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Abstract. We present algorithmic and hardness results for network design problems with degree
or order constraints. The first problem we consider is the Survivable Network Design problem
with degree constraints on vertices. The objective is to find a minimum cost subgraph which satisfies
connectivity requirements between vertices and also degree upper bounds Bv on the vertices. This
includes the well-studied Minimum Bounded Degree Spanning Tree problem as a special case. Our
main result is a (2, 2Bv+3)-approximation algorithm for the edge-connectivity Survivable Network

Design problem with degree constraints, where the cost of the returned solution is at most twice the
cost of an optimum solution (satisfying the degree bounds) and the degree of each vertex v is at most
2Bv +3. This implies the first constant factor (bicriteria) approximation algorithms for many degree
constrained network design problems, including the Minimum Bounded Degree Steiner Forest

problem. Our results also extend to directed graphs and provide the first constant factor (bicriteria)
approximation algorithms for the Minimum Bounded Degree Arborescence problem and the
Minimum Bounded Degree Strongly k-Edge-Connected Subgraph problem. In contrast, we
show that the vertex-connectivity Survivable Network Design problem with degree constraints is
hard to approximate, even when the cost of every edge is zero. A striking aspect of our algorithmic
result is its simplicity. It is based on the iterative relaxation method, which is an extension of
Jain’s iterative rounding method. This provides an elegant and unifying algorithmic framework for
a broad range of network design problems. We also study the problem of finding a minimum cost
λ-edge-connected subgraph with at least k vertices, which we call the (k, λ)-subgraph problem. This
generalizes some well-studied classical problems such as the k-MST and the minimum cost λ-edge-
connected subgraph problems. We give a polylogarithmic approximation for the (k, 2)-subgraph
problem. However, by relating it to the Densest k-Subgraph problem, we provide evidence that
the (k, λ)-subgraph problem might be hard to approximate for arbitrary λ.
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1. Introduction. Network design is a central topic in combinatorial optimiza-
tion, approximation algorithms, and operations research. The basic setting of network
design problems is to find a minimum cost subgraph satisfying connectivity require-
ments between vertices. This captures a variety of classical problems such as Minimum
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Cost Flow, Minimum Steiner Tree, and Hamiltonian Cycle. Also, research
results in this area provide algorithmic tools and insights (e.g., hardness results) for
the design of practical networks such as telecommunication networks. A highlight of
this line of research is Jain’s 2-approximation algorithm for the Survivable Net-

work Design problem [22].
A recent research direction is to study a more general class of network design prob-

lems where there are natural budget constraints. This is motivated by the need for
more sophisticated and realistic models for the design of practical networks. The first
type of constraints we study is degree constraints on vertices. The objective is to find a
minimum cost subgraph satisfying connectivity requirements as well as degree bounds
(e.g., workloads) on the vertices. A well-known example is the Minimum Bounded

Degree Spanning Tree problem, which includes the Traveling Salesman prob-
lem as a special case. Recently, Goemans [19] obtained an approximation algorithm
for this problem, with only an additive error of two on the degrees, following a long
line of research. We observe that the basis underlying the breakthrough results of
Jain [22] and Goemans [19] is the uncrossing technique in combinatorial optimization.

We study a common generalization of the above two problems. Our main result is
a generalization of the 2-approximation algorithm for the edge-connectivity Surviv-

able Network Design problem that simultaneously provides near-optimal bounds
on the degrees. This yields the first constant factor (bicriteria) approximation algo-
rithms for many degree-constrained network design problems, including the Minimum

Bounded Degree Steiner Network problem and the Minimum Bounded De-

gree Steiner Tree problem. Our results extend to directed graphs and provide the
first constant factor (bicriteria) approximation algorithms for Minimum Bounded

Degree Arborescence and Minimum Bounded Degree Strongly k-Edge-

Connected Subgraph. A striking aspect of our method is its simplicity. Our ap-
proach is based on the iterative relaxation method, which is an extension of Jain’s iter-
ative rounding method. This provides an elegant and unifying algorithmic framework
for a broad range of network design problems. Very recently, the iterative relaxation
technique introduced in this paper was extended to give an (1, Bv +1)-approximation
algorithm for the Minimum Bounded Degree Spanning Tree problem [42], set-
tling a conjecture of Goemans affirmatively. In contrast, we present hardness results
for the vertex-connectivity Survivable Network Design problem with degree con-
straints, even when all edges have zero cost.

The second type of constraints we study is order constraints. Specifically, we
study the problem of finding a minimum cost λ-edge-connected subgraph with at
least k vertices, which we call the (k, λ)-subgraph problem. This generalizes some
classical and well-studied problems such as the k-MST problem (which is the (k, 1)-
subgraph problem) and the minimum cost λ-edge-connected subgraph problem (which
is the (n, λ)-subgraph problem with n being the number of vertices). We give a poly-
logarithmic approximation algorithm for the (k, 2)-subgraph problem. However, by
relating it to the Densest k-Subgraph problem, we give evidence that the (k, λ)-
subgraph problem might be hard to approximate for arbitrary λ.

1.1. Previous work. In the Survivable Network Design problem, we are
given a connectivity requirement ruv for each pair of vertices, and the goal is to
find a minimum cost subgraph satisfying the connectivity requirements. This is a
general problem which captures many interesting problems as special cases (e.g., min-
imum Steiner tree, minimum Steiner forest, minimum k-edge-connected subgraph)
and has many applications. Jain [22] gave a 2-approximation algorithm for the edge-
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connectivity Survivable Network Design problem by using an elegant iterative
rounding approach. In contrast, the vertex-connectivity Survivable Network De-

sign problem is shown to be very hard to approximate [28].
Network design problems with degree constraints have been studied extensively

lately. A simpler setting is to minimize the maximum degree of a subgraph (with-
out considering the cost) satisfying given connectivity requirements. A well-known
example is the Minimum Degree Spanning Tree (MDST) problem, where the ob-
jective is to find a spanning tree of smallest maximum degree. This problem is already
NP-hard as it generalizes the Hamiltonian Path problem. Fürer and Raghavachari
[12, 13] gave an approximation algorithm returning a solution with maximum degree
at most one off the optimal solution. (Their result holds for the Steiner tree problem
as well.) Ravi, Raghavachari, and Klein [36], and Klein et al. [24] considered the
Minimum Degree k-Edge-Connected Subgraph problem and gave an approxi-
mation algorithm with performance ratio O(nδ) for any fixed δ > 0 in polynomial time
and O(log n/ log log n) in subexponential time. Recently, Feder, Motwani, and Zhu
[11] obtained a polynomial time O(k log n)-approximation algorithm for this problem
for any fixed k, thus answering an open question in [36]. Our main result implies
the first constant factor approximation algorithm even for general edge-connectivity
requirements.

For the problem of finding a minimum cost subgraph with given connectivity re-
quirements and degree bounds Bv on every vertex v, the most studied case is the
Minimum Bounded Degree Spanning Tree problem. Let opt be the cost of
an optimal solution which satisfies all the degree bounds. We say an algorithm
is an (α, f(Bv))-approximation algorithm if the returned solution has cost at most
α · opt and the degree at each vertex v is at most f(Bv). The first approximation
algorithm for the Minimum Bounded Degree Spanning Tree problem was an
(O(log n), O(Bv log n))-algorithm in [33, 35]. This was subsequently improved in a
series of papers [26, 27, 7, 8, 37]. Recently, Goemans [19] made a major step on this
problem by giving a (1, Bv + 2)-approximation algorithm. The proof of Goemans’ re-
sult is based on the uncrossing technique, and is considerably simpler than the previous
results. Not much is known for more general connectivity requirements. For the Mini-

mum Bounded Degree Steiner Tree problem, there is an (O(log n), O(Bv log n))-
approximation algorithm [35]. This bound was improved to an (O(1), O(Bv + logn))-
approximation by [25], but the algorithm runs in quasi-polynomial time. Our main
result implies the first polynomial time (2, 2Bv +3)-approximation algorithm even for
general edge-connectivity requirements.

For network design problem with order constraints, the most well-studied problem
is the k-MST problem, where the objective is to find a minimum cost tree spanning
at least k vertices. The approximation factor for this problem was improved from√

k and O(log2 k) in [34, 3] down to constant in [6, 17] and very recently to 2 [18].
For the case of metric costs on the edges, the k-TSP problem (k–Traveling Salesman
Problem), which asks to find a minimum cost TSP tour visiting at least k vertices,
can also be approximated within factor 2 [18].

1.2. Our results. Suppose that we are given an undirected graph with connec-
tivity requirements ruv on pairs of vertices u and v, and a degree bound Bv on each
vertex v. The Survivable Network Design problem with degree constraints asks
for a minimum cost subgraph such that there are at least ruv edge-disjoint paths be-
tween vertices u and v and the degree of each vertex is at most Bv. Our main result
is the following theorem.
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Table 1

Results on minimum cost bounded-degree network design problems. For the cases without costs,
this paper presents an algorithm in which the degree bounds are at most 2B + 3.

Connectivity requirement Degree Cost and degree This paper
Spanning tree B + 1 [13] (1, B + 2) [19] (2, 2B + 3)
Steiner tree B + 1 [13] (O(log n), O(B log n)) [35] (2, 2B + 3)

Steiner forest - - (2, 2B + 3)
k-edge-connected subgraph O(k log n) [11] - (2, 2B + 3)

Steiner network - - (2, 2B + 3)

Theorem 1.1. There is a polynomial time (2, 2Bv + 3)-approximation algorithm
for the Survivable Network Design problem with degree constraints. Moreover,
on average, the degree bounds are violated by at most 2.

This gives the first constant factor bicriteria approximation algorithms for a
broad range of network design problems with degree constraints such as the Min-

imum Steiner Tree problem, the Minimum Steiner Forest problem, and the
Minimum k-Edge-Connected Subgraph problem. It also implies the first con-
stant factor approximation algorithm for the minimum maximum-degree version of
many problems (by setting Bv = B for all v). We remark that Theorem 1.1 holds
for (1) connectivity requirements that are weakly supermodular (technical definition
is deferred to later) and (2) the case where there are both lower and upper degree
bounds. In fact, the lower bounds will not be violated. Please see Table 1 to compare
Theorem 1.1 with some of the known results.

For directed graphs, we study the problem of finding a minimum cost sub-
graph which satisfies connectivity requirements that are intersecting supermodular
or crossing supermodular (technical definition is deferred to later) and both inde-
gree and outdegree constraints (Bin

v and Bout
v , respectively, for each v ∈ V ). This

includes the Minimum Bounded Degree Arborescence problem, and the Mini-

mum Bounded Degree Strongly k-Edge-Connected Subgraph problem. We
obtain the following results.

