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LAP CHI LAU† AND HONG ZHOU‡

Abstract. We present a local search framework to design and analyze both combinatorial
algorithms and rounding algorithms for experimental design problems. This framework provides
a unifying approach to match and improve all known results in D/A/E-design and to obtain new
results in previously unknown settings. For combinatorial algorithms, we provide a new analysis of
the classical Fedorov’s exchange method. We prove that this simple local search algorithm works well
as long as there exists an almost optimal solution with good condition number. Moreover, we design
a new combinatorial local search algorithm for E-design using the regret minimization framework.
For rounding algorithms, we provide a unified randomized exchange algorithm to match and improve
previous results for D/A/E-design. Furthermore, the algorithm works in the more general setting to
approximately satisfy multiple knapsack constraints, which can be used for weighted experimental
design and for incorporating fairness constraints into experimental design.
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1. Introduction. In experimental design problems, we are given a parameter
b ≥ d and vectors v1, . . . , vn ∈ Rd, and the goal is to choose a (multi-)subset S of b
vectors so that

∑
i∈S viv⊤

i optimizes some objective function. The most popular and
well-studied objective functions are as follows:

• D-design: Maximizing
(
det
(∑

i∈S viv⊤
i

)) 1
d .

• A-design: Minimizing tr((
∑

i∈S viv⊤
i )−1).

• E-design: Maximizing λmin

(∑
i∈S viv⊤

i

)
.

Two settings are studied in the literature. One is the “with-repetition” setting
where each vector is allowed to be chosen multiple times, and the other is the “without-
repetition” setting where each vector is allowed to be chosen at most once. There is
a simple reduction from the with-repetition setting to the without-repetition setting.
All the results in this paper apply in the more general without-repetition setting.

These problems of choosing a representative subset of vectors have a wide range
of applications.

• Experimental design is a classical topic in statistics with extensive litera-
ture [19, 5, 34, 23], where the goal is to choose b (noisy) linear measurements
from v1, . . . , vn ∈ Rd so as to maximize the statistical efficiency of estimating
an unknown vector in Rd.

• In machine learning, they are used in active learning [4], feature selection [10],
and data summarization [30, 11].

• In numerical linear algebra, they are used in column subset selection [7],
sparse least square regression [9], and matrix approximation [17, 18].
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• In signal processing, they are used in sensor placement problems [24], and
optimal subsampling in graph signal processing [12, 13, 14].

• In network design, the problem of choosing a subgraph with at most b edges
to minimize the total effective resistance [22, 26] is an A-design problem, and
the problem of choosing a subgraph with at most b edges to maximize the
algebraic connectivity [21, 25, 26] is an E-design problem.

We refer the interested reader to [38, 36, 28, 33, 3] for more discussions of these
applications and further references on related work.

1.1. Our results. We present both combinatorial algorithms and rounding al-
gorithms for experimental design problems. A main contribution in this paper is to
show that these two types of algorithms can be analyzed using the same local search
framework. Using this framework, we match and improve all known results and also
obtain some new results.

1.1.1. Combinatorial algorithms. The Fedorov’s exchange method [19] be-
gins with an arbitrary initial set S0 of b vectors, and in each step t ≥ 1 it aims to
exchange a pair of the vectors, St ← St−1− vi + vj where vi ∈ St−1 and vj /∈ St−1, to
improve the objective value, and stops if such an improving exchange is not possible.
The simplicity of this algorithm and its good empirical performance [16, 29, 31] make
the method widely used [6]. The approximation guarantee of this method was only
analyzed rigorously in a recent work [28], and we extend their analysis in multiple
directions.

For D-design, it was proved in [28] that Fedorov’s exchange method gives a poly-
nomial time approximation algorithm for all inputs in the with-repetition setting, and
we extend their result to the without-repetition setting.

