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Abstract. Given a complete undirected graph, a cost function on edges, and a degree bound B,
the degree bounded network design problem is to find a minimum cost simple subgraph with maxi-
mum degree B satisfying given connectivity requirements. Even for a simple connectivity requirement
such as finding a spanning tree, computing a feasible solution for the degree bounded network design
problem is already NP-hard, and thus there is no polynomial factor approximation algorithm for this
problem. In this paper, we show that when the cost function satisfies the triangle inequality, there
are constant factor approximation algorithms for various degree bounded network design problems.
In global edge-connectivity, there is a (2 + 1

k
)-approximation algorithm for the minimum bounded

degree k-edge-connected subgraph problem. In local edge-connectivity, there is a 4-approximation
algorithm for the minimum bounded degree Steiner network problem when rmax is even, and a 5.5-
approximation algorithm when rmax is odd, where rmax is the maximum connectivity requirement.
In global vertex-connectivity, there is a (2 + k−1

n
+ 1

k
)-approximation algorithm for the minimum

bounded degree k-vertex-connected subgraph problem when n ≥ 2k, where n is the number of ver-
tices. For spanning tree, there is a (1 + 1

B−1
)-approximation algorithm for the minimum bounded

degree spanning tree problem. These approximation algorithms return solutions with the smallest
possible maximum degree, and in most cases the cost guarantee is obtained by comparing to the
optimal cost when there are no degree constraints. This demonstrates that degree constraints can be
incorporated into network design problems with metric costs. Our algorithms can be seen as a gen-
eralization of Christofides’ algorithm for the metric traveling salesman problem. The main technical
tool is a simplicity-preserving edge splitting-off operation, which is used to “short-cut” vertices with
high degree while maintaining connectivity requirements and preserving simplicity of the solutions.
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1. Introduction. Consider finding a minimum cost k-edge-subgraph with max-
imum degree at most B in a weighted undirected graph. This problem is a general-
ization of the traveling salesman problem (TSP) when k = B = 2 and the minimum
bounded degree spanning tree problem when k = 1. In general this problem does not
admit any polynomial time approximation algorithm, since the feasibility problem is
already NP-hard. Recent research has thus focused on obtaining bicriteria approxi-
mation algorithms for degree bounded network design problems [19, 31, 39, 32].

In some network design problems the cost function satisfies the triangle inequality,
and stronger algorithmic results are known [27, 9, 11]. For the TSP, although there is
no polynomial factor approximation algorithm in general, it is well known that there
is a 1.5-approximation algorithm assuming the triangle inequality [10]. This motivates
us to study the more general degree bounded network design problems with metric
costs.

Formally, we are given a complete undirected graph G = (V,E), a connectivity
requirement function r : V ×V → Z on pairs of vertices, a cost function c : V ×V → Q
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on edges satisfying the triangle inequality (c(u, v)+c(v, w) ≥ c(u,w) for all u, v, w; also
known as metric costs), and a degree upper bound B. The goal is to find a minimum
cost subgraph H ⊆ G that has at least r(u, v) edge-disjoint (or vertex-disjoint) paths
between u and v, and the degree of each vertex in H is at most B.

1.1. Results. We show that there are constant factor approximation algorithms
for various degree bounded network design problems with metric costs. In addition,
these algorithms return solutions with the smallest possible maximum degree (e.g.,
k-connected subgraphs with maximum degree k) and the cost is within a constant
times the optimal cost when there are no degree constraints, except for the case of
local connectivity when the maximum edge-connectivity rmax is odd (section 3.6)
and for the case of spanning tree (section 3.8). Our results demonstrate that degree
constraints can be incorporated into network design problems with metric costs.

Global edge-connectivity. We first consider the problem of finding a minimum
cost k-edge-simple subgraph with metric costs. The main procedure is to transform
any k-edge-simple subgraph into a k-edge-simple subgraph with maximum degree k,
with only a small increase in the cost.

Theorem 1.1. Given a complete graph G = (V,E) with metric costs and any
simple k-edge-subgraph H of G, there is a polynomial time algorithm to construct

(1) a simple k-edge-subgraph H ′ with maximum degree at most k+1 and cost(H ′)
≤ cost(H),

(2) a simple k-edge-subgraph H ′′ with maximum degree k and cost(H ′′) ≤
cost(H) + ECk(G)/k, where ECk(G) is the cost of a minimum cost k-edge-
subgraph of G.1

We remark that if parallel edges are allowed in the solutions, then a statement
similar to Theorem 1.1(1) is proved by Bienstock, Brickell, and Monma [6]. However,
for degree bounded network design problems, there are capacity constraints on edges,
and so their result cannot be applied directly.2 Theorem 1.1 implies the first constant
factor approximation algorithm for the minimum bounded degree k-edge-connected
subgraph problem with metric costs.

Theorem 1.2. Given a complete graph with metric costs, there is a polynomial
time (2+1/k)-approximation algorithm for the minimum cost bounded degree k-edge-
connected subgraph problem.

Local edge-connectivity. Theorem 1.1 can be extended to general edge-connect-
ivity requirements. In the following let rmax := maxu,v r(u, v) be the maximum edge-
connectivity requirement, and call a subgraph H satisfying all connectivity require-
ments a Steiner network.

Theorem 1.3. Given a complete graph G = (V,E) with metric costs, any con-
nectivity requirement function r : V × V → Z, and any simple Steiner network H
of G, there is a polynomial time algorithm to construct

(1) a simple Steiner network H ′ with maximum degree at most rmax and
cost(H ′) ≤ 2 · cost(H), when rmax is even,

(2) a simple Steiner network H ′′ with maximum degree at most rmax + 1 and
cost(H ′′) ≤ 2 · cost(H), when rmax is odd.3

1When both k and |V | are odd numbers, it is impossible to have a k-regular spanning subgraph.
In that case our algorithm can choose any vertex v in the graph and returns a solution with v having
degree k + 1 and all other vertices having degree k.

2Incidentally, if parallel edges are allowed, then there is a simple constant factor approximation
algorithm by taking �k/2� copies of an approximate solution of the metric TSP.

3When rmax is odd, each connected component has at most one vertex with degree rmax + 1.
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In the following we say an algorithm is an (α,+β)-bicriteria approximation algo-
rithm if it returns a solution with cost at most α ·opt and the degree of each vertex is
at most B+β. Theorem 1.3 implies the first constant factor approximation algorithm
for the minimum bounded degree Steiner network problem with metric costs.

Theorem 1.4. Given a complete graph with metric costs, there is a polynomial
time algorithm to compute, for the minimum cost bounded degree Steiner network
problem,

(1) a 4-approximate solution, when rmax is even,
(2) a (4,+1)-approximate solution, when rmax is odd,
(3) a 5.5-approximate solution, when rmax is odd.4

Global vertex-connectivity. A similar result can be obtained for vertex-
connectivity, with the additional requirement that |V | ≥ 2k. Note that the first
part of the following theorem is proved by Bienstock, Brickell, and Monma [6]. Com-
bined with the result of [27], Theorem 1.5(1) implies a (2 + k−1

n ,+1)-approximation
algorithm.

Theorem 1.5. Given a complete graph G = (V,E) with metric costs and |V | ≥
2k, and a k-vertex-connected subgraph H of G, there is a polynomial time algorithm
to construct

(1) a k-vertex-connected subgraph H ′ with maximum degree at most k + 1 and
cost(H ′) ≤ cost(H) [6],

(2) a k-vertex-connected subgraph H ′′ with maximum degree k and cost(H ′′) ≤
cost(H)+V Ck(G)/k, where V Ck(G) is the cost of a minimum cost k-vertex-
connected subgraph of G.1

This implies the first constant factor approximation algorithm for the minimum
bounded degree k-vertex-connected subgraph problem with metric costs. Note that
without the metric cost assumption, no constant factor approximation algorithm
is known for the minimum cost k-vertex-connected subgraph problem and the de-
gree bounded k-vertex-connected subgraph problem. With metric costs but with-
out the degree bound, the minimum k-vertex-subgraph problem admits a (2 + k−1

n )-
approximation [27].

Theorem 1.6. For |V | ≥ 2k, there is a (2 + k−1
n + 1

k )-approximation algorithm
for the minimum bounded degree k-vertex-connected subgraph problem.

Spanning tree. There is a simple 2-approximation algorithm for the minimum
bounded degree spanning tree problem with metric costs. Improvements are known
for special metric costs such as Euclidean distances [37, 24, 23, 7] but not known for
general metric costs. The following result improves upon the simple 2-approximation
algorithm for all B ≥ 3.5

Theorem 1.7. Given a complete graph with metric costs, there is a polynomial
time algorithm to find a spanning tree with maximum degree B whose cost is at most
1 + 1

B−1 times the cost of an optimal solution with maximum degree B.

1.2. Techniques. Our algorithms can be seen as a generalization of Christofides’
algorithm for the metric TSP. Christofides’ algorithm first constructs a minimum
spanning tree, then adds a minimum perfect matching between odd degree vertices,
and finally short-cuts the high degree vertices to obtain a Hamiltonian cycle without
increasing the cost. The approach taken in this paper is similar. We illustrate it in

4If |V | is odd and maxu∈V r(v, u) = rmax for every vertex v ∈ V , then one vertex would have
degree rmax + 1.

5For B = 2, Christofides’ algorithm is a 3/2-approximation algorithm for the minimum bounded
degree spanning tree problem with metric costs.
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the global edge-connectivity setting. First we construct a simple k-edge-connected
subgraph H (without degree constraints) by using an existing 2-approximation algo-
rithm for the minimum cost k-edge-connected subgraph problem [25]. Then we apply
a short-cutting procedure to transform H into a k-edge-connected subgraph H ′ of
maximum degree k + 1 without increasing the cost. Finally we add a minimum cost
perfect matching to vertices with degree k+1 in H ′ and then apply the short-cutting
procedure once again to transform it to a k-edge-connected subgraph H ′′ of maximum
degree k.

To short-cut the high degree vertices, we use the edge splitting-off operation,
which involves replacing two edges xu and xv sharing the same vertex x by the edge uv.
With the metric cost assumption, the new edge uv is no more expensive than the sum
of the costs of xu and xv, so this operation can be used to decrease the degree of x by 2
without increasing the cost. However, in general the connectivity requirements may
be violated after an edge splitting-off operation is performed. The first edge splitting-
off result is proved by Lovász in [33], where he gave sufficient conditions for the
existence of an edge splitting-off operation that maintains global edge-connectivity.
This result has been extended in different directions [34, 35, 6, 14, 2, 22] and has
found a number of applications in graph-connectivity problems, including connectivity
augmentation [13, 3], graph orientation [33, 15], Steiner tree packing [29, 30], etc.

We are concerned with the simplicity of the solutions, and so we require a
simplicity-preserving edge splitting-off operation that maintains edge-connectivity
and does not introduce new parallel edges. Simplicity-preserving edge splitting-off
was studied by Bang-Jensen and Jordán in [3], where they showed that if the degree
of a vertex x is at least Ω(rmax

2), then there is an edge splitting-off operation at x
that preserves simplicity and maintains local edge-connectivity requirements for all
pairs. Their result is applied to the simplicity-preserving connectivity augmentation
problem.

For degree bounded network design problems, the O(rmax
2) bound is not enough

for our purposes, and we prove a sharper degree bound for the existence of a simplicity-
preserving edge splitting-off operation. Our main technical result is Theorem 2.2,
which roughly says that if the degree of a vertex v is at least rmax +2, then there is a
simplicity-preserving edge splitting-off operation that maintains local edge-connectivity
requirements for all pairs. As a by-product, this also gives a new proof of Mader’s
theorem (see Theorem 2.1) on edge splitting-off maintaining local edge-connectivities.