Theorem 1.2. There is a polynomial time (3, 3Bin
v +5, 3Bout

v +5)-approximation
algorithm to find a minimum cost subgraph that satisfies crossing supermodular con-
nectivity requirements and indegree and outdegree constraints in directed graphs. For
{0, 1}-valued intersecting supermodular connectivity requirements, there is a polyno-
mial time (2, Bin

v , 2Bout
v + 2)-approximation algorithm.

In contrast to the above theorems, we present a hardness result for the vertex-
connectivity version of the Survivable Network Design problem with degree con-
straints, even when the cost of the subgraph is not considered.

Theorem 1.3. For any ε > 0, there is no polynomial time (∞, 2log1−ε nBv)-
approximation algorithm for the degree bounded vertex-connectivity Survivable Net-

work Design problem unless NP ⊆ DTIME(npolylog(n)).
Next, we turn our attention to network design problems with order constraints.

We study the (k, λ)-subgraph problem, i.e., the problem of finding a minimum cost
λ-edge-connected subgraph with at least k vertices. This problem generalizes the
classical k-MST problem to higher connectivity requirements. For the (k, 2)-subgraph
problem, we are able to obtain the following.1

1In the conference version of this paper we claimed an O(log3 n)-approximation algorithm for
the (k, 2)-subgraph problem with an incorrect proof. Here we prove a better approximation ratio
using a different and simpler proof.
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Theorem 1.4. There is an O(log k ·log n)-approximation algorithm for the (k, 2)-
subgraph problem.

For general values of λ, it seems that the (k, λ)-subgraph problem might be diffi-
cult, as shown by the following result.

Theorem 1.5. An α-approximation algorithm for the (k, λ)-subgraph problem
(even for the unweighted case) for arbitrary λ implies an (α log2 k)-approximation
algorithm for the Densest k-Subgraph problem.

Notice that the best known approximation algorithm for the Densest k-Subgraph

problem has ratio O(n
1
3−ε) for some constant ε > 0 [14].

1.3. Techniques and overview. The iterative rounding method for the Sur-

vivable Network Design problem (without degree constraints) works as follows.
Formulate the Survivable Network Design problem as an integer linear program
(LP), and then solve the linear relaxation of the problem to find a basic optimal solu-
tion x. Pick an edge e∗ with highest value (i.e., xe∗ ≥ xe for all e ∈ E) and add it to
the solution subgraph H (initially H is empty). Then consider the residual problem,
where the edges in H are preselected, and repeat the above procedure (find a basic
optimal solution, add an edge with highest value to H , and construct the residual
problem) until all the connectivity requirements are satisfied. Jain [22] proved that
the edge picked in each iteration has value at least 1/2 (i.e., xe∗ ≥ 1/2), implying a
2-approximation algorithm for the problem.

We return to the Survivable Network Design problem with degree con-
straints. The starting point is that degree constraints are defined only on single ver-
tices, and so the uncrossing technique as in [22, 19] can be applied to show that a basic
optimal solution is characterized by a laminar family of tight sets (see Lemma 2.3).
This immediately implies that, in the first iteration, there exists an edge having value
at least 1/2. Now comes the key difference. Since degree constraints are packing
constraints, after we have picked some fractional edges in the previous iterations, we
need to allow for nonintegral degree constraints in the residual problem; otherwise the
residual problem may be infeasible, or its cost may be significantly higher. By doing
so, however, it is not necessarily true that the picked edges in later iterations have
value at least 1/2.

We introduce the idea of iterative relaxation to overcome this difficulty. When
there is no edge of value at least 1/2 in a basic optimal solution, we prove in Lemma 2.2
that there is a vertex v with degree constraint and it has degree at most 4. The new
idea is to “relax” the problem by removing the degree constraint on v. Then, we
recompute a basic optimal solution of the residual problem and iterate this procedure.
So, in each iteration, we either round up an edge of value at least 1/2 or relax the
problem by removing the degree constraint of a vertex of degree at most 4. Note
that the relaxation step incurs only an extra additive constant 3 in the approximation
ratio. This implies a (2, 2Bv + 3)-approximation algorithm for the problem.

The above technique is also adapted to prove the claimed guarantees for the
directed graph results (Theorem 1.2). Subsequently, the iterative relaxation method
has found various applications [4, 23, 29, 42]. In particular, in has been used [42] to
settle the conjecture on the Minimum Bounded Degree Spanning Tree problem
affirmatively.

2. Survivable network design with degree constraints. In this section we
study the Survivable Network Design problem with nonuniform upper and lower
bounds on vertex degrees and present a bicriteria approximation algorithm which
will imply Theorem 1.1. More specifically, assume we are given a complete graph
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G = (V, E) and nonnegative costs c : E → R+ on the edges, connectivity requirements
ri,j on pairs of vertices i, j, a degree upper bound Bv for each vertex v ∈ W ⊆ V , and
a degree lower bound Lv for each vertex v ∈ U ⊆ V . We also have an upper bound
Ue ≥ 1 on the multiplicity of edge e in the solution (which would be 1 if each edge
can be picked only once). The goal is to find a subset of edges F of minimum cost
such that the subgraph H = (V, F ) satisfies the connectivity requirements and the
degree bounds; that is, in H there are ru,v edge-disjoint paths between vertices u, v,
for each pair u, v, each vertex v has Lv ≤ degH(v) ≤ Bv, and each edge e appears at
most Ue times in H .

Our method is an extension of Jain’s iterative rounding method, as outlined in
section 1.3. An integer function on sets of vertices f : 2V → Z+ that has f(V ) = 0 is
called weakly supermodular if one of the two inequalities

f(A) + f(B) ≤ f(A ∩ B) + f(A ∪ B) or
f(A) + f(B) ≤ f(A − B) + f(B − A)

holds for every pair of sets A, B ⊆ V with A ∩ B �= ∅. An important point in
Jain’s method is that the connectivity requirements ruv are specified via a function
f on the sets of vertices by setting f(S) := maxu∈S,v/∈S{ruv}. It is known that f is
weakly supermodular in this case and stays weakly supermodular when updating the
LP from one iteration to the next (to account for one or more edges being added to
the solution subgraph). We denote x(U) :=

∑
e∈U xe, and δ(S) denotes the set of

edges with exactly one endpoint in S for S ⊂ V . Below is the LP relaxation for the
Survivable Network Design problem with degree bounds:

(LP) minimize zLP =
∑

e∈E

ce xe

subject to x(δ(S)) ≥ f(S) ∀S ⊆ V,

x(δ(v)) ≥ Lv ∀ v ∈ U,

x(δ(v)) ≤ Bv ∀ v ∈ W,

0 ≤ xe ≤ Ue ∀ e ∈ E.

Clearly the first part of Theorem 1.1 follows from the following theorem.
Theorem 2.1. If the LP has an optimal solution of cost zLP , then there exists

an integral solution x̂ of cost ≤ 2zLP that satisfies all the constraints on f and Lv ≤∑
e∈δ(v) x̂e ≤ 2Bv + 3 for all v ∈ V . Moreover, x̂ can be computed in polynomial

time.
First note that any degree lower bound constraint can be incorporated as a con-

nectivity constraint (with f({v}) := max{f({v}), Lv} for the cut S = {v}). By doing
so, the new function f obtained from the connectivity constraints and degree lower
bounds remains weakly supermodular. Therefore, if we satisfy all the connectivity
constraints, then we have satisfied the degree lower bounds, too. Henceforth, we as-
sume that aside from connectivity constraints we have only degree upper bounds. We
simply refer to them as degree constraints. Note that the Bv’s can be fractional, since
the algorithm can change the degree bounds fractionally.

To prove Theorem 2.1, we use the algorithm as shown in Figure 1. This is
an iterative relaxation procedure for (LP), which is outlined in section 1.3. The
correctness of the algorithm is based on the following key lemma, which guarantees
that the algorithm terminates.
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1. Initialization F ← ∅, f ′ ← f , and ∀v ∈W : B′
v = Bv;

2. While f ′ �≡ 0 do
(a) Find a basic optimal solution x with cut requirement f ′ and remove every

edge e with xe = 0.
(b) If there exists a vertex v ∈ W with at most four incident edges, remove v

from W and goto (a).
(c) If there exists an edge e = (u, v) with xe ≥ 1/2, add 	xe
 copies of xe to F

and decrease B′
u and B′

v by xe.
(d) For every S ⊆ V : f ′(S)← f(S)− |δF (S)|.

3. Return H = (V, F ).

Fig. 1. Bounded degree Survivable Network Design problem algorithm.

Lemma 2.2. Let x be a basic solution of (LP), and W be the set of vertices with
degree constraints. Then either one of the following is true:

1. There exists an edge with value at least 1/2.
2. There exists a vertex v ∈ W such that deg(v) ≤ 4.

Before giving the proof of this lemma, we first show that it implies Theorem 2.1.
Proof of Theorem 2.1. The results of Jain [22] and Grötschel, Lov́asz, and Schrijver

[21, Theorem 6.4.9] show that a basic optimal solution x∗ (if it exists) of the initial
LP can be found in polynomial time. It is known that the updated function f ′ stays
weakly supermodular (since we are subtracting a symmetric submodular function),
and the LP for the residual problems can be solved in polynomial time [22]. By
Lemma 2.2, the above algorithm will always terminate; clearly, the returned solution
satisfies f .

We need to prove that the cost of F is at most 2zLP , where zLP is the cost of the
optimal solution x∗ of the initial LP, and that degF (v) ≤ 2Bv + 3 for every vertex v.
We prove the former by induction on the number of iterations in which line 2(c) of
the algorithm is executed. Suppose an edge e with x∗

e ≥ 1/2 is added to F in the first
iteration. By induction, the algorithm finds an edge set F ′ of cost at most 2z′LP that
satisfies the residual connectivity requirements, where z′LP is the optimal solution to
the residual problem. Note that z′LP ≤ zLP − cex

∗
e ≤ zLP − ce

2 ; the first inequality
holds since the restriction of x∗ to the edges in E − e is a feasible solution to the
residual LP. Hence, the cost of F is c(F ) = c(F ′) + ce ≤ 2z′LP + ce ≤ 2zLP .

Finally, we prove that for every vertex v ∈ V , degF (v) ≤ 2Bv + 3. Consider a
degree constraint on a vertex v. Suppose the degree constraint on v has never been
removed. Since we add only edges with value at least 1/2 to F , it is easy to see that
degF (v) ≤ 2Bv. Now suppose the degree constraint is removed after α edges incident
on v are added. So, Bv > α

2 . Since v is of degree at most 4 when its degree constraint
is removed, the degree of v in the final solution is at most α+4. As Bv is an integer (Bv

is the degree bound in the first iteration), we have degF (v) ≤ α + 4 ≤ 2Bv + 3.
To prove Lemma 2.2, we need a characterization of the basic feasible solutions of

(LP). Consider any solution x of the LP. We call a set of vertices S tight (with respect
to x) if either S = {v} and x satisfies the degree constraint for v with equality,
i.e., x(δ(v)) = Bv, or x satisfies the connectivity constraint for S with equality, i.e.,
x(δ(S)) = f(S) (in the latter case, S may be a singleton or not). We say that a pair
of sets S, T intersect if all of the sets S ∩ T, S − T, T − S are nonempty, and we say
that a family of sets L = {S1, S2, . . . , S�} is laminar if no two of its sets intersect.
For any set S ⊆ V , let χS denote the incidence vector of the set of edges δ(S); note
that in the constraint matrix of the LP, χS is the row for set S (the constraint for
S may be either a connectivity constraint or a degree bound). The following lemma
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characterizes the tight constraints (i.e., constraints satisfied as equalities) of a basic
feasible solution. The proof follows from standard uncrossing arguments. We include
a sketch for the sake of completeness.