Theorem 1.1. The Fedorov’s exchange method is a b−d−1
b -approximation poly-

nomial time algorithm for D-design in the without-repetition setting. In particular,
this is a (1− ε)-approximation algorithm whenever b ≥ d+ 1 + d

ε for any ε > 0.

For A-design, it was shown in [28] that there are arbitrarily bad local optimal
solutions for the Fedorov’s exchange method. Interestingly, we prove that Fedorov’s
exchange method works well as long as there exists an almost optimal solution with
good condition number. This provides a new insight about when the local search
method works well, and this condition may hold in practical instances. As a corollary,
this also extends the analysis of Fedorov’s exchange method in [28] when all the vectors
are short to the without-repetition setting (see section 3.2).

Throughout this paper, we use the notation A ≳ B to denote that A ≥ cB for
some large enough constant c.

Theorem 1.2. Let X :=
∑n

i=1 x(i) · viv⊤
i with

∑n
i=1 x(i) = b and x(i) ∈ [0, 1]

for 1 ≤ i ≤ n be a fractional solution to A-design. For any ε ∈ (0, 1), the Fedorov’s
exchange method returns an integral solution Z =

∑n
i=1 z(i) · viv⊤

i with
∑n

i=1 z(i) ≤ b
and z(i) ∈ {0, 1} for 1 ≤ i ≤ n such that

tr
(
Z−1

)
≤ (1 + ε) · tr(X−1) whenever b ≳

d+
√

tr(X ) tr (X−1)

ε
.

In particular, let κ = λmax(X∗)
λmin(X∗) be the condition number of an optimal solution X ∗; then

the Fedorov’s exchange method gives a (1 + ε)-approximation algorithm for A-design

whenever b ≳
(1+

√
κ)·d

ε , and the time complexity is polynomial in n, d, 1
ε , κ.
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902 LAP CHI LAU AND HONG ZHOU

For E-design, there are no known combinatorial local search algorithms, and
there are examples showing that Fedorov’s exchange method does not work even if
there exists a well-conditionfed optimal solution (see section 3.3.2). Using the regret
minimization framework in [1, 3], however, we prove that a modified local search
algorithm using a “smoothed” objective function for E-design works as long as there
exists an almost optimal solution with good condition number.

Theorem 1.3. Let X :=
∑n

i=1 x(i) · viv⊤
i with

∑n
i=1 x(i) = b and x(i) ∈ [0, 1]

for 1 ≤ i ≤ n be a fractional solution to E-design. For any ε ∈ (0, 1), there is a
combinatorial local search algorithm which returns an integral solution Z =

∑n
i=1 z(i)·

viv⊤
i with

∑n
i=1 z(i) ≤ b and z(i) ∈ {0, 1} for 1 ≤ i ≤ n such that

λmin(Z ) ≥ (1− ε) · λmin (X ) whenever b ≳
d

ε2

√
λavg(X )

λmin(X )
,

where λavg(X ) = tr(X)
d is the average eigenvalue of X .

In particular, let κ = λmax(X∗)
λmin(X∗) be the condition number of an optimal solution

X ∗; then the combinatorial local search method gives a polynomial time (1 − ε)-

approximation algorithm for E-design whenever b ≳ d
√
κ

ε2 , and the time complexity
is polynomial in n, d, 1

ε , κ.

A combinatorial “capping” procedure was used in [28] to reduce the A-design
problem to the case when every vector is “short,” for which Fedorov’s exchange
method works. This capping procedure, however, crucially leveraged that a vector
can be chosen multiple times. We do not have a preprocessing procedure to reduce A-
design and E-design in the without-repetition setting to the case when Theorems 1.2
and 1.3 apply. We leave it as an open problem to design a fully combinatorial algo-
rithm for A-design and E-design in the general case.