The strategy for vertex-connectivity is similar. We remark that the procedure
of reducing the maximum degree by an edge splitting-off operation was first used by
Bienstock, Brickell, and Monma in [6], where they also proved the first edge splitting-
off result for maintaining global vertex-connectivity (see Theorem 4.1) and a result
similar to Theorem 1.1(1) when parallel edges are allowed.

For spanning trees, our result is obtained by combining a recent bicriteria approx-
imation result by Singh and Lau [39] and a minimum cost flow technique by Fekete
et al. [12].

1.3. Related work. Network design problems with metric costs are well-studied
problems in the literature [27, 9, 28, 11]. Here we focus on related work on degree
bounded network design problems. For a general cost function, a polyhedral approach
is applied successfully to obtain bicriteria approximation algorithms with only an ad-
ditive violation on the degree: there is a (1,+1)-approximation algorithm for the min-
imum bounded degree spanning tree problem [39], a (2,+O(k))-approximation algo-
rithm for the minimum bounded degree k-edge-connected subgraph problem [32], and
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a (2,+O(rmax))-approximation algorithm for the minimum bounded degree Steiner
network problem [32], while the maximum degree of the solution is at most 2B+3 [31].

For bounded degree network design problems with metric costs, there are ap-
proximation algorithms to construct a k-edge-connected subgraph with maximum
degree k [16, 18] if parallel edges are allowed. For local edge-connectivity, there is
some known result [17], but no constant factor approximation algorithm is known
even if parallel edges are allowed. For vertex-connectivity, it was first studied in [36]
for 2-vertex-connectivity, in which they showed that there exists an optimal solution
with maximum degree 3. This result has been generalized to k-vertex-connectivity
in [6], which combined with [27] implies a bicriteria (2 + k−1

n ,+1)-approximation al-
gorithm for the minimum bounded degree k-vertex-connected subgraph problem. For
bounded degree spanning trees, there is a simple 2-approximation algorithm, and
improvement over this 2-approximation algorithm was known for Euclidean space
[37, 12, 24, 1, 7, 23].

2. Simplicity-preserving edge splitting-off. The edge splitting-off operation
involves replacing two edges xu and xv sharing the same vertex x by the edge uv.
The main content of edge splitting-off results is to maintain the edge-connectivity
of the graph. Lovász [33] obtained the first splitting-off result concerning global
edge-connectivity of the resulting graph, and Mader [34] extended it to local edge-
connectivity, where the local edge-connectivity between two vertices u and v is defined
as the maximum number of edge-disjoint paths between u and v.

Theorem 2.1 (Mader’s theorem). If d(x) �= 3 and there is no cut edge incident
to x, then there is an edge splitting-off operation on x that maintains the local edge-
connectivity for every pair of vertices u, v ∈ V − x.

We consider simplicity-preserving edge splitting-off that does not introduce new
parallel edges; that is, we do not allow splitting off xu, xv if the edge uv already
exists. This was first studied by Bang-Jensen and Jordán in [3], where they proved
Theorem 2.2 for the case d(x) ≥ Ω(rmax

2). Our main technical result provides a
tighter bound for the existence of a simplicity-preserving edge splitting-off operation
that maintains local edge-connectivities.

Theorem 2.2. Suppose N(x) is not a clique and |N(x)| ≥ rmax + 2. If d(x) �= 3
and there is no cut edge incident to x, then there is a simplicity-preserving edge
splitting-off operation on x that maintains the local edge-connectivity for every pair of
vertices u, v ∈ V .

2.1. Preliminaries. Let G = (V,E) be a graph. For X,Y ⊆ V , denote by
δ(X,Y ) the set of edges with one endpoint in X−Y and the other endpoint in Y −X
and d(X,Y ) := |δ(X,Y )|, and also define d̄(X,Y ) := d(X ∩ Y, V − (X ∪ Y )). For
X ⊆ V , define δ(X) := δ(X,V −X) and the degree of X as d(X) := |δ(X)|. Denote
the degree of a vertex as d(v) := d({v}). Also denote the set of neighbors of v by
N(v), and call a vertex in N(v) a v-neighbor.

Let r(u, v) be the edge-connectivity requirement (number of edge-disjoint paths)
between u and v. The requirement r(X) of a set X ⊆ V is the maximum edge-
connectivity requirement between u and v with u ∈ X and v ∈ V −X . By Menger’s
theorem, to satisfy the connectivity requirements, it suffices to guarantee that d(X) ≥
r(X) for all X ⊂ V . The surplus s(X) of a set X ⊆ V is defined as d(X)− r(X). A
graph satisfies the edge-connectivity requirements if s(X) ≥ 0 for all ∅ �= X ⊂ V . For
X ⊆ V − x, X is called tight if s(X) = 0 and dangerous if s(X) ≤ 1, where x is the
vertex to be split off. The following proposition will be used throughout our proof.
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Fig. 2.1. The 3-dangerous-set structures.

Proposition 2.3 (see [13]). For arbitrary X,Y ⊆ V at least one of the following
inequalities holds:

s(X) + s(Y ) ≥ s(X ∩ Y ) + s(X ∪ Y ) + 2d(X,Y ),(2.3a)

s(X) + s(Y ) ≥ s(X − Y ) + s(Y −X) + 2d̄(X,Y ).(2.3b)

Two edges xu, xv form an admissible pair if the graph after splitting off xu, xv
does not violate s(X) ≥ 0 for all X ⊂ V . An admissible pair is legal if no new parallel
edge is formed after the pair is split off. For convenience, when we consider a pair of
edges, they are assumed to be incident to x unless otherwise specified. The following
proposition characterizes when a pair is admissible.

Proposition 2.4 (see [13]). A pair xu, xv is not admissible if and only if u, v
are both contained in some dangerous set.

2.2. Proof of Theorem 2.2. Suppose, by way of contradiction, that all the
conditions in Theorem 2.2 are satisfied, but there is no legal pair on x. We will
prove in Lemma 2.6 that a certain 3-dangerous-set structure exists; see Figure 2.1(a).
Then we will prove in Lemma 2.7 that such a 3-dangerous-set structure would imply
that either d(x) = 3 or there is a cut edge incident to x, violating the conditions in
Theorem 2.2. We remark that Lemma 2.7 can also be used to give a new proof of
Mader’s theorem.

First we need the following claim to establish the 3-dangerous-set structure.
Claim 2.5. Suppose |N(x)| ≥ rmax + 2. Then, for any dangerous set D, there

exists a vertex w ∈ N(x)−D with d(w,D) = 0.
Proof. If D contains all x-neighbors, then d(D) ≥ |N(x)| ≥ rmax + 2 and contra-

dicts the assumption that D is dangerous. Therefore N(x) −D �= ∅. Each vertex in
N(x) ∩ D contributes at least one to d(D). Suppose, by way of contradiction, that
d(v,D) ≥ 1 for each v ∈ N(x)−D. Then d(D) ≥ |N(x)∩D|+ |N(x)−D| = |N(x)| ≥
rmax + 2, which contradicts the assumption that D is dangerous. Therefore there
exists a vertex w ∈ N(x)−D with d(w,D) = 0.

The following lemma shows that a certain 3-dangerous-set structure as shown in
Figure 2.1(a) must exist, which is a crucial step in the proof.

Lemma 2.6. Suppose N(x) is not a clique and |N(x)| ≥ rmax + 2. If there is no
legal pair on x, then there exist maximal dangerous sets X, Y , Z and u, v, w ∈ N(x)
such that u ∈ X ∩ Y , v ∈ X ∩ Z, w ∈ Y ∩ Z, and u, v, w /∈ X ∩ Y ∩ Z.
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Proof. Since N(x) is not a clique, there exist u′, v′ ∈ N(x) with u′v′ /∈ E. Since
there is no legal pair on x, (xu′, xv′) must be nonadmissible. By Proposition 2.4, there
exists a dangerous set that contains both u′ and v′. Let X be a maximal dangerous
set containing u′, v′ such that X ∩ N(x) is not a proper subset of D ∩ N(x) for any
dangerous set D.

By Claim 2.5, there exists w′ ∈ N(x) − X such that u′w′, v′w′ /∈ E. As there
is no legal pair on x, both (xu′, xw′) and (xv′, xw′) must be nonadmissible. By
Proposition 2.4, there exist a dangerous set containing u′, w′ and a dangerous set
containing v′, w′. If there exist maximal dangerous sets Y and Z such that u′, w′ ∈ Y ,
v′ /∈ Y , and v′, w′ ∈ Z, u′ /∈ Z, then we get the desired 3-dangerous-set structure.

Otherwise, there must exist a maximal dangerous set Y such that u′, v′, w′ ∈ Y .
Since d̄(X,Y ) ≥ d(x, {u′, v′}) ≥ 2, we have s(X) + s(Y ) ≤ 1 + 1 < 2d̄(X,Y ). So
inequality (2.3b) cannot hold for (X,Y ), and thus inequality (2.3a) must hold for
(X,Y ). As X is maximally dangerous and w′ ∈ Y −X , X ∪ Y cannot be dangerous,
and thus s(X ∪ Y ) ≥ 2. Therefore, by inequality (2.3a),

1 + 1 ≥ s(X) + s(Y )

≥ s(X ∩ Y ) + s(X ∪ Y ) + 2d(X,Y ) ≥ 2.

This implies that s(X ∩ Y ) = d(X,Y ) = 0 and s(X ∪ Y ) = 2. By the definition of X ,
X ∩N(x) is not a proper subset of Y ∩N(x), so there must exist t′ ∈ N(x) ∩X and
t′ /∈ Y . Since d(X,Y ) = 0 and w′ ∈ N(x) ∩ Y , we have t′w′ /∈ E. For (xt′, xw′) to
be illegal, there exists a maximal dangerous set Z containing both w′ and t′. We will
show that both u′ and v′ are not in Z. By using this, we can define u = u′, w = w′,
v = t′ and get the desired 3-dangerous-set structure.

We now complete the proof by showing that both u′ and v′ are not in Z. Sup-
pose, by way of contradiction, that u′ ∈ Z. Then since d̄(Y, Z) ≥ d(u′ + w′, x) ≥ 2
and s(Y ) + s(Z) ≤ 1 + 1 = 2, inequality (2.3b) does not hold for (Y, Z), and thus
inequality (2.3a) must hold for (Y, Z). As Y is a maximal dangerous set and t′ ∈ Z,
Y ∪ Z cannot be a dangerous set and s(Y ∪ Z) ≥ 2. By inequality (2.3a) for (Y, Z),
this implies that s(Y ∪ Z) = 2 and d(Y, Z) = s(Y ∩ Z) = 0. Consider Y ∩ Z and
X . Note that d̄(Y ∩ Z,X) ≥ d(u′, x) ≥ 1 and s(Y ∩ Z) + s(X) ≤ 0 + 1 = 1. So
inequality (2.3b) does not hold for (Y ∩ Z,X), and thus inequality (2.3a) must hold
for (Y ∩ Z,X). Therefore we have s((Y ∩ Z) ∪ X) ≤ s(Y ∩ Z) + s(X) = 1, which
implies that (Y ∩Z)∪X is a dangerous set. Since w ∈ (Y ∩Z)−X , this contradicts
the maximality of X and completes the proof.

The following lemma shows that the 3-dangerous-set structure in Lemma 2.6
(Figure 2.1(a)) would contradict the conditions of Theorem 2.2; similar structures
also appear in [4, 5]. This will complete the proof of Theorem 2.2.