Lemma 2.3. Let the requirement function f of (LP) be weakly supermodular, and
let x be a basic solution of (LP) such that 0 < xe < 1 for all edges e ∈ E. Then, there
exists a laminar family L of tight sets such that L partitions into a set of singletons
L′ for the degree constraints and the remaining sets L′′ = L− L′ for the connectivity
constraints, such that the following hold:

(i) Every set S = {v} ∈ L′ has Bv > 0 and every set S ∈ L′′ has f(S) ≥ 1.
(ii) |L| = |E|.
(iii) The vectors χS, S ∈ L, are linearly independent.
(iv) x is the unique solution to {x(δ(v)) = Bv∀{v} ∈ L′}⋃{x(δ(S)) = f(S)∀S ∈

L′′}.
Proof. This result follows from the standard uncrossing method; see Lemmas 4.1–

4.3 of [22] or Chapter 52.4 of [40]. The main point is that if two tight sets A, B
intersect, then neither can be a singleton set, so the connectivity constraints for
A, B must hold with equality (degree constraints are defined on singletons and do
not intersect with other sets); then either A ∩ B, A ∪ B are tight and χA + χB =
χA∩B + χA∪B or A − B, B − A are tight and χA + χB = χA−B + χB−A.

Now we sketch the proof of Lemma 2.2. This is similar to the proof of the key
lemma in [22] as described in [43, Theorem 23.6]. We derive a contradiction if none of
the conditions in Lemma 2.2 hold. Let L be the laminar family of tight sets obtained
in Lemma 2.3 when applied to the basic solution just before executing line 2(c) of the
algorithm. The number of sets in L is equal to the number of edges in G. We can
view L as a forest of rooted trees where each node in the tree corresponds to a set in
L and a root is a set not contained in any other set. Set T is the parent of S if it is
the smallest set containing S. Following the terminology of [43], S is said to own an
endpoint v of edge e = (u, v) if S is the smallest set in L containing v. Note that there
the total number of endpoints in G is 2m, where m = |E(G)|. The proof is established
by showing that if every edge e has xe < 1/2, then we can assign endpoints to the
sets in such a way that for every set S, S gets at least three endpoints and each of its
descendants gets at least two endpoints. We get a contradiction of having more than
2m endpoints once this argument is applied to the roots of the trees in the forest of
laminar family. We need one more definition from [43]. For every set S ∈ L we define
the corequirement of S as coreq(S) = 1

2 |δ(S)|− f(S). The counting argument leading
to a contradiction is done through the following lemma, which is essentially Lemma
23.21 of [43].

Lemma 2.4. Let T be a subtree rooted at S and assume that xe < 1/2 for all
e ∈ E. The endpoints owned by T can be redistributed in such a way that S gets at least
three endpoints and each of its descendants gets at least two endpoints. Furthermore,
if coreq(S) �= 1/2, then S gets at least four endpoints, and if S is a degree constraint,
then it gets at least five endpoints.

Proof. First, note that the fractional-value tight sets are singletons coming from
degree constraints. Each degree constraint is a leaf in the forest and each owns at least
five endpoints by the assumption on x (line 2(b)). The same argument as in [43] shows
that every other leaf (which is not a degree constraint) satisfies the requirements of
the lemma. We include the proof here to illustrate the importance of threshold 1

2 and
the definition of corequirement. Let S be a leaf of L which is not a degree constraint.
Then S can receive one token for each edge in δ(S). Since x(δ(S)) = f(S) ≥ 1 and
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there is no edge e with xe ≥ 1
2 , we obtain that |δ(S)| ≥ 3. Thus S receives at least

three tokens and exactly three when |δ(S)| = 1 and x(δ(S)) = f(S) = 1. In this case,
coreq(S) = 1

2 and the base case of the induction holds.
We now show that the claim holds for a nonleaf set as well. We say a set S has

a surplus of p if p + 2 endpoints have been assigned to it. Consider a nonleaf set S.
(1) If S has two or more children, one of which is a degree constraint, then it

can collect three endpoints from the surplus of its degree-constrained child and one
endpoint from the surplus of one of its other children for a total of at least four.

(2) If S has only one child, say, S′, and it is a degree constraint, then since
δG(S) �= δG(S′) (by linear independence of incidence vectors of Lemma 2.3), S owns
at least one endpoint. It can also collect three endpoints from the surplus of S′, for
a total of at least four.

(3) If none of the children of S are degree constraints, then the same analysis as
in [43] shows that S satisfies the requirements of the lemma.

This completes the proof of Lemma 2.2 and hence the proof of Theorem 2.1.

Integrality gap example. One may wonder whether the bicriteria approxima-
tion guarantee of this theorem is best possible. The following example shows that the
integrality gap of the LP is at least the minimum between (2, 2Bv +1) and (2, Bv +2),
defined as follows. If the LP is feasible and has an optimal solution with cost zLP ,
then in any integral solution the cost is at least 2zLP , and each vertex v has degree at
least 2Bv +1 or Bv +2. Take a 3-regular 3-edge connected graph G with no Hamilto-
nian path. Such graphs exist; the following construction was brought to our attention
by Jim Geelen and Jacques Verstraete. Let P denote the Petersen graph, let P − v
be the graph obtained from P by deleting vertex v, and let us denote the neighbors
of v in P by w1, w2, and w3 (so these three vertices have degree 2 in P − v). Now,
take three copies of P − v and three new vertices v1, v2, and v3, and attach them as
follows: add edges from vj to each of the three copies of wj (1 ≤ j ≤ 3) in the three
copies of P − v. It is not hard to argue that this graph on 30 vertices does not have
any Hamiltonian path (a key observation is that in any potential Hamiltonian path,
the path must visit all the vertices of a copy of P − v before exiting it; this is not
possible given that the Petersen graph is not Hamiltonian). Let rij = 1 for every pair
of vertices in G and for all i ∈ V , let Bi = 1. Assigning xe = 1/3 to every edge gives a
feasible solution with cost |V (G)|/2 and degree bounds satisfied. It can be seen that
this is also an optimal solution. On the other hand, any feasible integer solution with
degree bounds at most 2 (which is 2Bi = Bi + 1) needs to be a Hamiltonian path in
G.

Average degree bound. Let us assume that B̃ is the average degree upper
bound (i.e., B̃ = 1

n

∑
v∈V Bv). Then the arguments in the proof of Theorem 2.1 can

also be used to show that in the final solution, the average degree of the vertices is
at most B̃ + 2; in other words, the degree of each vertex v in the final solution, on
average, is at most Bv + 2 (i.e., the second part of Theorem 1.1). To prove this, we
modify each iteration of the algorithm by adding the following line after line 2(a) and
before line 2(b) of the algorithm:
(a’) If there are any edges e = (u, v) with xe ≥ 1, then add a copy of e to F ; decrease

Ue and the bounds for B′
u and B′

v by 1 and go to step 2(d).
It is easy to check that the same analysis shows that with this reformulation the

cost of the solution is still at most 2zLP . Consider the first iteration in which we have
a totally fractional solution, i.e., xe < 1 for all edges e. For each vertex v let αv ≥ 0 be
the number of edges incident with vertex v selected so far; thus B′

v = Bv −αv because
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all the edges e selected so far had xe ≥ 1, and the degree bounds were decremented
by 1.

Claim 2.5. If 0 < xe < 1 for all edges, then there are at most 2n − 1 edges in a
basic feasible solution of (LP).

Proof. By Lemma 2.3, the number of sets in L is equal to the number of edges
(remaining) in the graph. Also, since the ground set has n vertices, an easy induction
shows that the number of sets in a laminar family is at most 2n − 1. Therefore, the
number of edges in G (with nonzero values) is at most 2n − 1.

Each time we select an edge e with xe ≥ 1/2, the total degree of the solution
subgraph is at most one more than the total degree of the LP solution. Since there
are at most 2n− 1 iterations left by the above claim, the total degree of the solution
subgraph is larger than the total degree of the LP solution by at most 2n − 1. This
implies that the average degree of the solution subgraph is at most 2 more than the
average degree of the LP solution.

Minimizing the maximum degree. Our iterative rounding method applies
also to the setting of minimizing the maximum degree subject to edge-connectivity
constraints. We start with the above LP and introduce a new variable Δ, and replacing
the degree constraints x(δ(v)) ≤ Bv∀v ∈ V by x(δ(v)) ≤ Δ∀v ∈ V . The objective
function is to minimize Δ. Let (LP-Δ) denote this LP. The following theorem follows
immediately from Theorem 2.1, which implies the first constant factor approximation
algorithm for many smallest maximum degree subgraph problems.

Theorem 2.6. If (LP-Δ) has an optimal solution with objective value Δ∗, then
there exists an integral solution x̂ of maximum degree ≤ 2�Δ∗� + 3 that satisfies all
of the constraints on f . Moreover, x̂ can be computed in polynomial time.

3. Directed network design with degree constraints. In this section we
present bicriteria approximation algorithms for degree bounded network design prob-
lems in directed graphs for some restricted classes of connectivity requirements. Our
iterative relaxation technique extends to directed graphs via the results of Gabow [16].

For a set of vertices S, δin(S) denotes the set of arcs {uv ∈ E | u �∈ S, v ∈ S},
and δout(S) denotes the set of arcs {uv ∈ E | u ∈ S, v �∈ S}. An integer function on
sets of vertices f : 2V → Z+ is called crossing supermodular if the inequality

f(A) + f(B) ≤ f(A ∩ B) + f(A ∪ B)

holds for every pair of sets A, B ⊆ V such that A∩B �= ∅ and A∪B �= V . Note that
the connectivity requirement of the k-edge-connected spanning subgraph problem can
be formulated via the crossing supermodular function f(S) = k for all ∅ �= S � V ,
yet the connectivity requirement of the directed Steiner tree problem cannot be so
formulated.

First we address the problem of finding a minimum cost subgraph satisfying
crossing supermodular connectivity requirements and nonuniform degree requirements
(both indegrees and outdegrees). In the following the connectivity requirements are
specified by a crossing supermodular function f . Figure 2 shows the LP relaxation
for our problem. As before, Ue is the upper bound on the multiplicity of edge e. We
place outdegree bounds for vertices in W1 ⊆ V and indegree bounds for vertices in
W2 ⊆ V , both of which can be initialized to V initially.

