + |DP |. This
completes the proof that |P | ≤ rmax − 1 + |DP |.

Concluding remarks. Theorem 1.4 can be applied to constrained edge splitting-
off problems, and give additive approximation algorithms for constrained augmenta-
tion problems. The efficient algorithms can also be adapted to these problems. We
refer the reader to [26] for these results.

In a recent work [8], it was shown that one can reduce the number of splitting-off
attempts to O(|N(x)|) (Lemma 3.3) by a simple reduction using an expander graph.

Appendix. Proofs of some known results. We include the proofs of some
known results for completeness and for the convenience of the readers.

Proof of Lemma 2.4. Suppose, by way of contradiction, that (xu′, xv′) is not an
admissible pair in G. Then there exists a maximal dangerous set D containing u′, v′

in G, i.e., sG(D) ≤ 1. If either D ∩ T = ∅ or T ⊆ D, then

sG/T (D−T + t) = dG/T (D−T + t)−rG/T (D−T + t) = dG(D)−rG(D) = sG(D) ≤ 1.

Hence D − T + t is also a dangerous set in G/T , contradicting the assumption that
(xu, xv) is an admissible pair in G/T . Therefore D− T �= ∅ and T −D �= ∅. Inequal-
ity (2.1a) cannot hold for D and T . For otherwise, D ∪ T is also a dangerous set in
G, since

1 + 0 = sG(D) + sG(T ) ≥ sG(D ∪ T ) + sG(D ∩ T ),

contracting the maximality of D since T −D �= ∅. Therefore inequality (2.1b) must
hold for D and T in G, and hence

1 + 0 = sG(D) + sG(T ) ≥ sG(D − T ) + sG(T −D) + 2d̄G(D,T ).

It follows that (D−T ) is a dangerous set and xu, xv ∈ δG(D−T ) (since d̄G(D,T ) = 0),
which contradicts that (xu, xv) is an admissible pair in G/T . Therefore D does not
exist, proving the lemma.

Proof of Proposition 4.1. For any disjoint vertex sets S1 and S2 with d(S1, S2) = 0,
we have

s(S1 ∪ S2) = d(S1 ∪ S2)− r(S1 ∪ S2) ≥ d(S1) + d(S2)−max{r(S1), r(S2)}
≥ min{d(S1), d(S2)}.
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Since d(x, S1) ≥ 1 and d(x, S2) ≥ 1, it follows that either d(S1) = 1 or d(S2) = 1,
which implies a cut edge incident on x, violating the assumption.

Proof Proposition 4.2. Suppose to the contrary that inequality (2.1a) does not
hold. Then inequality (2.1b) must hold for X and Y , which is impossible since

1 + 1 ≥ s(X) + s(Y ) ≥ s(X − Y ) + s(Y −X) + 2d̄(X,Y )

≥ s(X − Y ) + s(Y −X) + 2d(x, v)

≥ s(X − Y ) + s(Y −X) + 2 · 2.
Proof of Lemma 4.3. Suppose, by way of contradiction, that inequality (2.1b)

holds for X and Y . Then

1 + 1 ≥ s(X) + s(Y ) ≥ s(X − Y ) + s(Y −X) + 2d̄(X,Y )

≥ s(X − Y ) + s(Y −X) + 2(d(x, v) + d(V − x−X ∪ Y,X ∩ Y ))

≥ s(X − Y ) + s(Y −X) + 2 + 2d(V − x−X ∪ Y,X ∩ Y ).

It implies that both X − Y and Y −X are tight and d(V − x− (X ∪ Y ), X ∩ Y ) = 0.
Since tight sets are singletons, we let X − Y = {a} and Y − X = {b}. By the
minimality of DP , a and b are both x-neighbors and no Z ∈ DP − X − Y contains
either a or b. Since d(V − x − (X ∪ Y ), X ∩ Y ) = 0 and a, b /∈ Z, it follows that
d(Z− (X ∩Y ∩Z), X ∩Y ∩Z) = 0. Let S1 = X ∩Y ∩Z and S2 = Z−X ∩Y ∩Z, and
thus d(S1, S2) = 0. Since v ∈ X ∩ Y ∩ Z, we have d(x, S1) ≥ 1. By the minimality
of DP , there is an x-neighbor in S2 = Z − (X ∩ Y ∩ Z) and thus d(x, S2) ≥ 1. By
Proposition 4.1, Z = S1 ∪ S2 is not a dangerous set, contradicting the definition
of DP .

Proof of Lemma 4.4. Since X,Y ∈ DP are maximal dangerous sets, X ∪ Y is not
a dangerous set. By Lemma 4.3, inequality (2.1a) holds for X and Y , and it follows
that X ∩ Y is a tight set. Since each tight set is a singleton and v ∈ X ∩ Y , the
proposition follows.

Acknowledgments. We thank two anonymous reviewers for many useful com-
ments and suggestions that significantly improved the presentation of the paper.
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