1.1.2. Rounding algorithms for convex programming relaxations. There
are natural convex programming relaxations for the D/A/E-design problems. The
best known rounding algorithms for these three problems are all quite different, i.e.,
approximate positively correlated distributions for D-design [36], proportional volume
sampling for A-design [33], and regret minimization for E-design [3, 26]. Although
the one-sided spectral rounding result in [3, 26] (see section 2.3) provides a general
solution for a large class of experimental design problems including D/A/E-design,
this only works under the stronger assumption that b ≳ d

ε2 and it was unclear how to
unify the best known algorithmic results.

Surprisingly, we prove that the iterative randomized rounding algorithm for E-
design in [26] can be modified just slightly to match and improve the previous results
for D/A-design, as well as to extend them to handle multiple knapsack constraints.
To this end, we bypass the one-sided spectral rounding problem. Instead, we per-
form a refined analysis for the iterative randomized rounding algorithm, in which the
minimum eigenvalue of the current solution plays an unexpectedly crucial role for
D/A-design as well. This provides a unified rounding algorithm to achieve the op-
timal results for the natural convex programming relaxations for these experimental
design problems.

In D/A/E-design with knapsack constraints, we are given vectors v1, . . . , vn ∈ Rd,
knapsack constraints c1, . . . , cm ∈ Rn

+, and budgets b1, . . . , bm ≥ 0, and the goal is
to find a solution z ∈ {0, 1}n with ⟨ci, z⟩ ≤ bi for 1 ≤ i ≤ m to optimize the
objective value. Consider the following natural convex programming relaxations for
D/A-design:
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(1.1)

max
x∈Rn

log det

( n∑
i=1

x(i) · viv⊤
i

)
or min

x∈Rn
tr

(( n∑
i=1

x(i) · viv⊤
i

)−1)
subject to ⟨cj , x⟩ ≤ bj for 1 ≤ j ≤ m,

0 ≤ x(i) ≤ 1 for 1 ≤ i ≤ n.

Theorem 1.4. Let x ∈ [0, 1]n be an optimal fractional solution to D/A-design
with knapsack constraints. For any ε ≤ 1

200 , if each knapsack constraint budget sat-

isfies bj ≥
2d∥cj∥∞

ε , then there is a randomized exchange algorithm which returns
in polynomial time an integral solution Z =

∑n
i=1 z(i) · viv⊤

i with z(i) ∈ {0, 1} for
1 ≤ i ≤ n such that

det

( n∑
i=1

z(i) · viv⊤
i

) 1
d

≥
(
1−O(ε)

)
· det

( n∑
i=1

x(i) · viv⊤
i

) 1
d

for D-design,

tr

(( n∑
i=1

z(i) · viv⊤
i

)−1)
≤ (1 + ε) · tr

(( n∑
i=1

x(i) · viv⊤
i

)−1)
for A-design

with probability at least 1−O(k
2

ε2 · e
−Ω(

√
d)) where k = O(d2 +m). Furthermore, each

knapsack constraint ⟨cj , z⟩ ≤ bj is satisfied with probability at least 1− e−Ω(εd).

Note that D/A-design with a cardinality constraint is the special case when there
is only one cost constraint (m = 1) and c = 1⃗. In this special case, Theorem 1.4
improves the previous results in [36, 33] by removing the term 1

ε2 log
(
1
ε

)
from their

assumption b ≳ d
ε +

1
ε2 log

(
1
ε

)
, and this achieves the optimal integrality gap result for

D-design [36] and A-design [33]. In the general case with knapsack constraints, The-
orem 1.4 improves the previous result in [26], which requires a stronger assumption

that bj ≳
d∥cj∥∞

ε2 to obtain the same approximation guarantee. The knapsack con-
straints can be used for weighted experimental design and for incorporating fairness
constraints in experimental design, which we will discuss in the next subsection.

1.1.3. Some applications. We discuss some applications of our results in spe-
cific instances of experimental design problems.