First we prove the following theorem, which implies the first part of Theorem 1.2.
Theorem 3.1. If the above LP (for directed graphs) has an optimal solution of

cost zLP , then there exists an integral solution x̂ of cost ≤ 3zLP that satisfies all of
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(DLP) minimize zDLP =
∑

e∈E

ce xe

subject to
∑

e∈δin(S)

xe ≥ f(S) ∀S ⊆ V, r /∈ S,

∑

e∈δin(v)

xe ≤ Bin
v ∀ v ∈W1,

∑

e∈δout(v)

xe ≤ Bout
v ∀ v ∈ W2,

0 ≤ xe ≤ Ue, ∀ e ∈ E.

Fig. 2. LP for directed case with crossing supermodular function f .

1. Initialization F ← ∅, f ′ ← f , and ∀v ∈ W1: B′in
v = Bin

v and ∀v ∈ W2 : B′out
v =

Bout
v .

2. While f ′ �≡ 0 do
(a) Find a basic feasible solution x with cut requirement f ′ and remove every

edge e with xe = 0.
(b) If there exists a vertex v ∈ W1 with indegree at most 6, remove v from W1;

if there exists a vertex v ∈W2 with outdegree at most 6, remove v from W2.
Goto (a).

(c) For each edge e = (u, v) with xe ≥ 1/3, add e to F and decrease B′out
u and

B′in
v by 1/3.

(d) For every S ⊆ V : f ′(S)← f(S)− |δin
F (S)|.

3. Return H = (V, F ).

Fig. 3. Bounded degree directed graph algorithm.

the constraints on f if f is crossing supermodular, and x̂(δout(v)) ≤ 3Bout
v + 5 and

x̂(δin(v)) ≤ 3Bin
v + 5 for all v ∈ W1 and v ∈ W2, respectively. Moreover, x̂ can be

computed in polynomial time.
The proof of this theorem follows from an extension of the method of Gabow [16]

and is similar to our proof of Theorem 2.1. The algorithm is presented in Figure 3.
The following lemma ensures that we always make progress in either step 2(b) or step
2(c). Observe that the proof of Theorem 3.1 follows from Lemma 3.2 by a similar
argument as in the proof of Theorem 1.1.

Lemma 3.2. Given a basic solution x of (DLP) in Figure 2, where f is a crossing
supermodular function, one of the following conditions must be true:

1. There exists v ∈ W1 with |δin(v)| ≤ 6.
2. There exists v ∈ W2 with |δout(v)| ≤ 6.
3. There exists an edge e such that xe ≥ 1

3 .
To prove Lemma 3.2, we first introduce some notation and preliminaries. We say

that a pair of sets A, B is crossing if all of the sets A ∩B, A−B, B −A, V − (A ∪B)
are nonempty, and we say that a family of sets L = {A1, A2, . . . , A�} is cross-free if
no two of its sets are crossing. For any set A ⊆ V , let χA denote the incidence vector
of the set of arcs δin(A). By an extension of a result of Frank [15] and Melkonian and
Tardos [32] the following lemma is immediate.

Lemma 3.3. Let the requirement function f of (DLP) be crossing supermodular,
and let x be a basic solution of (LP) such that 0 < xe < 1 for all edges e ∈ E. Then
there exists a cross-free family Q of tight sets and tight degree constraints for T1 ⊆ W1

and T2 ⊆ W2 such that the following hold:
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(i) |Q| + |T1| + |T2| = |E|.
(ii) The vectors χA for A ∈ Q, χv for v ∈ T1, and χV \v for v ∈ T2 are linearly

independent.
(iii) x is the unique solution to {x(δin(v)) = Bin

v ∀v ∈ T1}
⋃ {x(δout(v)) =

Bout
v ∀v ∈ T2}

⋃ {x(δin(A)) = f(A)∀A ∈ Q}.
The cross-free family Q corresponds to a laminar family L = I ∪O with |L| = |Q|

such that x(δin(S)) = f(S) for each S ∈ I and x(δout(S)) = x(δin(V −S)) = f(V −S)
for each S ∈ O (see Melkonian and Tardos [32]). Also, we augment the family L by
including in it singleton sets corresponding to tight degree constraints in T1 and T2

to obtain L′ = I ′ ∪O′, where I ′ = I ∪ {v}v∈T1 and O′ = O ∪ {v}v∈T2 . Observe that
|L′| = |Q| + |T1| + |T2| = |E|. We call members of I ′ square sets and members of O′

round sets.
We now prove Lemma 3.2. The proof is an extension of a similar result (Theorem

3.1) of Gabow [16], where the existence of an edge xe ≥ 1
3 is proved when degree

constraints are not present. In the presence of degree constraints we show that either
we have an edge with xe ≥ 1

3 or the condition where a degree constraint is removed
in Lemma 3.2 is satisfied. The laminar family L′ corresponds to a forest F over the
sets in the laminar family where B ∈ L′ is a child of A ∈ L′ if A is the smallest set
containing B. A node A of L′ is a leaf, chain node, or branching node depending on
whether it has 0, 1, or > 1 children. A chain node is a 1-chain node if it belongs to
same family I ′ or O′ as its unique child; otherwise it is a 2-chain node.

Proof of Lemma 3.2. The proof is by contradiction. Suppose none of the three
conditions holds. We show this leads to the contradiction to the fact that |Q|+ |T1|+
|T2| = |L′| = |E|. The argument proceeds by assigning two tokens for each edge
(one to each endpoint of e) and showing by a counting argument that we can collect
two tokens for each member in the laminar family and are still left with some excess
tokens.

The token assignment is a detailed argument following Gabow [16] depending on
the different cases of the sets. We point out some simple cases from the argument in
Gabow [16] and where the presence of degree constraints lead us to give a different
argument.

First, we give the following definitions following Gabow [16]. Consider a chain
node S with unique child A. Let e be an edge with an end in S \ A. We will call
e p-directed (for parent-directed) if it is oriented consistently with S’s family (I′ or
O′). Formally, it is p-directed if S ∈ I′ and e enters S or A, or S ∈ O′ and e leaves
S or A. Similarly, it is called c-directed if it is oriented consistently with A’s family.

The following rule is used to assign the token for endpoint v of edge e.
Definition 3.4. Token for the endpoint v of an edge e is given to node S of L′

if one of the following holds:
1. When S is a leaf, v ∈ S, and e is directed consistently with S’s family; i.e.,

either S ∈ I′ and e ∈ δin(S) or S ∈ O′ and e ∈ δout(S).
2. When S is a 1-chain node, v ∈ S \A for A child of S and e is p-directed (or,

equivalently, c-directed).
Observe that each leaf node corresponding to a degree constraint obtains at least

seven tokens; otherwise the degree constraint can be removed. The leaf nodes need
only two tokens for themselves for the counting argument. The five extra tokens are
assigned to other nodes in three different steps, the first of which is the following
lemma.

Lemma 3.5. The number of endpoints available to leaves of L′ can be redistributed
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to give two tokens to each leaf and branching node of L′ and five tokens to each leaf
node which is a degree constraint.

Proof. A leaf node not corresponding to a degree constraint gets at least four
tokens; e.g., S ∈ I receives one token for each edge e ∈ δin(S) and |δin(S)| ≥ 4
since x(δin(S)) = f(S) ≥ 1 and there is no edge e with xe ≥ 1

3 . Leaf nodes which
correspond to degree constraint receive at least seven tokens. Since the number of
branching nodes in any tree is strictly less than the number of leaves, we can assign
two tokens from each of the leaves to branching nodes giving the claim.

Now, we still have three extra tokens with the sets corresponding to the degree
constrained leaves, one of which we use in the following lemma.

Lemma 3.6. Each 1-chain node has at least two available endpoints if each set
in L′ corresponding to the degree constraint donates one token.

Proof. Consider a 1-chain node S with a child A, where without loss of generality
S, A ∈ I′. If both S, A ∈ I, then we have x(δin(S)) = f(S) and x(δin(A)) = f(A).
Observe that each edge in the difference with a nonzero (+1 or −1) coefficient gives
one token to S. Independence of the constraints implies that there must be at least
one such edge, and the integrality of f(S) and f(A) implies that there cannot be
exactly one such edge. Hence, S obtains two tokens in this case.

In the other case, we may have that A corresponds to a degree constraint. Then
we do not have integrality since x(δin(A)) = Bin

v , where A = {v} and Bin
v need not

be an integer. But, the independence of constraints implies that S receives at least
one token and it borrows another token from A for the induction claim to hold.

The rest of the proof involves analysis of 2-chain nodes. Lemma 3.2 follows from
Lemmas 3.5 and 3.6 if we can show that 2-chain nodes can collect two tokens each
for themselves from the remaining unassigned tokens and two extra tokens with each
degree constraint.

We start the analysis by defining a subtree FS for each 2-chain node S. FS is
the minimal subtree of F having S as its root and each leaf is either a leaf of L′ or
a 2-chain node other than S. In particular, S is always an internal node of tree FS

and not a leaf node.
The various trees FS can overlap: A 2-chain node S occurs at the root in FS and

also as a leaf in FT for T the first 2-chain node that is a proper ancestor of S. It is easy
to see that these are the only 2-possibilities. Also observe that a set corresponding to
a degree constraint can occur only in one tree since it can never be a root in such a
tree.

The token assignment is as follows. Each set A corresponding to a degree con-
straint gives two tokens to the 2-chain node S where A ∈ FS . Thus, each 2-chain
node S receives two tokens whenever there is a degree constraint in FS . In the re-
maining case we have that there is no degree constraint in FS. The token assignment
is identical in this case as to Gabow [16], and we omit it here. This completes the
proof of Lemma 3.2.

3.1. {0, 1}-valued intersecting supermodular requirement functions. We
now show how to improve the bounds in the case of intersecting supermodular con-
nectivity requirements (i.e., part two of Theorem 1.2). Recall that an integer function
on sets of vertices f : 2V → Z+ is called intersecting supermodular if the inequality

f(A) + f(B) ≤ f(A ∩ B) + f(A ∪ B)

holds for every pair of sets A, B ⊆ V such that A∩B �= ∅. This is a stronger require-
ment than crossing supermodularity; for example, the connectivity requirements of
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a strongly k-edge-connected subgraph cannot be formulated as an intersecting con-
nectivity requirement function. The intersecting supermodular connectivity require-
ment nonetheless captures the problem of finding an arborescence rooted at r where
f(S) = 1 if r /∈ S and 0 otherwise. The linear programming relaxation is identical to
the LP in Figure 2. We prove the following theorem which implies the second part of
Theorem 1.2.