Lemma 2.7. Suppose there is no legal pair on x. If there are maximal dangerous
sets X, Y , Z and u, v, w ∈ N(x) such that u ∈ X ∩ Y , v ∈ X ∩ Z, w ∈ Y ∩ Z, and
u, v, w /∈ X ∩ Y ∩ Z, then either d(x) = 3 or there is a cut edge incident to x.

Proof. We divide the proof into two cases.
Case 1. Inequality (2.3a) holds for at least one of (X,Y ), (X,Z), (Y, Z). Without

loss of generality, assume inequality (2.3a) holds for (X,Y ). Since w ∈ Y −X , by the
maximality of X , s(X ∪ Y ) ≥ 2. By inequality (2.3a) for (X,Y ), this implies that
s(X ∩ Y ) = d(X,Y ) = 0 and s(X ∪ Y ) = 2.

Consider X ∩ Y and Z. Suppose inequality (2.3a) holds for (X ∩ Y, Z); then
(X ∩ Y ) ∪ Z will be dangerous, but this contradicts the maximality of Z since
u ∈ (X ∩ Y ) − Z. Therefore, inequality (2.3b) must hold for (X ∩ Y, Z). Thus,
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s(Z − (X ∩ Y )) ≤ s(X ∩ Y ) + s(Z) ≤ 0 + 1 = 1. Note that Z − (X ∩ Y ) is nonempty
since v, w ∈ Z − (X ∩ Y ). This implies that Z − (X ∩ Y ) is dangerous.

Define Z ′ = Z−(X∩Y ); henceX∩Y ∩Z ′ = ∅ (see Figure 2.1(b)). ConsiderX∪Y
and Z ′. Note that d̄(X ∪ Y, Z ′) ≥ d({v, w}, x) ≥ 2 and s(X ∪ Y ) + s(Z ′) ≤ 2+ 1 = 3.
So inequality (2.3b) does not hold for (X ∪ Y, Z ′), and thus inequality (2.3a) must
hold. Since w ∈ Z ′ −X , by the maximality of X , X ∪ Y ∪ Z ′ cannot be dangerous,
and hence s(X ∪ Y ∪ Z ′) ≥ 2. By inequality (2.3a) for (X ∪ Y, Z ′), this implies that
s((X ∪ Y ) ∩ Z ′) = s((X ∩ Z ′) ∪ (Y ∩ Z ′)) ≤ 1. Note that d(X,Y ) = 0 implies that
d(X∩Z ′, Y ∩Z ′) = 0. Applying the following claim with S1 := X∩Z ′ and S2 := Y ∩Z ′

will show that either xv or xw is a cut edge, completing the proof of Case 1.
Claim 2.8. For two disjoint vertex sets S1, S2 with x-neighbors x1 ∈ N(x) ∩S1,

x2 ∈ N(x) ∩ S2, if d(S1, S2) = 0 and S1 ∪ S2 is dangerous, then there is a cut edge
incident to x.

Proof. Since S1 ∪ S2 is dangerous, we have

1 ≥ d(S1 ∪ S2)− r(S1 ∪ S2)

≥ d(S1) + d(S2)−max{r(S1), r(S2)}
≥ min{d(S1), d(S2)}.

This implies that d(S1) ≤ 1 (or d(S2) ≤ 1), and hence xx1 (or xx2) is a cut edge
incident to x.

Case 2. Inequality (2.3a) does not hold for any pair (X,Y ), (X,Z), (Y, Z).
In other words, inequality (2.3b) holds in these three pairs. Consider X and Y ;
d̄(X,Y ) ≥ d(u, x) ≥ 1 and s(X) + s(Y ) ≤ 1 + 1 = 2. By inequality (2.3b) for
(X,Y ), this implies that s(X − Y ) = s(Y − X) = 0. Consider X − Y and Z;
d̄(X − Y, Z) ≥ d(v, x) ≥ 1 and s(X − Y ) + s(Z) ≤ 0 + 1 = 1, and so inequality
(2.3b) does not hold for (X − Y, Z). Thus inequality (2.3a) must hold for (X − Y, Z),
and so s((X − Y ) ∪ Z) ≤ s(X − Y ) + s(Z) ≤ 0 + 1 = 1. Therefore, (X − Y ) ∪ Z
is dangerous. By the maximality of Z, X − Y − Z must be empty. Using a similar
argument, Y − X − Z and Z − X − Y are also empty, see Figure 2.1(c). Since
inequality (2.3b) holds for (X,Y ), (X,Z), (Y, Z) and X , Y , Z are all dangerous,
d̄(X,Y ) = d(u, x) = 1, d̄(X,Z) = d(v, x) = 1, d̄(Y, Z) = d(w, x) = 1. Therefore
d(X ∪ Y ∪ Z, V − (X ∪ Y ∪ Z) − x) = 0. Suppose d(x) �= 3. Consider another x-
neighbor t; then t ∈ V −X ∪ Y ∪ Z. Since d̄(X,Y ) = 1, ut /∈ E, and so there exists
a dangerous set D containing u and t for (xu, xt) to be illegal. Applying Claim 2.8
with S1 := D − (X ∪ Y ∪ Z) and S2 := D ∩ (X ∪ Y ∪ Z) implies that there is a cut
edge incident to x. Therefore, either d(x) = 3 or there is a cut edge incident to x.
This completes the proof of Case 2 and thus Theorem 2.2.

2.3. An alternate proof of Mader’s theorem. Without the simplicity con-
straint, as long as d(x) �= 3, an argument similar to that in Lemma 2.6 can be used to
construct the 3-dangerous-set configuration, and then Lemma 2.7 will imply Mader’s
theorem.

Lemma 2.9. Given an undirected graph G = (V +x,E) with no cut edge incident
to x and d(x) �= 3, if there is no admissible pair incident to x, there exist maximal
dangerous sets X, Y , Z and u, v, w ∈ N(x) such that u ∈ X∩Y , v ∈ X∩Z, w ∈ Y ∩Z,
and u, v, w /∈ X ∩ Y ∩ Z.

Proof. For d(x) = 2, the pair must be admissible, so we consider d(x) ≥ 4.
For two x-neighbors u′, v′ ∈ N(x), since (xu′, xv′) is not admissible, there exists some
dangerous set containing both u′ and v′. LetX be a maximal dangerous set containing
u′, v′ such that X ∩N(x) is not a proper subset of D∩N(x) for any dangerous set D.
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Since no dangerous set can contain all x-neighbors, there exists w′ ∈ N(x) −X .
For neither (xu′, xw′) nor (xv′, xw′) being admissible, there exist maximal dangerous
sets containing (u′, w′) and (v′, w′). If there exist maximal dangerous sets Y and Z
such that u′, w′ ∈ Y, v′ /∈ Y and v′, w′ ∈ Z, u′ /∈ Z, then we get the desired structure.

Otherwise, there exists a maximal dangerous set Y such that u′, v′, w′ ∈ Y . By
the definition of X , X ∩N(x) is not a proper subset of Y ∩N(x), which implies that
there exists t′ ∈ N(x) ∩ (X − Y ). For (xw′, xt′) to be nonadmissible, there exists a
maximal dangerous set Z containing w′, t′. If u′ /∈ Z, we define u = u′, w = w′, v = t′

to get the desired structure.

Now we show u′ /∈ Z to complete the proof. Suppose to the contrary that u′ ∈ Z;
we have d̄(X,Z) ≥ d(u′ + t′, x) ≥ 2 and s(X) + s(Z) ≤ 1 + 1 = 2, inequality (2.3b)
cannot hold, and thus inequality (2.3a) must hold. As X is maximally dangerous,
X ∪ Z cannot be dangerous. By inequality (2.3a), this implies that s(X ∪ Z) = 2
and s(X ∩ Z) = 0. Since X ∩ Z is tight, Y is dangerous, and X ∩ Z ∩ Y contains an
x-neighbor u′, by the following claim we have that (X ∩Z)∪Y is dangerous, and this
contradicts the maximality of Y .

Claim 2.10. Let T be a tight set and D be a dangerous set such that N(x) ∩
(T ∩D) �= ∅. Then T ∪D is a dangerous set.

Proof. Since the intersection contains some x-neighbor(s), we have d̄(T,D) ≥ 1.
Inequality (2.3b) cannot hold because s(T )+s(D) ≤ 0+1 = 1. Hence inequality (2.3a)
must hold and we have

s(T ) + s(D) ≤ 0 + 1 ≤ s(T ∪D) + s(T ∩D) + 2d(T,D),

which implies s(T ∪D) ≤ 1.

3. Edge connectivity. In this section we are concerned with finding a low cost
subgraph satisfying edge-connectivity requirements and also degree constraints. Our
algorithms can be seen as a generalization of Christofides’ algorithm on the metric
TSP. The main technical tool is the simplicity-preserving edge splitting-off operation,
which is used to short-cut high degree vertices while maintaining edge-connectivities
and preserving simplicity. The following is an overview of the algorithm for the case
of local edge-connectivity.

First we use Jain’s algorithm [20] to compute a simple Steiner network whose cost
is no more than twice the optimal cost. Note that there may be vertices with degree
larger than rmax. We plan to use the simplicity-preserving edge splitting-off operation
to short-cut those vertices. To do so we need to make sure that the conditions in
Theorem 2.2 are satisfied. If rmax = 1, there is a simple 4-approximation algorithm
for the minimum bounded degree Steiner network problem with metric costs, while
the maximum degree of the solution is at most 2. Hence we assume rmax ≥ 2, and
thus d(v) �= 3 when |N(v)| ≥ rmax + 2. We also augment the Steiner network so that
each connected component is 2-edge-connected, and there is no cut edge in the Steiner
network. In section 3.1, we show that if |N(v)| ≥ rmax+2 andN(v) is a clique, then we
can remove some edges without violating any connectivity requirements and without
introducing cut edges. With all the conditions satisfied, we can apply Theorem 2.2
on a vertex v with |N(v)| ≥ rmax + 2. Call a vertex u ∈ V r-even if d(u) has the
same parity as rmax, and call u r-odd if d(u) has parity different from rmax. For every
r-even vertex, by repeatedly applying Theorem 2.2, its degree can be reduced to at
most rmax. Similarly, for every r-odd vertex, its degree can be reduced to at most
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rmax + 1 by repeatedly applying Theorem 2.2. Since the cost function satisfies the
triangle inequality, the cost of the resulting Steiner network is no more than the cost
of the initial Steiner network. This is an outline of the proofs of the first parts of
Theorems 1.1 and 1.3.

For the second parts of Theorems 1.1 and 1.3, we need to further reduce the
maximum degree from rmax +1 to rmax. Assume for simplicity that rmax is even, and
thus the number of r-odd vertices is even. We add a minimum cost perfect matching
on r-odd vertices to make them r-even, and so all the vertices with degree larger
than rmax are of degree rmax + 2. Note that parallel edges may be created when we
add a matching. In section 3.3, we prove that the simplicity-preserving edge splitting-
off operation can be performed on those vertices with degree rmax + 2 to maintain
connectivity and restore simplicity again, so that the resulting graph is simple and
has maximum degree rmax. The above operations are presented in sections 3.1 to
3.3, while the details for individual connectivity settings are presented in sections
3.4 to 3.7. The minimum bounded degree spanning tree problem will be discussed in
section 3.8.

3.1. Removing redundant edges. The following claim shows that whenever
the neighbors of a vertex x form a clique and the degree of x is high, we can always
remove some edges (which we call redundant) without violating edge-connectivity
requirements.

Claim 3.1. If d(x) ≥ rmax+2 and N(x) is a clique, then for any u, v ∈ N(x), we
can remove edges of the triangle xuv without violating that s(X) ≥ 0 for all X ⊂ V .