Fair and diverse data summarization. In the data summarization problem,
we are given n data points v1, . . . , vn ∈ Rd, and the objective is to choose a subset
of b data points that provides a “fair” and “diverse” summary of the data. For
diversity, the D-design objective of maximizing determinant is a popular measure
used in previous work [30, 11]. For fairness, the partition constraints [32, 11] for D-
design are used to partition the set X of data points into p disjoint groups X1∪· · ·∪Xp

and to ensure that bi data points are chosen in Xi where
∑p

i=1 bi = b.
We believe that Theorem 1.4 for D-design with knapsack constraints provides an

alternative solution for this problem. The main advantage is that the knapsack con-
straints are more flexible in that they do not require the groups to be disjoint. For
instance, we can have knapsack constraints on arbitrary subsets X1, . . . , Xp ⊆ X of
the form

∑
j∈Xi

x(j) ≤ bi to ensure that at most bi data points are chosen in group
Xi, so that we can handle constraints of overlapping groups such as race, age, gen-
der (e.g., at most 50% of the chosen vectors correspond to men/women), etc. Also,
the approximation guarantee in Theorem 1.4 is stronger than the constant factor ap-
proximation for D-design with partition constraint [32], and the convex programming
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904 LAP CHI LAU AND HONG ZHOU

relaxation used in Theorem 1.4 is simpler and easier to solve than the more sophisti-
cated one used in [32].

Minimizing total effective resistance. Ghosh, Boyd, and Saberi [22] studied
the problem of choosing a subgraph with at most b edges to minimize the total effective
resistance and showed that this is a special case of A-design. The proportional volume
sampling algorithm by Nikolov, Singh, and Tantipongpipat [33] achieves a (1 + ε)-
approximation for this problem when b ≳ n

ε + 1
ε2 log

1
ε where n is the number of

vertices in the graph. Lau and Zhou [26] considered the weighted problem of choosing
a subgraph with total edge cost at most b to minimize the total effective resistance

and gave a (1+ε)-approximation algorithm when b ≳ n∥c∥∞
ε2 where c is the cost vector

of the edges. Theorem 1.4 improves these two results.

Corollary 1.5. For any 0 < ε < 1, there is a polynomial time randomized
(1 + ε)-approximation algorithm for minimizing total effective resistance in an edge

weighted graph whenever b ≳ n∥c∥∞
ε .

Maximizing algebraic connectivity. Ghosh and Boyd [21] studied the prob-
lem of choosing a subgraph with total cost at most b that maximizes the algebraic
connectivity, i.e., the second smallest eigenvalue of its Laplacian matrix. Kolla et al.
[25] provided the first algorithm with nontrivial approximation guarantee in the zero-
one cost setting. Lau and Zhou [26] observed that this is a special case of E-design

and gave a (1−ε)-approximation algorithm when b ≳ n∥c∥∞
ε2 where c is the cost vector

of the edges.
All previous results are based on convex programming. Theorem 1.3 provides a

combinatorial algorithm for the unweighted problem, where the goal is to choose b
edges to maximize the algebraic connectivity, and shows that it has a good perfor-
mance as long as the optimal value is large.

Corollary 1.6. For any 0 < ε < 1, there is a polynomial time combinato-
rial (1− ε)-approximation algorithm for maximizing algebraic connectivity in an un-
weighted graph whenever b ≳ n

ε4λ∗
2
, where λ∗

2 is the optimal value of a natural convex

programming relaxation (see (3.4)).

1.2. Techniques. We extend the randomized approach in [26] to analyze both
combinatorial local search algorithms and to design improved approximation algo-
rithms for D/A-design with knapsack constraints. The approach in [26] is based on
the regret minimization framework developed in [3] for the one-sided spectral round-
ing problem. In the following, we will first present the techniques used in these two
previous results, and then present the new ideas in this paper.