Theorem 3.7. Suppose we are given a directed graph G, a {0, 1}-valued inter-
secting supermodular function f as the connectivity requirement, and degree bounds
Bin

v and Bout
v for each vertex, and consider the corresponding LP relaxation as in

Figure 2. There exists a polynomial time algorithm which returns a solution H of
cost ≤ 2 · zLP , where zLP is the cost of the optimum solution to the LP relaxation.
Moreover, degout

H (v) ≤ 2Bout
v + 2 and degin

H (v) ≤ Bin
v for all v ∈ V .

The algorithm is almost identical to the algorithm in Figure 3 with the following
modifications: (i) we remove all indegree constraints, (ii) in step (2c), we only pick
an edge e if xe ≥ 1

2 and we decrease the degree bounds by 1/2, and (iii) in step 2(b),
we remove an outdegree constraint if a vertex’s outdegree is at most 3. At the end,
we take a minimal subset of the edges that satisfy the connectivity requirements. For
intersecting supermodular requirement functions, it can be easily shown that in any
minimal feasible solution, the indegree bounds are never violated.2 Henceforth we
assume only out-degree constraints are given.

The following lemma is immediate from Frank [15] and Lemma 3.3.
Lemma 3.8. Let the requirement function f of (DLP) be intersecting supermod-

ular, and let x be a basic solution of (DLP) such that 0 < xe < 1 for all edges e ∈ E.
Then there exists a laminar family Q of tight sets and tight outdegree constraints for
T2 ⊆ W2 such that the following hold:

(i) |Q| + |T2| = |E|.
(ii) The vectors χA for A ∈ Q and χV \v for v ∈ T2 are all linearly independent.
(iii) x is the unique solution to {x(δout(v)) = Bout

v ∀v ∈ T2}
⋃ {x(δin(A)) =

f(A)∀A ∈ Q}.
Observe that Lemma 3.8 differs from Lemma 3.3 since in the case of intersecting

supermodular functions, we can ensure that an independent set of inequalities corre-
sponds to a laminar family, while in the case of crossing supermodular functions we
could ensure only that an independent set of inequalities corresponds to a cross-free
family. We now prove the following lemma, which proves Theorem 3.7.

Lemma 3.9. Given a basic solution x of (DLP) in Figure 2 where f is an inter-
secting supermodular function, one of the following must be true:

1. There exists v ∈ T2 with |δout(v)| ≤ 3.
2. There exists an edge e such that xe ≥ 1

2 .
Proof. Suppose none of the above conditions hold. Then each vertex with a

tight outdegree constraint must have at least four out-edges and each edge e must
have xe < 1

2 . Now, we argue that this leads to a contradiction to the fact that
|Q|+ |T2| = |E|. We prove this by the following counting argument. To each edge we

2To see this, by way of contradiction, consider a vertex v with indegree at least 2 in a minimal
solution. Suppose the ingoing edges of v are uv and wv. If G−uv is not a feasible solution, then there
is a tight set U with requirement 1 such that u �∈ U and v ∈ U . Similarly, if G−wv is not a feasible
solution, then there is a tight set W with requirement 1 such that w �∈ W and v ∈ W . Note that
u ∈ W and w ∈ U ; otherwise it contradicts that U and W have only 1 incoming edge. Now, since
v is in the intersection of U and W , this implies that U and W are intersecting. So, by intersecting
supermodularity, both U ∩W and U ∪W are tight. However, both uv and wv enter U ∩W , which
contradicts that U ∩W is tight (since it has requirement 1 as we have a {0, 1} requirement function).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1076 L. LAU, S. NAOR, M. R. SALAVATIPOUR, AND M. SINGH

assign three tokens. We then redistribute these tokens such that each constraint gets
assigned at least three tokens and we still have extra tokens.

In the initial assignment, each edge gives one token to the head and two tokens
to the tail of the edge. Hence each vertex gets two tokens for each out-edge incident
to it and one token for each in-edge incident to it. For a vertex v ∈ T2, we use one
token for each out-edge at v for the outdegree constraint of v. We use the rest of the
tokens for connectivity constraints.

Observe that each vertex with an outdegree constraint must have at least four
out-edges incident to it. Hence, when we take one token for each out-edge, we obtain
at least four tokens for the outdegree constraint; i.e., they have one excess token.

For each vertex, we have one token for each in-edge and out-edge incident to it
remaining. Moreover, if v /∈ T2, we still have two tokens for each out-edge incident
to v. We reassign these tokens such that we collect at least three tokens for each
connectivity constraint in Q.

For the laminar family Q, let L be the forest on the members of the laminar
family. We say that a vertex v is owned by S ∈ Q if S is the smallest set in Q
containing v. Now, we prove the following lemma.

Lemma 3.10. Given a subtree of L rooted at S, we can assign three tokens to each
tight degree constraint in S and three tokens to each set R in the subtree. Moreover,
we can assign 3 + |δout(S)| tokens to the root S.

Proof. The proof is by induction on the height of the subtree.

Base case. S is a leaf. We have x(δin(S)) = f(S), where f(S) is a positive integer.
The assumption that there is no edge with xe ≥ 1

2 implies that there must be three
edges in δin(S). For each out-edge incident to S, S can collect one token. Hence,
there must be at least three in-edge tokens and |δout(S)| out-edge tokens which can
be assigned to S.

Induction case. S is not a leaf. By induction, we assign 3 + |δout(R)| tokens to
each child R of S. Each child R of S donates one token to S for each edge in δout(R).
First observe that we can assign one token to S for each out-edge e ∈ δout(S). If the
tail of e is in some child R of S, then R has already donated one token for this edge.
Else, the tail has been assigned one token for this edge in the initial assignment and
can give one token to S. Thus S can be assigned one token for each edge in δout(S).

Case 1. S has at least two children R1, R2. Since each tight set has connectivity
requirement exactly 1, we have

∑
R∈Q f(R)−f(S) ≥ 1. Let F1 = δin(S)\(∪Rδin(R))

and F2 = (∪Rδin(R)) \ δin(S). The above inequality implies that x(F2) ≥ 1. But
then we have |F2| ≥ 3, as there is no edge e with xe ≥ 1

2 . So S can collect one token
for each edge in F1 (token assigned to head) and F2 (one of the two tokens assigned
to tail) to get three tokens.

Case 2. S has exactly one child R. Since f(S) = f(R) and χS and χR are linearly
independent, we have |F1| ≥ 1 and |F2| ≥ 1, where F1 and F2 are defined as in the
previous case. So S can collect one token for each edge in F1 and one token for each
edge in F2. If S also has a child which is a degree constraint, then we can also collect
one excess token from it. Otherwise, the tail of any edge in F2 does not have a tight
degree constraint, and thus can contribute two tokens to S. In either case S can
collect the desired three tokens.

Lemma 3.10 reassigns the tokens so that we have three tokens for each member
in Q and three tokens for each vertex T2. To prove Lemma 3.9 it remains to show
that some tokens are still left in excess. If any root S of the forest L has at least one
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out-edge, then S has been assigned at least four tokens, and one excess token with S
gives us the contradiction. Else, consider any root S. Any e ∈ δin(S) must have their
tail at a vertex not owned by any set in Q. If the tail of e has a degree constraint
present, it has at least one excess token. Else the out-token for e has not been used in
the above assignment and is the excess token, which gives us the contradiction. This
proves Lemma 3.9.

4. Hardness results of network design with degree constraints. In this
section, we show that unlike the degree bounded Survivable Network Design

problem for which we presented a (2, 2Bv + 3)-bicriteria approximation algorithm,
the vertex-connectivity version, which we call degree bounded VC- Survivable Net-

work Design problem is very hard to approximate. In the VC- Survivable Net-

work Design problem we are given a weighted undirected graph G = (V, E) with a
degree bound Bv for every v ∈ V and a connectivity requirement function r : V ×V →
Z+. The task is to find a minimum cost subgraph G′ such that there are at least ru,v

vertex disjoint paths between u and v and the degree of v is at most Bv. As we will
see, it is hard to get an (∞, 2log1−ε n · Bv)-approximation for this problem under a
reasonable complexity assumption. In other words, even when all edge costs are zero
and we just have to approximate the degree bounds, the problem remains hard. In
fact, the same hardness holds for a special case of the problem, called degree-bounded
subset k-vertex connected subgraph (DkVC for short), in which ruv = k for every
pair u, v ∈ S for some set S ⊆ V and ruv = 0 otherwise. An α-approximation for
DkVC will find a solution G′ in which the degree of every vertex v is at most αBv

and there are ruv vertex-disjoint paths between every pair u, v ∈ V . The following
theorem immediately implies Theorem 1.3.

Theorem 4.1. Unless NP ⊆ DTIME(npolylog(n)) there is no 2log1−ε n-approxima-
tion for DkVC for some ε > 0.

Proof. The proof follows essentially the same construction as in [28]. The starting
point is the hardness of a graph problem, called MinRep in [28], which is essentially
a graph theoretic description of a two-prover one-round proof system. The instance
of the MinRep problem consists of a bipartite graph G(V ∪ C, E) together with a
partitioning of each of V and C into equal parts: V =

⋃qv

i=1 Vi and C =
⋃qc

i=1 Cj .
Every Vi has size av = |V |/qv and every Cj has size ac = |C|/qc. Graph G also
induces another bipartite supergraph H , where the supervertices (i.e., vertices of H)
are the qv + qc sets Vi’s and Cj ’s. There is a superedge between Vi and Cj if there are
vertices v ∈ Vi and c ∈ Cj with vc ∈ E. We say that edge vc covers the superedge
ViCj . A set S ⊆ V ∪C covers a superedge ViCj if there are two vertices v ∈ S∩V and
c ∈ S ∩C such that vc covers edge ViCj . The goal in the MinRep problem is to select
vertices from each Vi and Cj such that every superedge of H is covered and the total
number of vertices selected is minimized. We further assume that for every superedge
ViCj , every vertex in Cj is adjacent to exactly one vertex in Vi. Also, we can assume
that the graph H is regular on each side; say, every supervertex Vi has degree rv and
every supervertex Cj has degree rc. So the number of superedges is rvqv = rcqc. From
the PCP theorem [1, 2] together with the parallel repetition theorem [38], we get the
following theorem.3

3Readers familiar with 2P1R proof systems can think of each supervertex Vi as an �-tuple of
variables and each Cj as an �-tuple of clauses where we used � parallel repetition; each superedge
corresponds to a pair of queries sent to the two provers; the vertices in each supervertex correspond
to answers to the queries returned by the corresponding prover.
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Vqv

ui

U

yi
j

W

wj wqc

V1 Vi

xj
i

uqv
u2u1

C1 Cqc
Cj

w1 w2

Fig. 4. Construction of graph G(V , E) from MinRep instance G(V ∪ C, E).