Proof. Suppose a set D ⊂ V has d(D) < r(D) after removing the edges uv, xu,
and xv. By symmetry, assume x ∈ D. For d(D) < r(D), at least one of u, v ∈ V −D.
Without loss of generality, assume u ∈ V −D. We have

d(D) ≥ d(x,N(x) −D) + d(u,N(x) ∩D) = d(x) ≥ rmax ≥ r(D),

which leads to a contradiction.

Note that in removing the three edges, no cut edge is introduced assuming rmax ≥
2, i.e., d(x) ≥ 4. Furthermore, the parities of the degrees of x, u, v remain the same.
We can apply this operation whenever the conditions are met. Henceforth, we assume
that whenever d(x) ≥ rmax + 2, then N(x) is not a clique.

3.2. Perfect matching. In the global edge-connectivity setting, we say a vertex
is a k-odd vertex if it has a degree of parity different from k. The following claim
bounds the cost of a minimum cost perfect matching between k-odd vertices.

Claim 3.2. The cost of a minimum cost perfect matching between any subset of
vertices in a graph G is at most ECk(G)/k, where ECk(G) denotes the optimal cost
of a k-edge-connected subgraph.

Proof. Let the subset of vertices to be matched be T . When the cost function sat-
isfies the triangle inequality, the cost of a minimum cost perfect matching between T
is equal to the cost of a minimum T -join, where a T -join is a subgraph in which T is
equal to the set of vertices with odd degree. Let H be a k-edge-connected subgraph
with minimum cost. Since H is k-edge-connected, by setting xe = 1/k for each edge
e ∈ H , x is a feasible solution to the up hull of the T -join polytope [38]. Since
the T -join polytope is integral, this implies that the cost of a minimum cost perfect
matching between T is at most ECk(G)/k.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DEGREE BOUNDED NETWORK DESIGN WITH METRIC COSTS 963

Applying Claim 3.2 to k-edge-connectivity (section 3.4) and k-vertex-connectivity
(section 4.1) settings, when k is odd and there is an odd number of k-odd vertices, we
could leave out one k-odd vertex in the matching or include one k-even vertex, and
that would be the only degree-(k + 1) vertex in the solution.

3.3. Edge splitting-off restoring simplicity. Suppose we are given a simple
Steiner network with maximum degree rmax + 1. Suppose further that there is no
cut edge and rmax is even. We need to further reduce its maximum degree to rmax.
First we add a minimum cost perfect matching between the r-odd vertices.6 Note
that the resulting Steiner network may then have parallel edges. We plan to apply
edge splitting-off operations to reduce the maximum degree to rmax and furthermore
restore the simplicity of the Steiner network.

Consider a vertex x with degree rmax + 2. We can assume that d(x) �= 3 and
N(x) is not a clique by Claim 3.1. If there are no parallel edges incident to x, then we
can apply Theorem 2.2 to reduce the degree of x to rmax without increasing the cost,
while maintaining local edge-connectivity without introducing new parallel edges.
Now consider the case when there are parallel edges incident to x. Initially we start
with a simple graph and add a matching on it; there is at most one x-neighbor with
parallel edges to x. Since we do not create new parallel edges by simplicity-preserving
edge splitting-off, at any time during the algorithm a vertex x can have a parallel
edge with at most one neighbor v. If x and v have at least rmax common neighbors,
then there are rmax edge-disjoint paths between x and v, and so the two parallel edges
between x and v can be removed while keeping local edge-connectivity requirements
for all pairs. So assume that x and v have at most rmax − 1 common neighbors. If
there exists u so that xu ∈ E and vu /∈ E and xu, xv are admissible, then this is
a simplicity-preserving edge splitting-off operation that reduces the degree of x to
rmax and there are no more parallel edges incident to x. By repeatedly applying this
operation, we can reduce the degree of every vertex to rmax while keeping connectivity
requirements and restoring simplicity. It remains to prove that such a u must exist.

Suppose, by way of contradiction, that x has no neighbor u that (xu, xv) is a
legal pair. Suppose x, v share rmax − l common neighbors with l ≥ 1. Denote by
{u1, u2, . . . , ul} the set of neighbors of x that are not adjacent to v. Since xui, xv are
not admissible for all ui, there exists a dangerous set Di such that ui, v ∈ Di, x �∈ Di

for 1 ≤ i ≤ l. Since one parallel edge between x and v is added in the matching, this
implies that Di is tight before the addition of the matching for all i. Consider the
Steiner network H before the addition of the matching. Since d̄H(Di, Dj) ≥ d(x, v) =
1, inequality (2.3b) cannot hold for (Di, Dj), and thus inequality (2.3a) must hold
for (Di, Dj). This implies that the union of these tight sets is tight in H . Therefore,
there exists a tight set T in H such that ui, v ∈ T, x /∈ T for 1 ≤ i ≤ l, and thus
dH(x, T ) ≥ l + 1. In addition, the rmax − l common neighbors of x and v provide
rmax − l edge-disjoint paths between x and v in H . Therefore, dH(T ) ≥ rmax + 1,
which contradicts that T is a tight set in H . This shows that such a vertex u must
exist. Therefore, we can always restore simplicity while maintaining degree parity by
either removing parallel edges or performing splitting-off.

3.4. Proofs of Theorems 1.1 and 1.2. Given any k-edge-connected graph
with k ≥ 2, we can apply Theorem 2.2 repeatedly (together with removal of redun-
dant edges as in section 3.1) to obtain a simple k-edge-connected graph with maximum
degree k+1, without increasing the cost. This proves Theorem 1.1(1). By Claim 3.2,

6When rmax is odd, we may exclude one vertex in each 2-edge-component.
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we can add a perfect matching between k-odd vertices with cost at most ECk(G)/k.
Then, as in section 3.3, we can apply the simplicity-preserving edge splitting-off opera-
tion once again to obtain a simple k-edge-connected subgraph with maximum degree
k, without increasing the cost. This proves Theorem 1.1(2). Finally Theorem 1.2
follows by using a 2-approximation algorithm to obtain a simple k-edge-connected
subgraph [25] as the initial k-edge-connected subgraph.

3.5. Proofs of Theorems 1.3 and 1.4(1)–(2). Suppose we are given a Steiner
network H and rmax is even. In order to apply Theorem 2.2 to short-cut the high
degree vertices, we have to augment the Steiner network so that each connected
component is 2-edge-connected. If we were to augment the graph by doubling every
edge and then add a perfect matching covering r-odd vertices separately, we would get
a 6-approximate solution as obtained in the conference version of this paper. In the
following we show how to merge these two steps and obtain a 4-approximate solution
for the case when rmax is even.

Given a simple Steiner network H of a complete graph G, initially we ignore
requirements with r(u, v) = 1 for all u, v ∈ V and remove all cut edges. Now,
consider each of the connected components separately. In each connected component,
perform simplicity-preserving edge splitting-off until the maximum vertex degree is
at most rmax + 1. Then, add a matching7 on the set of r-odd vertices and perform
simplicity-restoring edge splitting-off to reduce the vertex degree to at most rmax. Up
to this step, all requirements with r(u, v) ≥ 2 are still satisfied and the vertex degree
is at most rmax.

Finally, we add back the removed cut edges to satisfy all requirements with
r(u, v) = 1. For each tree T in the forest induced by the removed cut edges, create a
cycle spanning V (T ) by duplicating T and short-cutting.8 Add this cycle to H , and
then perform splitting-off at each vertex with degree larger than rmax. By Claim 3.3,
there is a legal pair at x as long as d(x) > rmax. This gives a simple Steiner network
with vertex degree at most rmax that satisfies all r(u, v).

In the above operations, extra costs are incurred only for (i) the matching on the
set of r-odd vertices, and (ii) the addition of an extra copy of each cut edge. Hence,
the cost of the resulting Steiner network is at most twice of the cost of the input one.
This proves Theorem 1.3(1).

For odd rmax, one r-odd vertex may be excluded in the matching for each 2-edge-
connected component. Hence, there could be a vertex of degree rmax+1 in each of the
2-edge-connected components, and so Theorem 1.3(2) follows. Now, Theorems 1.4(1)–
(2) follow by using the Steiner network returned by Jain’s 2-approximation algo-
rithm [20] as the initial Steiner network H .

Claim 3.3. If the degree of a vertex x increases to at least rmax + 1 after adding
the cycle(s), then simplicity-preserving edge splitting-off can be applied at x to reduce
d(x) to at most rmax.

Proof. Note that x is included in exactly one cycle; i.e., two edges are added
to x. Denote these two edges by xu and xv. Since d(x) ≥ rmax + 1 after the addition
of the cycle, d(x) ≥ 1 before the addition; i.e., there exists an x-neighbor w other
than u and v. We claim that the edge pair (xu, xw) is admissible (and hence legal),
for otherwise there exists a dangerous set D such that u,w ∈ D and x /∈ D. Since
u and w are not connected if xu and xw are removed, this implies the existence of

7An edge is added to H only if one of its endpoints has degree rmax + 1.
8Exclude the case when T contains only 2 vertices in H, which can also be handled easily.
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S1, S2 ⊂ D such that u ∈ S1, w ∈ S2, d(S1, S2) = 0, S1∩S2 = ∅, and S1∪S2 = D. By
Claim 2.8, there is a cut edge incident to x and leading to a contradiction. Therefore,
no such dangerous set exists, and so the pair is admissible (hence legal).

3.6. Proof of Theorem 1.4(3). When rmax is odd, the algorithm in section 3.5
can guarantee a degree bound of only rmax + 1 (Theorem 1.4(2)). In this section, we
will show how to reduce the maximum degree to the tight bound of rmax. In the
following, we assume for simplicity that there is a solution with maximum degree at
most rmax.

9

Recall that r(x) = r({x}) = maxu r(x, u). We say a vertex x is full if r(x) = rmax

and nonfull otherwise. A new tool for degree reduction is an extended version of the
simplicity-preserving edge splitting-off, which allows us to split-off at a nonfull vertex
with degree at least rmax + 1 (instead of at least rmax + 2 as in Theorem 2.2).

Theorem 3.4 (extended version of Theorem 2.2). Suppose N(x) is not a clique,
r(x) ≤ rmax− 1, and |N(x)| ≥ rmax+1. If d(x) �= 3 and there is no cut edge incident
to x, then there is a simplicity-preserving edge splitting-off operation on x.

The proof of Theorem 3.4 will be presented in section 3.7. With this theorem,
we can always reduce the degrees of nonfull vertices to at most rmax, regardless of
their degree parities. This also allows us to use nonfull vertices to reduce the degrees
of full vertices with only a small overhead: Consider a 2-edge-component C in the
input Steiner network, and let R be the set of r-odd vertices in C. If |R| is even, then
we can add a perfect matching on R and apply splitting-off repeatedly to reduce the
degree of all vertices in C to rmax. Even if |R| is odd, as long as there exists a nonfull
vertex w in C, we can add a perfect matching on R∪{w} and then apply splitting-off
repeatedly to reduce the degrees of all vertices in C to rmax. The overhead is small,
because a min-cost matching within C is at most half the cost of C by Claim 3.2.

The difficult case is when every vertex in C is full and there is an odd number of
r-odd vertices in C. In this case it is impossible to make all the vertices r-even by
adding a matching within C. However, the edges between different components may
have much higher costs than the edges within components, and so we cannot bound
the cost of the solution in terms of the cost of the initial solution.

So, unlike previous analyses, we need to compare our solution to the optimal
solution with degree constraints in order to establish a performance guarantee. The
main observation (Claim 3.5) is that a minimum cost matching covering all the full
vertices of the graph (i.e., every full vertex is in some edge of the matching) is bounded
by opt/2, where opt is the cost of an optimal solution with maximum vertex degree
rmax. Then we show how to use those edges to make all 2-edge-connected components
(in the initial Steiner network) with only full vertices have an even number of r-odd
vertices. This will allow us to later add a perfect matching on the r-odd vertices on
those components to make all vertices r-even. To proceed we first bound the cost of
a min-cost matching covering all full vertices.