Previous techniques. In [3], Allen-Zhu et al. first solved the natural convex
programming relaxation for experimental design and obtained a solution x ∈ Rn, and
performed a linear transformation so that

∑n
i=1 x(i) ·viv⊤

i = I . They showed that the
experimental design problem is reduced to the following one-sided spectral rounding
problem, where the goal to find a subset S ⊆ [n] so that

∑
i∈S viv⊤

i ≽ (1 − ε)I and
|S| ≤

∑n
i=1 x(i) = b. To solve this problem, they started from an arbitrary initial

set S0 of b vectors, and in each step t ≥ 1 they sought to find a pair it ∈ St−1 and
jt /∈ St−1 so that the new solution St ← St−1− vit + vjt improves the current solution
St−1 in terms of a potential function related to the minimum eigenvalue. Using the
regret minimization framework that maintains a density matrix At at each step t (see
section 2.2), they proved that choosing
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it := argmini∈St−1

⟨viv⊤
i ,At⟩

1− 2α⟨viv⊤
i ,A

1
2
t ⟩

and jt := argmaxj /∈St−1

⟨vjv⊤
j ,At⟩

1 + 2α⟨vjv⊤
j ,A

1
2
t ⟩

would improve the current solution St−1 as long as
∑

i∈St
viv⊤

i ̸≽ (1− ε)I .
In [26], the idea is to use the following probability distributions to sample it

and jt:

(1.2)
Pr(it = i) ∝

(
1− x(i)

)
·
(
1− 2α⟨viv⊤

i ,A
1
2
t ⟩
)

and

Pr(ij = j) ∝ x(j) ·
(
1 + 2α⟨vjv⊤

j ,A
1
2
t ⟩
)
.

The advantage of doing random sampling is that the knapsack constraints will be ap-
proximately preserved, while the potential function related to the minimum eigenvalue
is expected to improve. Freedman’s martingale inequality and a new concentration
inequality for nonmartingales are used to prove that all these quantities are close to
their expected values with high probability.

Analysis of combinatorial algorithms. In this paper, we use this randomized
approach in [26] to analyze both combinatorial algorithms and rounding algorithms.
For combinatorial local search algorithms, one difference from the previous analysis
in [28] is that we compare the objective of the current integral solution to that of
an optimal fractional solution. When the objective value of the fractional solution is
considerably better than that of the current integral solution, we use the fractional
solution to define appropriate probability distributions similar to that in (1.2) to
sample it and jt so that the expected objective value of St ← St−1−vit+vjt improves,
and this would imply the existence of an improving pair in Fedorov’s exchange method.
One advantage of this approach is that this allows us the flexibility to compare the
current integral solution to a fractional solution with smaller budget which still has
its objective value close to the optimal one.

Our analysis is arguably simpler than that in [28], which uses a dual fitting method
while we only do a primal analysis. More importantly, our analysis shows that if
the optimal fractional solution is well-conditioned (e.g.,

∑n
i=1 x(i) · vivi = Id), then

the Fedorov’s exchange method indeed performs as well as the best known rounding
algorithms. This gives us a new insight that the only important step in rounding
algorithms for the unweighted experimental design problems is the ability to first
transform the optimal fractional solution to the identity matrix. For E-design, simply
doing Fedorov’s exchange method on the objective function λmin

(∑
i∈St

viv⊤
i

)
would

not work (see section 3.3.2), and instead we apply the Fedorov’s exchange method
to the potential function in the regret minimization framework, which is morally the

same as the potential function tr
( (∑

i∈St
viv⊤

i − lId
)−1 )

used by Batson, Spielman,
and Srivastava for spectral sparsification [8].

Analysis of rounding algorithms. For the rounding algorithm for experimen-
tal design with knapsack constraints, surprisingly we prove that a minor modification
of the algorithm for E-design in [26] would work for D/A-design with improved ap-
proximation guarantees! Essentially, we just use the algorithm for E-design but only
require that the solution have minimum eigenvalue 3

4 rather than 1− ε. Our analysis
has two phases. In the first phase, using the results in [26], we show that the ran-
domized exchange algorithm will find a solution with minimum eigenvalue at least
3
4 in polynomial time with high probability whenever b ≳ d