Theorem 4.2. Given an instance φ of 3SAT we can build an instance G of
MinRep in DTIME(npolylog(n)) such that the following hold:

• If φ is a yes instance, then G has a solution of size qv + qc.
• If φ is a no instance, then every solution of G has size at least 2log1−ε |V (G)|(qv+

qc).
Therefore, unless NP ⊆ DTIME(npolylog(n)), MinRep cannot be approximated within
a factor 2log1−ε n.

Given an instance G(V ∪C, E) of MinRep, first we construct a graph G(V , E) as
follows:

1. Create two new sets of vertices U = {u1, . . . , uqv} and W = {w1, . . . , wqc},
where ui is adjacent to all the vertices of Vi (1 ≤ i ≤ qv) and wj is adjacent
to all the vertices of Cj (1 ≤ j ≤ qc).

2. For every superedge ViCj there are two new vertices xj
i and yi

j; and xj
i is

adjacent to ui and to all the vertices in V − Vi and C − Cj . Similarly, yi
j is

adjacent to wj and to all the vertices in C − Cj and V − Vi.
3. Let X =

⋃
i,j xj

i and Y =
⋃

i,j yi
j . The vertices in X ∪ Y form a clique.

4. For every superedge ViCj we require k = |X | + |Y | + (qv − 1)av + (qc − 1)ac

vertex-disjoint paths between xj
i and yi

j .
5. Also, for every vertex ui ∈ U we require a degree bound of rv + 1 and for

every vertex wj ∈ W a degree bound of rc + 1.
See Figure 4. Note that |X | = |Y | and is equal to the number of superedges. Also,

the degree of every ui ∈ U (every wj ∈ W ) is exactly av +rv = av+|X |/qv (is ac+rc =
ac + |X |/qc). The analysis of [28] shows the following: In every solution G′ ⊂ G which
satisfies the connectivity requirements, G′ is a spanning subgraph and the number of
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edges between U and X and between W and Y is exactly |X |. This is because every
vertex xj

i ∈ X can have at most (qv − 1)av + (qc − 1)ac + |Y |+ (|X | − 1) paths to any
other vertex in X ∪ Y using the vertices of (V − Vi) ∪ (C − Cj) ∪ Y ∪ (X − {xj

i}).
Thus for one of its k paths it has to go through ui. A similar argument works for
each vertex yi

j ∈ Y .
Furthermore, if G is a yes instance of MinRep (i.e., has a solution of size qv + qc),

then there is a solution G′ ⊂ G which satisfies the connectivity requirements of S,
and the number of edges between U and V in G′ is qv (one edge between ui and Vi,
1 ≤ i ≤ qv), and the number of edges between W and C in G′ is qc (one edge between
wj and Cj , 1 ≤ j ≤ qc); so the degree of every vertex ui ∈ U is rv + 1, and every
vertex wj ∈ W has degree rc + 1. Conversely, if G is a no instance of MinRep, then
in every subgraph G′ ⊂ G satisfying the connectivity requirements the total number
of edges between U and V and between W and C is at least 2log1−ε |V (G)|(qv + qc); so
at least one ui ∈ U or one wj ∈ W has a degree larger by a factor of 2log1−ε n from its
bound. This, together with Theorem 4.2, implies that deciding between the following
two cases is quasi-NP-hard:

• If G has a solution in which all the degree bounds are satisfied.
• If every solution of G has at least one vertex of U with degree at least

2log1−ε n(rv + 1) or a vertex of W with degree at least 2log1−ε n(rc + 1).
This completes the proof of Theorem 4.1.

We have a similar hardness result for the low degree directed Steiner forest (LDSF)
problem. In the LDSF problem, we are given a directed graph G = (V, E), degree
bounds Bv for every v ∈ V , and connectivity requirements r : V × V → {0, 1}.
The goal is to find the smallest α ≥ 1 and a subgraph G′ satisfying the connectivity
requirements in which the degree of each vertex v is at most αBv. The proof of
Theorem 4.3 follows from a very similar construction to that of Theorem 4.1.

Theorem 4.3. Unless NP ⊆ DTIME(npolylog(n)), there is no 2log1−ε n-approxima-
tion for the LDSF problem for some ε > 0.

5. Minimum cost λ-connected k-subgraphs. In this section we study the
following class of problems. Given are a (multi)graph G(V, E) with a cost function
c : E → R+ on edges, a positive integer k, and a connectivity requirement λ ≥ 1; the
(k, λ)-subgraph problem asks us to find a minimum cost λ-edge-connected subgraph
of G with at least k vertices. We should point out that the edge cost function c is an
arbitrary function. Furthermore, we are not allowed to take more copies of an edge
than are present in the graph. Otherwise, a 2-approximate solution can be computed
by taking a 2-approximate k-MST solution T and then taking λ copies of T .

Note that the (k, λ)-subgraph problem contains, as special cases, several classi-
cal problems. For instance, the minimum cost λ-edge-connected spanning subgraph
problem is just the minimum (n, λ)-subgraph, and the classical k-MST problem is the
(k, 1)-edge-subgraph problem. Another related and well-studied problem is that of
k-TSP (finding a minimum cost traveling salesman tour visiting at least k vertices)
for the metric cost functions. Although there are approximation algorithms for each
of these special cases, we are not aware of any study of the more general problem of
(k, λ)-subgraph. As we will see below, it seems that this problem for an arbitrary λ
(and even unweighted graphs) is very difficult to approximate.

For this reason, we look into the approximability of the (k, 2)-subgraph, which is
the first generalization of k-MST to higher connectivity. We show that (k, 2)-subgraph
has an O(log k · log n)-approximation. It works for the rooted version of the problem
where a particular vertex r ∈ V is required to be in the solution. It is easy to see that
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given an algorithm for the rooted version, we can try all possible vertices as the root
to obtain an algorithm for the unrooted version.

Theorem 5.1. There is an O(log k ·log n)-approximation algorithm for the rooted
(k, 2)-subgraph problem.

As mentioned earlier, we show that for an arbitrary λ, the (k, λ)-subgraph problem
seems to be difficult. As evidence, we show a reduction from the k-dense-subgraph
problem. In the k-dense-subgraph problem we are given a graph G and an integer k
and have to find a subgraph with k vertices with the maximum number of induced
edges. Despite considerable effort, the best known approximation algorithm for the
k-dense-subgraph problem has ratio O(n

1
3−ε) for some constant ε > 0 [14]. We will

prove Theorem 1.5, which implies obtaining any polylogarithmic approximation for
the (k, λ)-subgraph problem would imply a polylogarithmic approximation for the
k-dense subgraph problem.

Remark. One may hope that the constant factor approximation algorithms for
k-MST [17, 18, 6] could be extended to obtain an O(1)-approximation for (k, λ)-
subgraph for at least the special case of λ = 2. There are several difficulties in this
route which do not seem easy to overcome. First, all the known constant approxima-
tions for k-MST are based on the primal-dual 2-approximation algorithm of Goemans
and Williamson [20] for the prize-collecting Steiner tree. It is not clear how to general-
ize this primal-dual scheme to work for the 2-edge-connected prize-collecting version.
Second, the typical second step in these algorithms is to use a Lagrangian relaxation
to reduce the k-MST problem to the prize-collecting Steiner tree. For this step to
work, the known algorithms rely on the fact that we can assume the cost function is
metric (i.e., satisfies the triangle inequality) by simply taking the metric completion
of the input graph. For 2-edge-connected subgraphs we cannot make this assump-
tion. However, if we assume that the cost function is metric, then known results on
k-TSP [18] immediately imply a 2-approximation algorithm for (k, 2)-subgraph. This
uses the fact that the LP relaxation for k-TSP is equivalent to the LP relaxation for
(k, 2)-subgraph when the cost function is metric [5].

5.1. Proof of Theorem 5.1. Our algorithm uses the solution to a related prob-
lem we call the density 2-edge-connected subgraph problem, denoted by D2ECS. In
this problem, we are given an undirected graph G = (V, E) with a cost function
c : E → R+ on edges. There is a given vertex r, called the root, and a subset of
vertices T ⊆ V − r, called terminals. The goal is to find a subgraph G′ containing r
and at least one terminal such that there are at least 2 edge-disjoint paths between
r and each terminal in G′, and the ratio of the total cost of G′ to the number of
terminals in G′ is minimized. We will later prove the following lemma.

Lemma 5.2. There is an O(log n)-approximation for D2ECS.
Recall that an instance I to the rooted (k, 2)-subgraph has a graph G = (V, E),

parameter k, and a root r ∈ V . First we preprocess the graph by removing some of
the vertices that cannot be part of an optimum solution. Let us assume we know opt,
the cost of an optimum solution. Then for every vertex v we find two edge-disjoint
paths between v and r of minimum total cost; let us denote the total cost of these two
edge-disjoint paths by d2(v, r). For this we can use a min-cost flow algorithm between
v and r [40]. Then we delete those vertices v for which d2(v, r) > opt, as clearly they
cannot be part of the solution. We work with this pruned version of graph G.

The overview of the algorithm is as follows. The algorithm iteratively finds a
2-edge-connected subgraph containing the root with good density by calling the algo-
rithm for D2ECS (Lemma 5.2) and adds them to an initially empty solution, contracts
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The Main (k, 2)-subgraph Algorithm
1. Guess the value of optimum solution, opt.
2. Delete all the vertices v with d2(v, r) > opt (recall that r is the root).
3. S ← ∅.
4. While k > 0 do

(a) Run D2ECS algorithm to find a good density subgraph H containing r.
(b) If |V (H)| ≤ 2k, then

i. Add H to S and update k ← k − |V (H)|
ii. In G contract the edges of H (i.e., H is contracted into r).

(c) else
i. Find a subgraph H′ of H with cost at most O(log n · opt) and at least

k nodes.
ii. Add H′ to S and update k = 0.

5. return S.

Fig. 5. The algorithm for (k, 2)-subgraph problem.

the partial solution found into the root, and iterates until there are at least k nodes
in the solution. Clearly the final solution is 2-edge-connected and contains the root.
If the total number of nodes at the end is Θ(k), then a set-cover type analysis shows
that the cost of the solution is at most O(log k ·log n·opt), where the log n in the ratio
is from the ratio of the algorithm of Lemma 5.2 and the log k comes from a set-cover
type analysis. However, some care is needed as the total number of nodes in a good
density solution found in every iteration by calling the algorithm for D2ECS might
be much larger than k. In that case we show how to prune the solution to obtain one
with Θ(k) nodes and about the same density. The algorithm is presented in Figure 5.

Here are more details for some of the steps. To guess the value opt, for every
vertex v �= r, first we compute d2(r, v). Let L be the kth smallest value. Clearly,
L ≤ opt ≤ kL. So it is enough to start with estimate opt = L and then double the
estimate of opt if the algorithm does not succeed; we have to do this at most O(log k)
times.