Claim 3.5. The cost of a min-cost matching covering all full vertices is at most
opt/2, where opt is the cost of an optimal solution Hopt with maximum vertex
degree rmax.

Proof. Recall that rmax is odd and a full vertex must have degree rmax in Hopt.
Consider a 2-edge-component C of Hopt, and let R be the set of full vertices in C.
If |R| is even, then a minimum cost perfect matching on R has cost at most half the

9The only exceptional case is when r(u) = rmax for all u ∈ V and both |V | and rmax are odd. In
this case, exactly one vertex will have degree rmax +1, similar to the k-edge connectivity case when
both k and |V | are odd. This case can be handled by the same approach as well.
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cost of C by Claim 3.2. If |R| is odd, then there must be a nonfull vertex w in C since
full vertices are of odd degree. Then a minimum cost perfect matching on R ∪ {w}
has cost at most half the cost of C by Claim 3.2. So, there is a matching covering
all full vertices in the graph by combining these matchings in each 2-edge-connected
component, and its cost is at most half the cost of Hopt. Therefore, a minimum cost
matching covering all full vertices in the graph must have cost at most half the cost
of Hopt.

Given the input Steiner network, we first remove all the cut edges and call the
resulting graph H . Then we apply Claim 3.1 to remove redundant edges and perform
simplicity-preserving edge splitting-off whenever they are applicable. Let M be a min-
cost matching covering all full vertices. We will add edges in M to remove the difficult
case discussed above. Note that every 2-edge-connected component must contain an
even number of odd degree (r-even) vertices. Hence, by adding M to H , we get the
parity property that each 2-edge-connected component in H with only full vertices has
an even number of r-odd (even degree) vertices. This will allow us to add a matching
within each 2-edge-connected component in H to make all full vertices be r-even.
However, adding M to H may create parallel edges and cut edges. If adding an edge
uv ∈ M creates a pair of parallel edges, we can just remove uv from M without
affecting the parity property. If an edge uv ∈ M becomes a new cut edge, then we
add another two copies of uv to the graph to ensure that splitting-off operations can
always be applied and also that the parity property is still satisfied. Then, applying
splitting-off operations to restore simplicity by setting r(u, v) = 2 (add the two extra
copies of uv one by one and perform splitting-off after each addition), we preserve the
simplicity condition and the parity property.

By the above discussions (in the paragraphs after the statement of Theorem 3.4)
and the parity property, we can add a matching within each 2-edge-connected compo-
nent in H to make all full vertices be r-even. Then we can apply simplicity-preserving
splitting-off to reduce the maximum degree to at most rmax + 1, where the degree of
every full vertex is exactly rmax since they are all r-even. Now, consider any nonfull
x ∈ V with d(x) = rmax + 1. If N(x) forms a clique, then for any v ∈ N(x), v and x
share rmax common neighbors. So, after removing xv from the graph, there are still
rmax edge-disjoint paths between v and x via their common neighbors, and thus all
connectivity requirements are still satisfied. For the other case when N(x) is not a
clique, Theorem 3.4 can be applied at x to reduce d(x) to at most rmax. By perform-
ing the above procedure at each x with d(x) = rmax + 1, the maximum degree of the
graph is reduced to rmax. Finally, we put back the removed cut edges10 and apply the
same procedure as in the third paragraph of section 3.5. This gives a simple Steiner
network with vertex degree at most rmax that satisfies all r(u, v).

To finish the proof we show that the above algorithm returns a 5.5-approximate
solution. First, the cost of matching M covering all full vertices is at most opt/2 by
Claim 3.5. Hence the cost of three copies of M is at most 1.5opt. Next, by adding
a matching within each 2-edge-connected component in H to make all full vertices
r-even, the total cost of such matchings can be bounded by half the total cost of the
2-edge-connected components of H by Claim 3.2. Finally, by applying the procedure
in section 3.5, the cost of the solution will increase by at most the total cost of the
cut edges in H (since we double the edges and then short-cut). Therefore the total
cost of the last two steps is at most the cost of H . Since the cost of H is at most

10For any removed cut edge xy, if vertices x and y are connected after previous steps, then the
edge xy is not necessary for satisfying any connectivity requirement, so we discard it directly.
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2opt, the total cost of the last two steps is at most 2opt, and thus the overall cost
of this algorithm is at most 5.5opt.

3.7. Extended simplicity-preserving edge splitting-off. When the edge-
connectivity requirement of x ∈ V is not full, i.e., r(x) < rmax, we show how to
perform edge splitting-off at x as long as d(x) ≥ rmax +1 (Theorem 3.4). It was used
in section 3.6 as a key tool for reducing vertex degree when rmax is odd. The proof of
this edge splitting-off result follows directly from the following lemma and Lemma 2.7,
which says that no 3-dangerous-set structure exists.

Lemma 3.6 (cf. Lemma 2.6). Suppose N(x) is not a clique, r(x) ≤ rmax− 1, and
|N(x)| ≥ rmax + 1. If there is no legal pair on x, then there exists a 3-dangerous-set
structure as defined in Lemma 2.6.

This lemma is analogous to Lemma 2.6, and we can prove it in a similar manner.
First we need the following claim, which plays a role similar to that of Claim 2.5 in
the proof of Lemma 2.6.

Claim 3.7 (cf. Claim 2.5). Suppose r(x) ≤ rmax−1 and |N(x)| ≥ rmax+1. Then,
for any dangerous set D, there exists a vertex w ∈ N(x) −D with d(w,D) ≤ 1.

Proof. First we argue that D cannot contain all x-neighbors. Otherwise d(D) =
d(x) + d(V −D − x) = d(x) + d(D + x) ≥ rmax + 2, as we can assume the graph is
connected and thus d(D + x) ≥ 1, contradicting that D is dangerous. Hence there
exists a vertex w ∈ N(x) − D for any dangerous set D. Suppose to the contrary
that d(v,D) ≥ 2 for each v ∈ N(x) − D. Then d(D) ≥ d(x,D) + 2 · |N(x) − D| >
|N(x)| ≥ rmax + 1, contradicting that D is dangerous. Therefore there must exist a
vertex w ∈ N(x)−D with d(w,D) ≤ 1.

Now we prove Lemma 3.6 as in Lemma 2.6. Since N(x) is not a clique, there
exist nonadjacent vertices u′, v′ ∈ N(x). As there is no legal pair on x, the pair
(xu′, xv′) must be nonadmissible. By Proposition 2.4, there exists a dangerous set
containing both u′ and v′. Let X be a maximal dangerous set containing u′ and v′

such that X ∩N(x) is not a proper subset of D ∩N(x) for any dangerous set D. By
Claim 3.7, there exists a vertex w′ ∈ N(x) −X with u′w′ /∈ E or v′w′ /∈ E. Assume
that u′w′ /∈ E, and hence (xu′, xw′) must be nonadmissible. Let Y be a maximal
dangerous set containing u′ and w′ such that Y ∩ N(x) is not a proper subset of
D ∩N(x) for any dangerous set D.

Suppose we could prove that there exist an x-neighbor v ∈ X − Y and an x-
neighbor w ∈ Y − X with vw /∈ E. Then the pair (xv, xw) must be nonadmissible
since there is no legal pair. Let Z be a maximal dangerous set containing v and w
such that Z ∩N(x) is not a proper subset of D ∩N(x) for any dangerous set D. By
exactly the same argument in the last paragraph in the proof of Lemma 2.6, we can
show that u′ /∈ Z, and this would give us a 3-dangerous-set structure.

Note that there must exist an x-neighbor in X − Y and an x-neighbor in Y −X
by the maximality of X and Y . To prove that there exist an x-neighbor v ∈ X − Y
and an x-neighbor w ∈ Y − X with vw /∈ E, we consider two cases depending on
whether inequality (2.3a) or inequality (2.3b) holds for (X,Y ). First suppose that
inequality (2.3a) holds for (X,Y ). Then d(X,Y ) = 0; otherwise 1+1 ≥ s(X)+s(Y ) ≥
s(X∪Y )+s(X∩Y )+2d(X,Y ) ≥ s(X∪Y )+0+2, implying that X∪Y is a dangerous
set, which contradicts the maximality of X and Y . Therefore we have vw /∈ E for
any x-neighbor v ∈ X − Y and any x-neighbor w ∈ Y −X , as desired.

Next consider the case when only inequality (2.3b) holds. In this case we will
prove in Claim 3.8 that N(x)−u′ ⊆ (X ∪Y )− (X ∩Y ). Now suppose to the contrary
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that vw ∈ E for every x-neighbor v ∈ X −Y and every x-neighbor w ∈ Y −X . Then

d(X) ≥ ∣∣N(x) ∩X
∣∣+ ∣∣N(x)−X

∣∣ · ∣∣N(x) ∩X − u′∣∣+ d(X ∩ Y, Y −X)

≥ ∣∣N(x) ∩X
∣∣+ ∣∣N(x)−X

∣∣+ d(X ∩ Y, Y −X)

= d(x) + d(X ∩ Y, Y −X)

≥ d(x) + 1

≥ rmax + 2,

where the first inequality follows because every x-neighbor in N(x) −X has an edge
to every x-neighbor in N(x)∩X−u′, the second inequality follows because there is at
least one x-neighbor in N(x)∩X−u′, and the third inequality follows from Claim 2.8
by substituting S1 = X ∩ Y and S2 = Y −X . But this contradicts the assumption
that X is dangerous, and hence there must exist an x-neighbor v ∈ X − Y and an
x-neighbor w ∈ Y −X with vw /∈ E, as desired. To complete the proof it remains to
prove the following claim.

Claim 3.8. For any maximal dangerous sets X, Y where inequality (2.3b) holds,
if u′ ∈ X ∩ Y for some u′ ∈ N(x), then N(x) − u′ ⊆ (X ∪ Y )− (X ∩ Y ).

Proof. First we claim that there does not exist dangerous set W containing u′

and any z ∈ N(x) − (X ∪ Y ). Suppose to the contrary that such a set W exists. By
applying inequality (2.3b), we must have d̄(X,Y ) = d(x, u′) = 1 and s(X − Y ) =
s(Y − X) = 0. Therefore, inequality (2.3a) cannot hold for W and X − Y ; for
otherwise, s(W ∪ (X − Y )) ≤ 1, which implies that W ∪ (X − Y ) is dangerous and
contradicts the maximality of X . Applying inequality (2.3b) on W and X − Y , we
have d̄(W,X − Y ) = 0 and s(W − (X − Y )) ≤ 1. Hence, we can replace W by
another dangerous set W ′ = W − (X− Y ) since u′ ∈ W − (X − Y ). Similarly, we can
replace W ′ by W ′′ = W ′ − (Y −X) so that W ′′ − (X ∩ Y ) is disjoint from X ∪ Y .
Now, by Claim 2.8, a dangerous set must be connected, and so there must be an edge
from W ′′ ∩ (X ∩ Y ) to W ′′ − (X ∩ Y ). However, this implies that d̄(X,Y ) ≥ 2 since
W ′′ − (X ∩ Y ) is disjoint from X ∪ Y and x /∈ W ′′ − (X ∩ Y ), but this contradicts
the assumption that inequality (2.3b) holds for (X,Y ). Therefore no such dangerous
set W exists.