ε (rather than b ≳ d
ε2 in

order to achieve minimum eigenvalue at least 1 − ε). In the second phase, we prove
that the minimum eigenvalue will remain at least 1

4 with high probability when ε is
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not too tiny, and then the objective value for D-design and A-design will improve to
(1 ± ε) times the optimal objective value in polynomial time with high probability.
The condition that the minimum eigenvalue is at least 1

4 is used crucially in multiple
places for the analysis of the second phase. Interestingly, it is used in showing that
the probability distributions in (1.2) for E-design are also good for improving the
objective value for D-design and A-design. Moreover, it is used in the martingale
concentration argument, e.g., to show that the martingale is bounded and to prove
upper bounds on the variance of the changes. For the martingale concentration ar-
gument, we also use the optimality conditions for convex programs to prove that the
vectors with fractional value are “short” in order to bound the quantities involved.
Overall, the analysis for the rounding algorithm is quite involved, but it provides a
unifying algorithm to achieve the optimal results for the natural convex relaxations
for D/A/E-design. Please refer to section 4 for a more detailed outline of the analysis.

1.3. Previous work. All three experimental design problems are NP-hard [15,
39] and also APX-hard [35, 33, 15]. Despite the long history and the wide interest,
strong approximation algorithms for these problems were obtained only recently.

D-design. Singh and Xie [36] designed an (1−ε)-approximation algorithm for D-
design in the with-repetition setting when b ≥ 2d

ε and in the without-repetition setting

when b ≳ d
ε+

1
ε2 log

1
ε . Their algorithm rounds an optimal solution to a natural convex

program relaxation using approximate positively correlated distributions.
Madan et al. [28] analyzed the Fedorov’s exchange method and proved that it

gives a (1 − ε)-approximation algorithm for D-design as long as b ≥ d + d
ε , which

improves upon the above result. However, they only provide a polynomial time im-
plementation of the local search algorithm to achieve this guarantee in the less general
with-repetition setting.

A-design. In the with-repetition setting when b ≥ d + d
ε , Nikolov, Singh, and

Tantipongpipat [33] designed an (1+ε)-approximation algorithm for A-design, and in
the without-repetition setting when b ≳ d

ε + 1
ε2 log

1
ε . Their algorithm is by rounding

an optimal solution to a natural convex program relaxation using proportional volume
sampling. Their algorithm also works for D-design with the same guarantee.

Madan et al. [28] also analyzed the Fedorov’s exchange method for A-design and
showed that there are arbitrarily bad local optimal solutions. On the other hand,
they proved that Fedorov’s exchange method works when all the input vectors are
“short,” and they designed a “capping procedure” to reduce the general case to the
case when all vectors are short. As a result, they obtained a combinatorial (1 + ε)-
approximation algorithm, without solving convex programs, for A-design when b ≳ d

ε4

in the with-repetition setting.
E-design. Allen-Zhu et al. [2, 3] designed an (1−ε)-approximation algorithm for

E-design in the with- and without-repetition settings when b ≳ d
ε2 . Their algorithm

is by rounding an optimal solution to a natural convex program relaxation using
the regret minimization framework, which was initially developed for the spectral
sparsification problem [1]. They formulated and solved a “one-sided spectral rounding
problem” (see section 2.3) and showed that experimental design with any objective
function satisfying some mild regularity assumptions, including D/A/E-design, can
be reduced to the one-sided spectral rounding problem. Their algorithm for one-sided
spectral rounding can be viewed as a local search algorithm, and this was the starting
point of the current work.

Nikolov, Singh, and Tantipongpipat [33] showed that the assumption b ≳ d
ε2 is

necessary to achieve (1 − ε)-approximation for E-design using the natural convex
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program, and Lau and Zhou [26] showed that the assumption b ≳ d
ε2 is necessary for

the one-sided spectral rounding problem. These suggest that the regret minimization
framework may not be used to match the results for D/A-design, but we bypass the
one-sided spectral rounding problem to prove Theorem 1.4.