As said earlier, if at every iteration we find a good density partial solution with
at most k nodes, then a simple set-cover type analysis shows that the cost of the
final solution (which will have Θ(k) nodes) is within a factor O(log k · log n) of the
optimum. We have to show what to do in step 4(c)i if one call to D2ECS returns a
solution with more than, say, 2k nodes. Note that this happens at most once (in the
last iteration), as after this the number of nodes in the solution built so far will be at
least k and the algorithm terminates.

A nowhere-zero 6-flow in a directed graph D(V, A) is a function f : A → Z6 such
that, for each node v, f(δin(v)) = f(δout(v)) and all values of f are nonzero. For an
undirected graph H , we say H has a nowhere-zero 6-flow if H has an orientation of
its edges which has a nowhere-zero 6-flow. Seymour [41] proved that every 2-edge-
connected graph has a nowhere-zero 6-flow and such a flow can be found in polynomial
time (see [44, 40]).4 Let H(U, F ) be a good density subgraph returned by D2ECS
algorithm with more than 2k nodes, and let f be a nowhere-zero 6-flow on H . We
can obtain a directed multigraph D(U, A) from f and H by placing f(e) copies of

4A weaker and simpler result is that every 2-edge-connected graph has a nowhere-zero 8-flow, and
such a flow can be easily obtained in polynomial time by applying the Matroid partition theorem (or
the Nash–Williams/Tutte theorem for disjoint spanning trees). Our proof works with a nowhere-zero
8-flow as well.
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each edge e in the direction defined by the flow. Note that D is an Eulerian graph
with no directed cycle of length 2. Starting from r in D, build an Eulerian walk and
partition this walk into arc-disjoint segments P1, P2, . . . , P�, each of which induces a
subgraph of H on k nodes, except possibly P�, which will have between k and 2k
nodes. So each Pi is a walk, say, from node ui to ui+1; let us denote the connected
subgraph induced by Pi in H by Hi. Since the total cost of the edges of all these
walks is at most five times the cost of H , at least one of Hi’s, say, Hj , has density at
most five times the density of H . Now find two edge-disjoint paths of minimum cost
(in G) from uj to r (call them Q1

j , Q
2
j), and also two edge-disjoint paths of minimum

cost (again in G) from uj+1 to r (call them Q1
j+1, Q

2
j+1). We claim that the subgraph

induced by Hj ∪Q1
j ∪Q2

j ∪Q1
j+1 ∪Q2

j+1, denoted by H ′
j , is 2-edge-connected and has

cost at most O(log n · opt). To prove the cost, note that Hj has between k and 2k
nodes and has a density at most five times that of H , which in turn is within O(log n)
of the optimum density. Thus the cost of Hj is at most O(log n ·opt). Also, the total
cost of Q1

j ∪Q2
j ∪Q1

j+1 ∪Q2
j+1 is at most O(opt) (because of the preprocessing step);

hence the total cost of H ′
j is O(log n · opt). To prove 2-edge-connectivity of H ′

j , by
way of contradiction suppose that there is a cut-edge e ∈ H ′

j and C1, C2 are the two
components of H ′

j − e. Note that because of Q1
j , Q

2
j , Q

1
j+1, Q

2
j+1, both uj and uj+1

are in the same component as r, say, C1. But because Pj is a directed walk from uj

to uj+1 in D, we must be able to travel from C1 to C2 in both directions in H ′
j (as

both uj and uj+1 are in the same side); since there is no directed cycle of length 2,
there must be another edge e′ �= e between C1 and C2 with a direction opposite e; so
e is not a cut-edge in H ′

j .

5.2. Proof of Lemma 5.2. The algorithm and analysis are built upon the LP
relaxation and use ideas from [9]. Consider the following IP/LP relaxation of D2ECS
which is based on the LP relaxation of the Survivable Network Design problem
without degree bounds (see the first LP in section 2). For each edge e and vertex
v we have indicator variables xe and yv, respectively, which indicate whether they
participate in the solution or not. We have normalized the sum

∑
v∈T yv to 1.

(LP-D2ECS) minimize
∑

e∈E

ce xe

subject to x(δ(S)) ≥ 2yt, S ⊆ V − r, t ∈ S,
x(δ(S)) − xe′ ≥ yt, S ⊆ V − r, t ∈ S, e′ ∈ δ(S),∑

v∈T yv = 1,
0 ≤ xe, yv ≤ 1 ∀ e ∈ E, v ∈ T.

Note that we have added the second set of constraints above to obtain a stronger
LP which will help us in the rounding phase. This LP can be solved in polynomial
time via the ellipsoid method since there is a polynomial time separation oracle for
this problem.

Lemma 5.3. For an instance of D2ECS, let σ be the density of the optimum
solution and σ∗ be the value of the above LP. Then σ∗ ≤ σ.

Proof. Let G′ be an optimum solution to the given instance of D2ECS and let
T ′ ⊆ T be the terminals in G′; assume |T ′| = 	. So σ = (

∑
e∈G′ c(e))/	. For each

t ∈ T ′ define yt = 1
� and for each edge e ∈ V let xe = 1

� iff e ∈ G′ and zero otherwise.
All other variables are set to zero. It is easy to verify that this is a feasible solution
to LP-D2ECS.

Now we present the algorithm for the D2ECS problem. Given an instance of
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D2ECS, problem first we solve the LP-D2ECS problem to obtain an optimum frac-
tional solution (x∗, y∗); let its value be α. For p = 1 + 2�log n� we obtain disjoint
subsets of the terminals T1, T2, . . . , Tp of T as follows. Let ymax = maxt yt. For
0 ≤ a ≤ 2�logn�, let Ta = {t | ymax/2a+1 < yt ≤ ymax/2a}. Since

∑
t∈T yt = 1 there is

an index b such that
∑

t∈Tb
yt ≥ 1/p. From this we also have that |Tb| ·ymax/2b ≥ 1/p.

Now find a minimum cost subgraph with connectivity requirement 2 between the ter-
minals in Tb and r. For this we can use Jain’s algorithm on the following standard
LP for Survivable Network Design problem:

(LP-2ECS) minimize
∑

e∈E

ce xe

subject to x(δ(S)) ≥ 2 ∀S ⊆ V − r, S ∩ Tb �= ∅,
0 ≤ xe ≤ 1 ∀ e ∈ E.

Observe that if we take the optimum solution (x∗, y∗) of LP-D2ECS and define
x̃e = min{1, x∗

e · 2b+1/ymax}, this yields a feasible solution to LP-2ECS on terminal
set Tb of cost at most 2b+1α/ymax. To see this, take any set S ⊆ V −r with S∩Tb �= ∅
and the corresponding constraint x(δ(S)) ≥ 2 in LP-2ECS. This has corresponding
constraints x(δ(S)) ≥ 2yt in LP-D2ECS for each t ∈ S. Suppose we define x̃e =
min{1, x∗

e · 2b+1/ymax} and ỹt = min{1, y∗
t · 2b+1/ymax}. Note that for each t ∈ Tb,

because y∗
t > ymax/2b+1, ỹt = 1. If all the edges e ∈ δ(S) have values x∗

e ≤ y∗
t , then

after scaling we will have x̃(δ(S)) ≥ 2 because the left-hand side of x(δ(S)) ≥ 2yt

will have grown at least as much as the right-hand side is scaled. If there is at least
one edge e′ ∈ δ(S) with x∗

e′ > y∗
t , then, because of the second set of constraints

in LP-D2ECS, we have x∗(δ(S)) − x∗
e′ ≥ y∗

t . Thus after the scaling we still have
x̃(δ(S))− x̃e′ ≥ 1 because again the left-hand side will have grown at least as much as
the right-hand side. Also x̃e′ = 1 because ỹt = 1 and x∗

t > y∗
t ; so x̃(δ(S)) ≥ 2. This

shows there is a feasible solution to LP-2ECS with terminal set Tb and r with cost at
most 2b+1α/ymax. Jain proved that the integrality gap of LP-2ECS is 2. Therefore, we
can obtain an integral solution with connectivity of at least 2 between the terminals
in Tb and r such that cost of the solution is at most 2× 2b+1 ·α/ymax. The density of
this solution is therefore 2b+2 · α/(ymax|Tb|), which is O(pα). Since p = O(log n), the
density is O(log n) · α. Thus, we have an O(log n)-approximation for D2ECS. This
completes the proof of Lemma 5.2 and thus Theorem 5.1.

5.3. Proof of Theorem 1.5. In this subsection we present the hardness proof
of the (k, λ)-problem, based on the hardness of the densest k-subgraph problem. The
overall structure of the proof is as follows. Observe that a solution to the (k, λ)-
subgraph problem implies a subgraph on at least k vertices with minimum degree
at least λ. We prove that even finding such a subgraph is hard, assuming that
the Densest k-Subgraph problem is hard. This implies a hardness for the (k, λ)-
subgraph problem, too, based on the conjecture that the Densest k-Subgraph prob-
lem is hard.

To prove our hardness result, we need the following auxiliary lemma. Given a
graph G = (V, E) and integers k, λ, first construct a graph Ĝ = (V̂ , Ê) from G by
adding a new universal vertex x, i.e., V̂ = V ∪ {x} and Ê = E ∪ {ux|u ∈ V }.

Lemma 5.4. If Ĝ has a (λ + 1)-edge-connected subgraph Ĥ with B + 1 vertices,
then Ĥ − {x} ⊆ G has at least B vertices and min-degree at least λ. Conversely, if
G has a subgraph H with min-degree at least λ and at least B vertices, then Ĥ ⊆ Ĝ
obtained from H by adding x and all its edges incident to the vertices of H is (λ+1)-
edge connected with at least B + 1 vertices.
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Proof. First consider the easy part: if Ĥ ⊆ Ĝ is (λ+1)-edge-connected with B+1
vertices, then clearly H = Ĥ −{x} has minimum degree at least λ and has at least B
vertices. Conversely, suppose that H ⊆ G has min-degree at least λ and B vertices.
Clearly, for every vertex u ∈ Ĥ − {x}, there are at least |NH(u)| ≥ λ edge-disjoint
paths of length 2 (using NH(u)) from x to u, plus one path which is the single edge
between u and x. By transitivity of edge-connectivity, Ĥ is (λ + 1)-edge-connected
with B + 1 vertices.

Now we are ready to prove Theorem 1.5. Suppose we are given a graph G = (V, E)
and integer k as the instance of densest k-subgraph, and let A be our approximation
algorithm for the (k, λ)-subgraph. Without loss of generality, we assume that k ≥ 4
as for constant values of k the densest k-subgraph is polynomially solvable. Let
us suppose that the optimum solution to densest k-subgraph instance is a graph
G′(V ′, E′) ⊆ G with |V ′| = k and |E′| = σk, and furthermore suppose for now that
we know the solution G′ (this will be cleared later). Note that the density of G′ (i.e.,
|E′|/|V ′|) is σ. We are going to obtain a subgraph of G′ in which the minimum degree
is large (i.e., close to the density) and the number of edges of the subgraph is within
a constant factor of |E′|. To do this, we delete vertices from G′ in several rounds.
Let Gi(Vi, Ei) be the graph at the beginning of ith round, δi be the minimum degree
in Gi, and di = |Ei|/|Vi| be its density. From this definition, G1 = G′, d1 = σ, and
|V1| = k. Without loss of generality, we may assume that δ1 ≥ 1; i.e., G′ has no
isolated vertices, as deleting them does not remove any edges and can only increase
the density.