So, by the above claim, an x-neighbor z �= u′ with (xu′, xz) nonadmissible must
be in X ∪ Y . Also, an x-neighbor z �= u′ with (xu′, xz) admissible must be in X ∪ Y ;
otherwise u′z ∈ E (since there is no legal pair), and this implies that d̄(X,Y ) ≥ 2,
contradicting the assumption that inequality (2.3b) holds for (X,Y ). Hence any x-
neighbor z �= u′ must be in X ∪Y . Finally any x-neighbor z �= u′ cannot be in X ∩Y ;
otherwise d̄(X,Y ) ≥ 2, contradicting the assumption that inequality (2.3b) holds for
(X,Y ). Therefore we have N(x)− u′ ⊆ (X ∪ Y )− (X ∩ Y ).

3.8. Spanning trees. We present an approximation algorithm for the minimum
bounded degree spanning tree problem with metric costs. Given a spanning tree T ,
denote by degT (v) the degree of a vertex v in the tree and B(v) the degree bound
for v. Using a minimum cost flow technique, Fekete et al. [12] showed that T can be
transformed into a tree satisfying all degree bounds whose cost is at most the cost of
the original tree times:

2−min

{
B(v)− 2

degT (v) − 2
: v ∈ V, degT (v) > 2

}
.

From the expression it can be seen that if degT (v) is closer to the degree bound B(v),
then the performance guarantee is better. Therefore one natural approach is to find
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a minimum spanning tree with the smallest maximum degree. On the Euclidean
plane, there is a minimum spanning tree of maximum degree 5 [37], and Khuller,
Raghavachari, and Young [24] showed how to convert such a spanning tree to a span-
ning tree with maximum degrees 3 and 4 with cost no more than 1.5 and 1.25 times
the minimum spanning tree, respectively. Further improvements are made in [7, 23],
and there is a quasi-polynomial time approximation scheme in [1]. For higher di-
mensional Euclidean space, Khuller, Raghavachari, and Young [24] showed that the
problem of finding a spanning tree with maximum degree 3 is approximable within a
factor of 5/3.

For general metric space, it is not necessarily true that there is a minimum span-
ning tree with a small maximum degree. However, on general weighted graphs, Singh
and Lau [39] gave an algorithm to find a spanning tree with maximum degree B + 1,
whose cost is no more than the optimal cost of a spanning tree of maximum degree B.
Therefore, we could first use the algorithm by Singh and Lau to obtain a spanning
tree with degree violation at most 1 and then apply the minimum cost flow technique
of Fekete et al. to construct a spanning tree satisfying all the degree bounds. This
implies Theorem 1.7, which improves upon the 2-approximation algorithm for general
metric space.

4. Vertex-connectivity. In this section we consider the minimum bounded de-
gree k-vertex-subgraph problem. The algorithm is similar to that of the minimum
bounded degree k-edge-connected subgraph problem, with some technical subtleties.
Given any k-vertex-connected subgraph, the plan is to use the edge splitting-off op-
eration to reduce the degree of all vertices to at most k + 1 while maintaining k-
vertex-connectivity. Splitting-off operations maintaining vertex-connectivity was first
studied by Bienstock, Brickell, and Monma in [6], where they prove the following
theorem, which implies Theorem 1.5(1).

Theorem 4.1 (Bienstock, Brickell, and Monma [6]). Let G = (V,E) be a mini-
mally k-vertex-connected graph with |V | ≥ 2k. If x ∈ V has degree at least k+2, then
one of the following holds:

(1) there is an edge splitting-off on x that maintains k-vertex-connectivity;
(2) there is a vertex y such that for any edge splitting-off on x, there is an edge

splitting-off on y such that both operations performed simultaneously maintain
k-vertex-connectivity.

To prove the second part of Theorem 1.5, we use a strategy similar to that in the
edge-connectivity setting. We add a minimum cost perfect matching on the k-odd
vertices. Then we apply edge splitting-off again to decrease the maximum degree
to k. However, after the matching is added, the graph is no longer minimally k-
vertex-connected, and so Theorem 4.1 cannot be applied directly. Cheriyan, Jordán,
and Nutov [8] proved a theorem similar to Theorem 4.1 and removed the minimality
assumption, but the degree is replaced by k+3, which is not sufficient for our purposes.
We strengthen Theorem 4.1 by removing the assumption that the graph is minimally
k-vertex-connected. The proof is very similar to the proof of Theorem 4.1, which we
will present in section 4.2.2.

Theorem 4.2. Let G = (V,E) be a simple k-vertex-connected graph with |V | ≥
2k. If x ∈ V has degree at least k + 2, then one of the following holds:

(1) there is an edge splitting-off on x that maintains k-vertex-connectivity;
(2) there is a vertex y such that for any edge splitting-off on x, there is an edge

splitting-off on y such that both operations performed simultaneously maintain
k-vertex-connectivity.
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When adding the matching and performing splitting-off, parallel edges may be
created. Previously, when we used splitting-off to reduce the degrees to below k + 1,
we could throw redundant copies away freely. However, we need to keep these parallel
edges now to keep track of the cost reserved for correcting the vertex degrees. To
handle these parallel edges, we use the following analogue of the simplicity-restoring
edge splitting-off in section 3.3. We will prove it in section 4.3.

Lemma 4.3. Let G = (V,E) be a simple k-vertex-connected graph. Suppose
u, u1 ∈ V are adjacent, d(u) ≥ k + 1, and uu1 is critical. Then there is a u-neighbor
ui �= u1 such that removing uui and adding u1ui preserve k-vertex-connectivity.

For a k-vertex-connected multigraph G, suppose its underlying simple graph is G′

and a vertex u has degree (counting multiplicity) at least k+2 in G. Then one of the
following is true:

1. |N(u)| = k and one of its incident edges uv has multiplicity at least three;
2. |N(u)| = k and u is incident to two pairs of parallel edges uv and uw;
3. |N(u)| = k + 1 and at least one of its incident edges uv has multiplicity at

least 2;
4. |N(u)| ≥ k + 2.

In case 1, removing two copies of uv from G does not change G′. In case 2, removing
one copy of each of uv, uw and adding one copy of vw to G is equivalent to (in terms
of connectivity of G′) adding vw to G′. In case 3, either uv is redundant in G′, so that
we can remove two of its copies from G, or by Lemma 4.3, there is a u-neighbor w such
that removing uw and adding vw to G′ maintain k-vertex-connectivity of G′. This
can be viewed as splitting off a copy of uw and a copy of uv in G (possibly with the
deletion of a self loop). In case 4, by Theorem 1.5, there are splitting-off operations
that preserve k-vertex-connectivity of G′. We can split off the corresponding edges
in G. If uv is an edge to be removed in some splitting-off and uv has more than
one copy, then uv is not deleted from G′, and the connectivity can only be higher.
Therefore, there are splitting-off operations in G that preserve k-vertex-connectivity
of G′ and hence of G in all cases. Now we prove Theorems 1.5(2) and 1.6.

4.1. Proofs of Theorems 1.5(2) and 1.6. By Theorem 1.5(1), without loss
of generality, we may assume that all vertices in H have degree either k or k + 1.
We add a minimum cost perfect matching to the k-odd vertices. The argument in
section 3.2 implies the cost of the matching is at most 1/k times the cost of an optimal
k-edge-connected subgraph, which is at most the cost of an optimal k-vertex-connected
subgraph. Clearly, the following invariants hold:

1. The graph is k-vertex-connected.
2. Each vertex has degree (from now on degree in this proof counts parallel edges

with multiplicity) either k or k + 2.
3. For each vertex v with degree k + 2, either |N(v)| = k + 2 and v is incident

to no parallel edges, or |N(v)| = k + 1 and v is incident to exactly one pair
of parallel edges.

We will show that we can reduce the number of degree-(k + 2) vertices while main-
taining these invariants and without increasing the cost. This proves Theorem 1.5(2).

By the remark following Lemma 4.3, as long as there is a vertex x with degree
k+2, we can perform a splitting-off at x (possibly with another splitting-off at another
vertex y) while preserving k-vertex-connectivity. In all cases, the degree of every
vertex either remains the same or decreases by two and there is at least one degree-
decreased vertex. In case there is a vertex u incident to two pairs of parallel edges uv
and uw after these operations, we can split off a copy of uv and a copy of uw (this
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has the net effect of adding vw to the underlying simple graph). Clearly all these
operations never increase the cost.

Now Theorem 1.6 follows by using the algorithm of Kortsarz and Nutov [27]
to find a k-vertex-connected subgraph as the initial graph, which has cost at most
2 + k−1

n times the minimum cost of any k-vertex-connected subgraph of G.

4.2. Edge splitting-off preserving vertex-connectivity.

4.2.1. Preliminaries. In this section, we will prove Theorem 4.2. First, we
introduce some concepts that parallel those for edge-connectivity. Recall that a graph
G = (V,E) is k-vertex-connected if |V | > k and |N(X)| ≥ k for all nonempty X ⊂ V
with |X | ≤ |V | − k. A set X ⊆ V is tight if |N(X)| = k exactly. An edge e ∈ E is
critical if G is k-vertex-connected but G − e is not. An edge is redundant if it is not
critical.

Throughout section 4.2, we assume that G = (V,E) is a simple k-vertex-graph
and x is a fixed vertex with |N(x)| ≥ k+2, and we use xi to denote the ith x-neighbor.

The following two propositions are needed in our proof. Suppose W1,W2 ⊆ V
are tight and each of W1 \W2, W2 \W1, and W1 ∩W2 is nonempty. For i ∈ {1, 2},
let Si = N(Wi), Ui = V \ (Wi ∪ Si). (By definition, Wi, Si, Ui is a partition of V and
Wi that is not adjacent to Ui.) It is useful to consider Figure 4.1 when reading the
following.

�������������������������

�������������������������

�������������������������

��������������������������
��

��
��

��
��

��
��

��
��

��
��

��

��
��

��
��

��
��

��
��

��
��

��
��

�

��
��

��
��

��
��

��
��

��
��

��
��

�

��
��

��
��

��
��

��
��

��
��

��
��

�

W1

S1

U1 U2

S2

W2

Fig. 4.1. V is partitioned into nine parts. Each part is the intersection of one of W1, S1, U1

and one of W2, S2, U2.

Proposition 4.4 (see, e.g., [21]). If |W1 ∪ W2| ≤ |V | − k, then W1 ∩ W2

and W1 ∪ W2 are tight, N(W1 ∩ W2) = (S1 ∩ W2) ∪ (S1 ∩ S2) ∪ (S2 ∩ W1), and
N(W1 ∪W2) = (S1 ∩ U2) ∪ (S1 ∩ S2) ∪ (S2 ∩ U1).

Proposition 4.5 (see, e.g., [26]). If |W1 ∪W2| ≤ |V |− k, W1 ∩U2 and W2 ∩U1

are nonempty, then they are tight, N(W1 ∩ U2) = (S1 ∩ U2) ∪ (S1 ∩ S2) ∪ (S2 ∩W1),
N(W2∩U1) = (S2∩U1)∪(S2∩S1)∪(S1∩W2), and |S1∩U2| = |S2∩U1| = |W1∩S2| =
|W2 ∩ S1|.

Consider two distinct x-neighbors xi and xj . A tight set W ⊆ V is said to be
an (xxi, xxj)-critical set if xi ∈ W , xj ∈ W ∪ N(W ), x ∈ N(W ), and N(x) ∩W ⊆
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{xi, xj}.
Claim 4.6. If there exists an (xxi, xxj)-critical set, then there exists a unique

maximal (xxi, xxj)-critical set.

Proof. Suppose there are two distinct maximal (xxi, xxj)-critical sets W1 and
W2. By definition, |N(x) \ (W1 ∪ W2)| ≥ |N(x) \ {xi, xj}|, which is at least k by
assumption, so by Proposition 4.4, W1 ∪W2 is tight. It is easy to check W1 ∪W2 is
an (xxi, xxj)-critical set. This contradicts the maximality of W1 and W2.