Experimental design with additional constraints. Lau and Zhou [26] con-
sidered the generalization of the experimental design problem with additional knap-
sack constraints as in (1.1). In particular, it generalizes the experimental design
problems to the weighted problems, where each vector vi has a weight c(i) and the
goal is to choose a subset S of vectors with

∑
i∈S c(i) ≤ b to optimize the objective

value. Using a randomized iterative rounding algorithm, they obtained a (1 ± ε)-

approximation algorithm for weighted D/A/E-design when b ≳ d∥c∥∞
ε2 .

Using more sophisticated convex programming relaxations, Nikolov and Singh [32]
designed an approximation algorithm for D-design under partition constraints. Re-
cently, Madan et al. [27] designed an approximation algorithm for D-design under
general matroid constraints.

2. Preliminaries. We recall some basic linear algebra in section 2.1. Then, we
review the regret minimization framework in section 2.2 and the iterative randomized
rounding algorithm for one-sided spectral rounding in section 2.3. Finally, we state
some useful inequalities for the analysis of martingales and the analysis of the objective
functions in sections 2.4 and 2.5, respectively.

2.1. Linear algebra. We write R and R+ as the sets of real numbers and non-
negative real numbers. Throughout the paper, we use italic sans serif font for vectors
and matrices, e.g., x , A.

All the vectors in this paper only have real entries. Denote Rd as the d-dimensional
Euclidean space. We write 1⃗d as the d-dimensional all-one vector. Given a vector
x ∈ Rd, we write x(i) as the ith entry of vector x and write x(S) :=

∑
i∈S x(i) for

any subset S ⊆ [d]. We denote ∥x∥2 the ℓ2-norm, ∥x∥1 the ℓ1-norm, and ∥x∥∞ the
ℓ∞-norm of x . A vector v ∈ Rd is a column vector, and its transpose is denoted by v⊤.
Given two vectors x , y ∈ Rd, the inner product is defined as ⟨x , y⟩ :=

∑n
i=1 x(i) · y(i).

The Cauchy–Schwarz inequality says that ⟨x , y⟩ ≤ ∥x∥ ∥y∥.
All matrices considered in this paper are real symmetric matrices. We denote the

d× d identity matrix by Id or simply I when the dimension is clear from the context.
It is a fundamental result that any d× d real symmetric matrix has d real eigenvalues
λ1 ≤ · · · ≤ λn and an orthonormal basis of eigenvectors. We write λmax(M) and
λmin(M) as the maximum and the minimum eigenvalue of a real symmetric matrix
M. The trace of a matrix M, denoted by tr(M), is defined as the sum of the diagonal

entries of M. It is well-known that tr(M) =
∑d

i=1 λi(M), where λi(M) denotes the
ith eigenvalue of M.

A matrix M is a positive semidefinite (PSD) matrix, denoted as M ≽ 0, if M is
symmetric and all the eigenvalues are nonnegative, or equivalently, the quadratic form
x⊤Mx ≥ 0 for any vector x . We use A ≽ B to denote A − B ≽ 0 for matrices A and
B. We write Sd+ as the set of all d-dimensional PSD matrices. Let M ≽ 0 be a PSD
matrix with eigendecomposition M =

∑
i λiviv⊤

i , where λi ≥ 0 is the ith eigenvalue
and vi is the corresponding eigenvector. The square root of M is M1/2 :=

∑
i

√
λiviv⊤

i .
Given two matrices A and B of the same size, the Frobenius inner product of A,B is
denoted as ⟨A,B⟩ :=

∑
i,j A(i, j) · B(i, j) = tr(A⊤B). The following are two standard

facts:
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A,B ≽ 0 =⇒ ⟨A,B⟩ ≥ 0 and A ≽ 0,B ≽ C ≽ 0 =⇒ ⟨A,B⟩ ≥ ⟨A,C ⟩.