Each round i ≥ 1 may have several iterations, and in each iteration we remove
exactly one vertex. At the beginning of round i, if δi < di

2 log k = |Ei|
2|Vi| log k , then set

b = 2δi and iteratively delete every vertex of Gi with degree at most b. The number
of edges deleted in round i is at most b|Vi| < |Ei|

log k . Therefore, |Ei+1| ≥ (1− 1
log k )|Ei|.

Round i stops when the minimum degree is at least b = 2δi; thus δi+1 ≥ 2δi. Since
δ1 ≥ 1 and for every i ≥ 1, δi+1 ≥ 2δi, we have strictly smaller than log k rounds
(because for the maximum degree of G′, Δ(G′) ≤ k − 1). So after at most t < log k

rounds the algorithm stops. At this point we have |Et| ≥ (1 − 1
log k )t|E1| ≥ |E′|

4

(because log k ≥ 2 and t < log k, which implies (1 − 1
log k )t ≥ 1

4 ) and δt ≥ dt

2 log k .
Hence

(1) δt|Vt| ≥ |Et|
2 log k

≥ |E′|
8 log k

.

Suppose we guess the values of |Vt| and δt (we can simply try all possible values).
By the argument above, G has a subgraph with min-degree at least δt and at least
|Vt| vertices. Furthermore, |E′|

8 log k ≤ δt|Vt| ≤ |E′|. Now we run algorithm A for (|Vt|+
1, δt + 1)-edge-subgraph on graph Ĝ, which is obtained from G by adding a universal
vertex x. Since there is a subgraph of G (namely, Gt) with at least |Vt| vertices and
minimum degree δt, and by Lemma 5.4, algorithm A finds a subgraph, Ĥ(V̂ , Ê) ⊆ Ĝ,
which is (δt + 1)-edge-connected and |V̂ | ≥ |Vt| + 1. Furthermore, because A is an
α-approximation and |E′|

4 ≤ |Et| ≤ |E′|, |Ê| ≤ α|E′|. Delete vertex x (if it belongs to
Ĥ) to obtain graph H(V , E). So H ⊆ G has min-degree at least δt and at least |Vt|
vertices.

Case 1. If |V | < k, then we can add k − |V | arbitrary vertices from G − H
to H to obtain a graph H with k vertices and at least δt|V | ≥ δt|Vt| edges. Since
δt|Vt| ≥ |E′|

8 log k by (1), H is a subgraph with k vertices whose number of edges is at
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least Ω(1/ log k) of the optimum solution G′.
Case 2. Suppose that |V | = βk for some β > 1. Thus δt|V | = δtβk ≤ |E|. On the

other hand, |E| ≤ α|E′| ≤ 8α · log k · δt|Vt| by (1). These two inequalities, together
with the fact that |Vt| ≤ k, imply that δtβ · k ≤ 8α · log k · δt · k, which in turn implies

(2) β ≤ 8α · log k.

Now select uniformly at random k vertices out of the βk vertices in H and obtain a
graph H with k vertices. The expected number of induced edges of H is |E|

β2 .5 Since

|E| ≥ δt|V | = δtβk, the expected number of edges of H is at least δtk
β ≥ δt|Vt|

β ≥
|E′|

8β log k , which by (2) is at least Ω( |E′|
α·log2 k

).
In either case, we can obtain a solution for the densest k-subgraph whose number

of edges is within a factor Ω(1/α · log2 k) of the optimum.

6. Concluding remarks. We present the first constant factor bicriteria ap-
proximation algorithms for the Survivable Network Design problem with degree
constraints. As a corollary, this implies the first constant factor approximation al-
gorithms for finding low degree subgraphs (e.g., the best previous algorithm for the
minimum degree k-edge-connected subgraph problem had ratio O(k log n) for only
fixed values of k [11]). Our techniques were recently generalized by [31] to hold for
the Survivable Network Design problem with weighted degrees. In this problem
there are both a weight function and a cost function defined on the edges which are
independent of each other. The goal is to find a minimum cost subgraph satisfying
connectivity requirements while not violating given weighted degree bounds.

Subsequently to this paper, the iterative relaxation method was successfully ap-
plied to obtain additive approximation algorithms for degree bounded network design
problems. Singh and Lau [42] extended the iterative relaxation method to obtain
a (1, Bv + 1)-approximation algorithm for the Minimum Bounded Degree Span-

ning Tree problem [42]. More recently, Lau and Singh [30] improved Theorem 1.1
and obtained a (2, Bv + 3)-approximation algorithm for the Minimum Bounded

Degree Steiner Forest problem and a (2, Bv + 6rmax + 3)-approximation al-
gorithm for the bounded degree Survivable Network Design problem where
rmax = maxu,v{ruv}. Bansal, Khandeker, and Nagarajan [4] improved Theorem
1.2 and obtained a (1

ε , Bv

1−ε +4)-approximation algorithm for the Minimum Bounded

Degree Arborescence for 0 < ε ≤ 1
2 . They also obtain an additive approximation

algorithm for the minimum maximum-degree arborescence problem which violates
the degrees by at most 2. In all of the above results the iterative relaxation method
has been used to obtain (almost) tight analysis for the standard LP formulations for
the bounded degree network design problems. This method has also been applied to
obtain new approximation results for other combinatorial optimization problems [23]
and to obtain simple proofs of classical results in combinatorial optimization and
approximation algorithms [29]. We hope this method will find further applications.

With regards to the (k, λ)-subgraph problem the situation is less clear. Although
the problem seems difficult to approximate for arbitrary values of λ, the complexity
of the problem for small values of λ (even λ = 2 or 3) is unknown. We do not even

5We can actually do this deterministically, too, using the method of conditional probabilities.
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know whether the problem has a constant approximation factor for λ = 2 or if it
has a polylogarithmic approximation for any λ ≥ 3. Recently, Chekuri and Korula
[10] presented an O(log n · log k)-approximation for the (k, 2)-subgraph problem where
2-vertex-connectivity between the vertices of the solution is required. Their algorithm
(which was obtained independently) is similar to the one in Theorem 1.4, but their
analysis is different. More recently, Safari and Salavatipour [39] showed that if the edge
costs of the graph satisfy the triangle inequality, then there is an O(1)-approximation
for the (k, λ)-subgraph problem.

Acknowledgments. Some of the results in this paper were obtained in collabo-
ration with Joseph Cheriyan. We thank him for letting us include these proofs here.
The last author thanks R. Ravi for discussions on results for directed graphs. We also
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[23] T. Király, L. C. Lau, and M. Singh, Degree bounded matroids and submodular flows, in Pro-
ceedings of the 13th Conference on Integer Programming and Combinatorial Optimization,
Bertinoro, Italy, 2008, pp. 259–272.

[24] P. Klein, R. Krishan, B. Raghavachari, and R. Ravi, Approximation algorithms for finding
low-degree subgraphs, Networks, 44 (2004), pp. 203–215.

[25] J. Könemann and R. Ravi, Quasi-polynomial time approximation algorithm for low-degree
minimum-cost Steiner trees, in Proceedings of the 23rd Conference on Foundations of
Software Technology and Theoretical Computer Science, Springer-Verlag, New York, 2003,
pp. 289–301.

[26] J. Könemann and R. Ravi, A matter of degree: Improved approximation algorithms for degree-
bounded minimum spanning trees, SIAM J. Comput., 31 (2002), pp. 1783–1793.

[27] J. Könemann and R. Ravi, Primal-dual meets local search: Approximating MSTs with nonuni-
form degree bounds, SIAM J. Comput., 34 (2005), pp. 763–773.

[28] G. Kortsarz, R. Krauthgamer, and J. R. Lee, Hardness of approximation for vertex-
connectivity network design problems, SIAM J. Comput., 33 (2004), pp. 704–720.

[29] L. C. Lau, R. Ravi, and M. Singh, Iterative Relaxations, manuscript, 2008.
[30] L. C. Lau and M. Singh, Additive approximation for bounded degree survivable network design,

in Proceedings of the 40th ACM Symposium on Theory of Computing, ACM, New York,
2008, pp. 759–768.

[31] L. Lewin-Eytan, J. Naor, A. Orda, and M. Singh, Maximum-Lifetime Routing in Wireless
Networks: System Optimization & Game-Theoretic Perspectives, manuscript, 2007.

[32] V. Melkonian and E. Tardos, Algorithms for a network design problem with crossing super-
modular demands, Networks, 43 (2004), pp. 256–265.

[33] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrants, and H .B. Hunt, Many birds with
one stone: Multi-objective approximation algorithms, in Proceedings of the 25th ACM
Symposium on Theory of Computing, ACM, New York, 1993, pp. 438–447.

[34] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi, Spanning
trees—short or small, SIAM J. Discrete Math., 9 (1996), pp. 178–200.

[35] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt, Approximation
algorithms for degree-constrained minimum-cost network-design problems, Algorithmica,
31 (2001), pp. 58–78.

[36] R. Ravi, B. Raghavachari, and P. Klein, Approximation through local optimality: Designing
networks with small degree, in Proceedings of the 12th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, Lecture Notes in Comput. Sci. 652,
Springer-Verlag, Berlin, 1992, pp. 279–290.

[37] R. Ravi and M. Singh, Delegate and conquer: An LP-based approximation algorithm for
minimum degree MSTs, in Proceedings of ICALP 2006, Venice, Italy, 2006, pp. 169–180.

[38] R. Raz, A parallel repetition theorem, SIAM J. Comput., 27 (1998), pp. 763–803.
[39] M. Safari and M. R. Salavatipour, A constant factor approximation for minimum λ-edge-

connected k-subgraph with metric costs, in Proceedings of APPROX 2008, Boston, MA,
2008, pp. 233–246.

[40] A. Schrijver, Combinatorial Optimization—Polyhedra and Efficiency, Springer-Verlag, New
York, 2005.

[41] P. D. Seymour, Sums of Circuits, in Graph Theory and Related Topics, (Waterloo, Ontario,
1977), Academic Press, New York, 1979, pp. 341–355.

[42] M. Singh and L. C. Lau, Approximating minimum bounded degree spanning trees to within
one of optimal, in Proceedings of the 39th ACM Symposium on Theory of Computng,
ACM, New York, 2007, pp. 661–670.

[43] V. Vazirani, Approximation Algorithms, Springer-Verlag, New York, 2001.
[44] D. H. Younger, Integer Flows, J. Graph Theory, 7 (1983), pp. 349–357.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