For any two distinct x-neighbors xi and xj , if some (xxi, xxj)-critical set exists,
let Wij be the maximal one; otherwise let Wij = ∅. In caseWij �= ∅, let Sij = N(Wij),
Uij = V \ (Wij ∪ Sij). Two edges xxi and xxj form an admissible pair if the graph
after splitting off xxi and xxj still satisfies |N(X)| ≥ k for all nonempty X ⊂ V
with |X | ≤ |V | − k. The following lemma characterizes when a pair of edges is not
admissible.

Proposition 4.7 (see [6, proof of Theorem 3]). A pair xxi and xxj is not
admissible if and only if at least one of the following is true:

(i) Wij = Wji �= ∅;
(ii) Wij �= ∅ and xj ∈ Sij;
(iii) Wji �= ∅ and xi ∈ Sji.

4.2.2. Proof of Theorem 4.2. We will prove Theorem 4.2 by using the follow-
ing structural theorem.

Theorem 4.8. Suppose G = (V,E) is a simple k-vertex-connected graph with
|V | ≥ 2k and

(*) x is a vertex with d(v) ≥ k + 2 such that every pair of incident
edges is nonadmissible.

Then there is a cutset S of size k such that x ∈ S, S contains at most one x-neighbor,
and each S-component contains exactly one x-neighbor. (A set S ⊆ V is a cutset if
G− S is disconnected and an S-component is a connected component of G− S.)

Suppose the condition in Theorem 4.8 holds. If S does not contain any x-neighbor,
we say that property T holds at x. Otherwise S contains exactly one x-neighbor; then
we say that property T ′ holds at x. Theorem 4.8 extends the structural theorem
in [6], where they show that if G satisfies the assumptions in Theorem 4.8 and G is
minimally k-vertex-connected, i.e., every edge is critical, then property T holds at x.
Our proof is based on theirs. We will first give an outline of their proof and then
highlight the required modifications.

A tight set W ⊆ V is said to be an (xxi)-critical set if x ∈ N(W ) and N(x)∩W =
{xi}. One can check that an edge xxi is critical if and only if xi is contained in an
(xxi)-critical set.

Claim 4.9. If there exists an (xxi)-critical set, then there exists a unique maximal
(xxi)-critical set.

Proof. The proof is the same as that of Claim 4.6.

By the minimality assumption, every x-neighbor xi is contained in such a maximal
(xxi)-critical set, denoted by Wi. Suppose there is no admissible pair. They showed
that these Wi’s are disjoint, and they derived a key lemma saying that nonadjacent
Wi’s share a common neighbor set. Using this key lemma, it can be proved that any
maximal family of pairwise nonadjacent Wi’s has a common neighbor set S; moreover,
these Wi’s and S form a partition of V . Finally, using the assumption |V | ≥ 2k, a
contradiction can be derived if S contains any x-neighbor. Therefore property T holds
at x. We remove the minimality assumption by using the following two observations:
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1. If there are two redundant edges incident to x, then there is always an ad-
missible pair.

2. If there is exactly one redundant edge xxs, then xs is a neighbor of every Wi,
and the arguments in the proof of Bienstock, Brickell, and Monma [6] will
still go through.

Now we prove Theorem 4.8 following the same pattern as in Bienstock, Brickell,
and Monma [6].

For any x-neighbor xi, if some (xxi)-critical set exists, let Wi denote the maximal
one, and let Si = N(Wi), Ui = V \ (Wi ∪ Si). An x-neighbor xs is said to be special
if xxs is redundant. xs is special if and only if no (xxs)-critical set exists. In the
following, assume that xi, xj are two distinct nonspecial x-neighbors. We also assume
that all pairs of edges incident to x are nonadmissible.

Claim 4.10. Wi and Wj are disjoint.

Proof. Suppose Wi ∩Wj �= ∅. Note that x ∈ Si ∩ Sj and |N(x) \ (Wi ∪Wj)| =
|N(x)\{xi, xj}| ≥ k. So, by Proposition 4.4, x ∈ N(Wi∩Wj). However, by definition,
xi �∈ Wj and xj �∈ Wi, and thus there is some other x-neighbor xl in Wi ∩Wj . This
contradicts the definition of an (xxi)-critical set.

Claim 4.11. If Wij �= ∅, then Wi ⊆ Wij .

Proof. Suppose Wi \Wij �= ∅. Since |N(x) \ (Wi ∪Wij)| ≥ |N(x) \ {xi, xj}| ≥ k,
Wi ∪Wij is tight. So Wi ∪Wij is (xxi, xxj)-critical. This contradicts the maximality
of Wij .

Claim 4.12. If Wij �= ∅ and xj ∈ Sij, then Wi = Wij.

Proof. By Claim 4.11, Wi ⊆ Wij . Note that Wij is (xxi)-critical since xi is the
only x-neighbor in Wij . So, by the maximality of Wi, Wi = Wij .

Claim 4.13. If Wij �= Wji, then Wj ∩ Si �= ∅; i.e., Wi and Wj are adjacent.

Proof. Since xxi and xxj are nonadmissible, one of the three cases of Proposi-
tion 4.7 must be true. Since Wij �= Wji, case (i) cannot be true. Suppose case (ii) is
true. By Claim 4.12, Wi = Wij and xj ∈ Wj is in Si. Thus Wj ∩ Si �= ∅. The other
case is symmetric.

Next, we prove the two observations we mentioned after the proof outline, namely
Claims 4.14 and 4.16. They are needed for removing the minimality assumption.
Note that a pair of redundant edges is not necessarily admissible. For example,
consider a 3-vertex-connected graph G = (V,E) where V = {v1, v2, . . . , v7} and the
sets {v1, v2, . . . , v5} and {v3, v4, . . . , v7} form two 5-cliques. Both v3v1 and v3v2 are
redundant but they are not admissible.

Claim 4.14. There can be at most one special x-neighbor.

Proof. Suppose there are three special x-neighbors xs1 , xs2 , and xs3 . Consider
any two of them, say xs1 and xs2 . Since xxs1 and xxs2 are nonadmissible, one of
the three cases in Proposition 4.7 is true. However, cases (ii) and (iii) are impossible;
otherwise, say, if Ws1s2 �= ∅ and xs2 ∈ Ss1s2 , then Ws1s2 is an (xxs1 )-critical set.
This contradicts that xs1 is special. Therefore, Ws1s2 = Ws2s1 and Ws2s3 = Ws3s2 .
Yet, by Proposition 4.4, the intersection of Ws1s2 and Ws2s3 is tight, and this is an
(xxs2 )-critical set.

Therefore, we may assume that there are exactly two special x-neighbors xs1

and xs2 . Using the previous argument, we know that Ws1s2 = Ws2s1 and contains
xs1 , xs2 . Moreover, Ws1i = ∅ for any other x-neighbor xi; otherwise Ws1s2 ∩Ws1i is
an (xxs1 )-critical set. So, by Proposition 4.7 and Claim 4.12, xs1 is a neighbor of Wi

for each i �= s1, s2.

Since xs1 ∈ Si for each i �= s1, s2, there is at least one path pi from xs1 to xi



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

974 Y. H. CHAN, W. S. FUNG, L. C. LAU, AND C. K. YUNG

which consists entirely of vertices in Wi except for the end-vertex xs1 . As |N(x) \
{xs1 , xs2}| ≥ k, there are at least k such paths, each connecting xs1 and one distinct xi.
Since Wi’s are pairwise disjoint, these paths are vertex disjoint except at xs1 . Notice
that each pi contains a vertex in Ss1s2 −x as xi �∈ Ws1s2 . However, |Ss1s2 −x| = k−1,
so there cannot exist k such paths.

This shows that if there are more than two redundant edges incident to x, there
is always an admissible pair.

Claim 4.15. If xi, xj , xl are x-neighbors such that Wij �= ∅ and Wil �= ∅, then
Wi = Wij ∩Wil and Si = (Sij ∩ Sil) ∪ (Sil ∩Wij) ∪ (Sij ∩Wil).

Proof. Since |(N(x) ∪ {x}) \ (Wij ∪ Wil)| ≥ |(N(x) ∪ {x}) \ {xi, xj , xl}| ≥ k,
by Proposition 4.4, Wij ∩ Wil is tight. So Wij ∩ Wil is an (xxi)-critical set. By
Claim 4.11, Wi ⊆ Wij ,Wil. Therefore, by the maximality of Wi, Wi = Wij ∩Wil, and
by Proposition 4.4, Si = N(Wij ∩Wil) = (Sij ∩ Sil) ∪ (Sil ∩Wij) ∪ (Sij ∩Wil).

In the following, if a special x-neighbor exists, we refer to it as xs.
Claim 4.16. If a special x-neighbor xs exists, then xs ∈ Si for all nonspecial

x-neighbors xi.
Proof. Since xxs and xxi are nonadmissible, one of the three cases in Proposi-

tion 4.7 must be true.
Let xs be the xj in Proposition 4.7. Case (iii) is impossible; otherwise Wsi is an

(xxs)-critical set. So we consider cases (i) and (ii). If case (ii) is true, since Wis = Wi,
xs is in Si. For case (i), suppose that the maximal (xxi, xxs)-critical set Wis contains
xs and xi but xs �∈ Si. Since |Si − x| = k − 1, d(x) ≥ k + 2, and Wi’s are pairwise
disjoint, there exists xl such that Wl ∩ Si = ∅, which implies Wil = Wli �= ∅ by
Claim 4.13.

By the choice of xl, xl ∈ Ui, so by Claim 4.15, xl ∈ Wil ∩ Uis. Similarly, as
xs ∈ Ui, xs ∈ Wis ∩ Uil. Therefore Wil ∩ Uis and Wis ∩ Uil are nonempty, so we can
apply Proposition 4.5, and Wis ∩ Uil is a tight set. However, this contradicts that
xs is special. Thus xs must be in Si.

The following lemma shows that a nonadjacent pair of Wi and Wj shares a com-
mon neighbor set. Claim 4.18 characterizes when Wi and Wj are nonadjacent.

Lemma 4.17. If Wi ∩ Sj = ∅, then Si = Sj = Sij.
Proof. Suppose Wj ∩ Si = ∅. Then, by Claim 4.13, Wij = Wji �= ∅. Using the

same argument as in the proof of Claim 4.16, we know that there is a nonspecial
x-neighbor xl �= xi, xj such that Wl ∩ Si = ∅. By the choice of xl, Wil = Wli �= ∅.

Note that Wj ⊆ Wij by Claim 4.11. But Wj ∩ Si = ∅, so Wj ⊆ Wij ∩ Uil by
Claim 4.15. Similarly, Wl ∩ Si = ∅, so Wl ⊆ Wil ∩ Uij .

Therefore Wij ∩ Uil, Wil ∩ Uij and Wij ∩ Wil are nonempty, and by applying
Proposition 4.5, we know that Wij ∩ Uil, Wil ∩ Uij are tight:

N(Wij ∩ Uil) = (Sij ∩ Uil) ∪ (Sij ∩ Sil) ∪ (Sil ∩Wij),(4.1)

N(Wil ∩ Uij) = (Sil ∩ Uij) ∪ (Sij ∩ Sil) ∪ (Sij ∩Wil),(4.2)

|Sij ∩ Uil| = |Sil ∩ Uij | = |Sil ∩Wij | = |Sij ∩Wil|.(4.3)

It can be verified that Wij ∩ Uil is an (xxj)-critical set. So, by maximality, Wj =
Wij ∩Uil. Similarly, Wl = Wil∩Uij . Therefore Sj ∩Sl = Si∩Sj ∩Sl = Sij ∩Sil. Now
we have Wa ∩ Sb = ∅ for a, b ∈ {i, j, l}. So, by symmetry, we have Si ∩ Sj = Sij ∩ Sil

and Si ∩ Sl = Sij ∩ Sil, but this implies Sil ∩Wij = ∅. Since (4.3) holds, Sij ∩ Uil =
Sil ∩ Uij = Sil ∩ Wij = Sij ∩ Wil = ∅ and |Sij ∩ Sil| = k. Therefore Si = Sj =
Sij .

Claim 4.18. xj ∈ Si if and only if Wi and Wj are adjacent.
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Proof. The “only if” direction is obvious. So we prove only the “if” direction.

Assume to the contrary that Wi and Wj are adjacent but xj is not in Si. Let
A = { xa ∈ N(x) \ {xi, xs} | Wa ∩ Si = ∅ } be the set of x-neighbors xa such that
Wi and Wa are nonadjacent. By Lemma 4.17, Wi and Wa share the same neighbor
set Si for all xa ∈ A. Let B = N(x) \ (A ∪ {xi, xj , xs}). By definition, Wi and Wb

are adjacent for all xb ∈ B.

Since {xs} (if it exists), Wj , and all Wb’s with xb ∈ B are disjoint, we have
|Si − x| ≥ (

∑
b:xb∈B |Wb ∩ Si|) + |Wj ∩ Si| + σ, where σ = 1 if xs exists and σ = 0

otherwise (by Claim 4.16, xs is in Si if xs exists). To get a contradiction, notice that
|Si − x| = k − 1, |A|+ |B|+ σ + 2 = |N(x)| ≥ k + 2, and |Wb ∩ Si| is at least one, so
we need only prove |Wj ∩ Si| ≥ |A|.

SinceG is k-vertex-connected, there are k internally disjoint paths each connecting
xj and a distinct vertex y in Sj , which consists entirely of vertices in Wj . Such a path
contributes one vertex to Wj ∩ Si if the endpoint y is in Wi or Wa for some xa ∈ A.
Recall that Wi ∩ Sj and Wa ∩ Sj for xa ∈ A are nonempty. So each of Wi and
the Wa’s contains a vertex in Sj . Thus we have |Wj ∩ Si| ≥ |A| + 1, reaching a
contradiction.

Finally, Claim 4.19 shows that any maximal family of pairwise nonadjacent Wi’s
together with their common neighbor set S forms a partition of V , and Claim 4.20
shows that S cannot contain any x-neighbor other than xs. This completes the proof
of Theorem 4.8.

Claim 4.19. Suppose xi is a nonspecial x-neighbor and A = N(x) \ Si. Then(⋃
a:xa∈AWa

) ∪ Si is a partition of V .

Proof. By Claim 4.18 and Lemma 4.17, Si = Sa for xa ∈ A. Clearly Si and
Wa’s where xa ∈ A are pairwise disjoint. Suppose Y = V \ (⋃

a:xa∈A Wa

) ∪ Si is
nonempty. Since G is connected, Y is adjacent to Si or Wa for some xa ∈ A. But
since Si contains all neighbors of every Wa where xa ∈ A, Y can be adjacent only
to Si. However, by the definition of A, every x-neighbor is either in Si or some Wa

where xa ∈ A, but it is not in Y . This means Si − x is a cutset of size k − 1 in G,
contradicting that G is k-vertex-connected.

Claim 4.20. Suppose |V | ≥ 2k. Let xi be a nonspecial x-neighbor. Then either
Si ∩N(x) = ∅ and xs does not exist, or Si ∩N(x) = {xs}.

Proof. Suppose Si contains some xj ∈ N(x) other than xs. Let A = N(x)\Si. By
Claim 4.19, V =

(⋃
a:xa∈A Wa

) ∪ Si. Since Wi’s are pairwise disjoint,
⋃

b:xb �∈A Wb ⊆
Si.

Now consider xj , the nonspecial x-neighbor in Si. Notice that Wj ⊆ Si; i.e., Wj is
adjacent to every Wa where xa ∈ A. So, by Claim 4.18, xa ∈ Sj for every xa ∈ A.
However, by applying Claim 4.19 again, we have V =

(⋃
b:xb �∈A Wb

)∪Sj , which means⋃
a:xa∈A Wa ⊆ Sj . This implies |V | ≤ |Si|+ |Sj | − |{x}| = 2k − 1, contradicting that

|V | ≥ 2k.

This completes the proof of the structural theorem. It remains to show that
when property T or property T ′ holds, we can split off at x and at another vertex
simultaneously while preserving k-vertex-connectivity. We will omit the proof for the
former case, as it has been proved in [6]. We prove the case when property T ′ holds
below.

Theorem 4.21. If property T ′ holds at x, then there exist a pair of x-neighbors
xi, xj (possibly xj = xs) and a pair of xs-neighbors vj, vl such that splitting off
xsvj and xsvl after splitting off xxi, xxj preserves k-vertex-connectivity.

Let G′ be the resulting graph.
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x s

u v w

x s

u wv

Fig. 4.2. G with property T ′ at x for k = 2 and G after splitting off (xu, xs) and (su, sw).

x s

u v w

x s

u wv

Fig. 4.3. G with property T ′ at x for k = 2 and G after splitting off (xu, xw) and (su, sv).

Claim 4.22. G′ is k-vertex-connected if there are k internally disjoint paths
connecting each of the pairs of vertices (x, xi), (x, xj), (xs, vj), and (xs, vl) in G′.

Proof. Suppose that G′ is not k-vertex-connected. Then there exists a pair of
vertices y1 and y2 which can be disconnected by removing a cutset S of less than
k vertices. But since G is k-vertex-connected, there is at least one y1-y2 path p in G
that is not hit by any vertex in S. So S can disconnect y1 and y2 in G′ only if at least
one of xxi, xxj , xsvj , and xsvl is on p and its endpoints are not k-vertex-connected
in G′, since otherwise, for each of these edges, if it is on p, we can replace it by one
of the k internally disjoint paths between its endpoints to get a y1-y2 path in G′ that
is not disconnected by S.

Proof of Theorem 4.21. Suppose property T ′ holds at some vertex. For the case
k = 2, if all S-components are singleton sets, then there is a subgraph as shown in
the left-hand-side of Figure 4.2.

Here property T ′ holds at x, S = {x, s}, and xs is the unique redundant edge
incident to x. The resulting graph of splitting off the pair (xu, xs) and the pair (su, sw)
is shown in Figure 4.2. The resulting graph of splitting off the pair (xu, xw) and the
pair (su, sv) is shown in Figure 4.3. Clearly, both of them are 2-vertex-connected.

In case an S-component is a not singleton set, we can replace the corresponding
singleton by some path in the S-component.

For the case k = 3, again, if all S-components are singleton sets, then there is a
subgraph as shown in the left-hand-side of Figure 4.4.

Here property T ′ holds at x, S = {x, s, r}, and xs is the unique redundant edge
incident to x. The resulting graph of splitting off the pair (xu, xs) and the pair (su, sy)
is shown in Figure 4.4. For each of the following pairs of vertices, we can list three
internally disjoint paths between them:

x and u: (x,w, s, u), (x, y, u), and (x, v, r, u)
x and s: (x, y, u, s), (x,w, s), and (x, v, s)
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Fig. 4.4. G with property T ′ at x for k = 3 and G after splitting off (xu, xs) and (su, sy).
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Fig. 4.5. G with property T ′ at x for k = 3 and G after splitting off (xu, xv) and (su, sy).

s and u: (s, u), (s, w, x, y, u), and (s, v, r, u)

s and y: (s, u, y), (s, w, r, y), and (s, v, x, y)

The resulting graph of splitting off the pair (xu, xv) and the pair (su, sy) is shown
in Figure 4.5. We list three internally disjoint paths between each of the following
pairs of vertices:

x and u: (x, y, u), (x, s, v, u), and (x,w, r, u)

x and v: (x, s, v), (x, y, u, v), and (x,w, r, v)

s and u: (s, v, u), (s, x, y, u), and (s, w, r, u)

s and y: (s, x, y), (s, v, u, y), and (s, w, r, y)

As in the case for k = 2, if an S-component is not a singleton, we can replace the
corresponding singleton by a path in the S-component.

We can extend this to the case k > 3. If the splitting-off involves the redundant
edge, we can make k − 2 copies of the path that involves v and r in Figure 4.4: in
each copy, v and r are replaced by, respectively, a path in a distinct S-component and
a distinct vertex in S. If the splitting-off does not involve the redundant edge, we
can make k− 2 copies of the path that passes through w and r in Figure 4.5: in each
copy, w and r are replaced by, respectively, a path in a distinct S-component and a
distinct vertex in S.

Hence we can conclude that when property T ′ holds at x, after splitting off any
pair of edges incident to x, there always exists a pair of edges incident to the special x-
neighbor such that splitting off this pair of edges would restore k-vertex-connectivity.
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4.3. Proof of Lemma 4.3. In this section, we prove Lemma 4.3. For the sake
of contradiction, assume Lemma 4.3 is not true. This means every uui is critical, so
every u-neighbor ui is contained in a maximal (uui)-critical set, denoted as Wi. By
Claim 4.10, these Wi’s are pairwise disjoint. Note that we assume only |N(x)| ≥ k+1
instead of |N(x)| ≥ k+ 2, but the proofs of Claims 4.9 and 4.10 will still go through.

For each u-neighbor ui �= u1, let W ′
i be a maximal tight set W such that W ∩

N(u) = {ui}, {u, u1} ⊆ N(W ), and W ∩N(u1) �= ∅. By arguments similar to those
in Claim 4.6, W ′

i is unique if one such set exists. The following claim characterizes
when the operations fail to preserve k-vertex-connectivity.

Claim 4.23. For each ui ∈ N(u) \ {u1}, removing uui and adding u1ui destroy
k-vertex-connectivity if and only if W ′

i exists.
Proof. The “if” direction is obvious. We consider the “only if” direction. Assume

the resulting graph G′ is not k-vertex-connected. Then there is a cutset S of size k−1
in G′ such that G′ −S has two connected components W and U with ui ∈ W , u ∈ U ,
and W ∩N(u) = {ui}. Notice that u1 �∈ W as ui is the only u-neighbor in W but that
u1 and ui are adjacent after the addition of u1ui, so u1 must be in S; otherwise u1 is
a new neighbor of W . Also, since S ∪ {u} is a minimal cutset before the operations,
there exists some u1-neighbor, denoted as vi (possibly vi = ui), in W . W ′

i is the
unique maximal such W .

Claim 4.24. For each ui ∈ N(u) \ {u1}, W ′
i = Wi.

Proof. We claim that Wi ⊆ W ′
i , as otherwise their union violates the maximality

of W ′
i . But W

′
i is a (uui)-critical set, so by the maximality of Wi, W

′
i = Wi.

Recall that all Wi’s are pairwise disjoint, so the u1-neighbors vi contained in each
distinct W ′

i are distinct. By assumption, d(u) ≥ k + 1, so there are at least k such
W ′

i ’s and k such vi’s. However, u is not contained in any Wi, which implies u1 has at
least k + 1 neighbors not in W1. This contradicts that W1 is tight and completes the
proof.

We remark that the following fact similar to Lemma 4.3 is known. If G is a simple
k-vertex-connected graph, u is a vertex of degree at least k + 1, and uv is an edge
incident to u, then u has a neighbor w such that G− uv + vw is k-vertex-connected.
This is not sufficient for our purposes since uw may not correspond to a pair of parallel
edges, so we cannot charge the cost of the new edge vw to uv and a copy of uw.
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