2.2. Regret minimization. We will use the regret minimization framework
developed in [1, 3] for spectral sparsification and one-sided spectral rounding. The
framework is for an online optimization setting. In each iteration t, the player chooses
an action matrix At from the set of density matrices ∆d := {A ∈ Rd×d | A ≽ 0, tr(A) =
1}, which can be understood as a probability distribution over the set of unit vectors.
The player then observes a feedback matrix Ft and incurs a loss of ⟨At,Ft⟩. After τ
iterations, the regret of the player is defined as

Rτ :=

τ∑
t=1

⟨At,Ft⟩ − inf
B∈∆d

τ∑
t=1

⟨B,Ft⟩ =
τ∑

t=1

⟨At,Ft⟩ − λmin

(
τ∑

t=1

Ft

)
,

which is the difference between the loss of the player actions and the loss of the best
fixed action B, that can be assumed to be a rank one matrix vv⊤. The objective of
the player is to minimize the regret. A well-known algorithm for regret minimization
is follow-the-regularized-leader, which plays the action

At = argminA∈∆d

{
w(A) + α ·

t−1∑
l=0

⟨A,Fl⟩
}
,

where w(A) is a regularization term and α is a parameter called the learning rate
that balances the loss and the regularization. Here F0 is an initial feedback which
is given before the game started. Different choices of regularization give different
algorithms for regret minimization. The choice that we will use is the ℓ 1

2
-regularizer

w(A) = −2 tr(A 1
2 ) introduced in [1], which plays the action

(2.1) At =

(
α

t−1∑
l=0

Fl − ctI

)−2

,

where ct is the unique constant that ensures At ∈ ∆d. Allen-Zhu et al. [3] prove the
following regret bound for rank-two feedback matrices with ℓ 1

2
regularizer.

Theorem 2.1 (Lemma 2.5 in [3]). Suppose the action matrix At ∈ Rd×d is of
the form of (2.1) for some α > 0. Suppose the initial feedback matrix F0 ∈ Sd is a
symmetric matrix, and for all t ≥ 1 each feedback matrix Ft is of the form vjtv

⊤
jt
−vitv

⊤
it

for some vjt , vit ∈ Rd such that α⟨vitv⊤
it
,A

1
2
t ⟩ < 1

2 . Then, for any density matrix
U,

τ∑
t=1

⟨Ft,U⟩ ≥
τ∑

t=1

(
⟨vjtv⊤

jt
,At⟩

1 + 2α⟨vjtv⊤
jt
,A

1
2
t ⟩
−

⟨vitv⊤
it
,At⟩

1− 2α⟨vitv⊤
it
,A

1
2
t ⟩

)
− D(A1,U)

α
,

where D(A1,U) := tr(A
1
2
1 ) − 2 tr(U

1
2 ) + ⟨A− 1

2
1 ,U⟩ is the Bregman divergence of the

ℓ 1
2
-regularizer.

The above theorem is used in [3] to give a lower bound on the minimum eigenvalue
of λmin(

∑τ
t=0 Ft), by bounding D(A1,U) ≤ α⟨F0,U⟩+2

√
d. We will use the following

more refined version where there is an extra λmin(F0) term.

D
ow

nl
oa

de
d 

11
/0

2/
22

 to
 1

28
.9

5.
10

4.
10

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A LOCAL SEARCH FRAMEWORK FOR EXPERIMENTAL DESIGN 909

Corollary 2.2. Under the same assumptions as in Theorem 2.1,

λmin

( τ∑
t=0

Ft

)
≥

τ∑
t=1

(
⟨vjtv⊤

jt
,At⟩

1 + 2α⟨vjtv⊤
jt
,A

1
2
t ⟩
−

⟨vitv⊤
it
,At⟩

1− 2α⟨vitv⊤
it
,A

1
2
t ⟩

)
− 2
√
d

α
+ λmin(F0).

Proof. Let U be a rank-one projection on the minimum eigenspace of
∑τ

t=0 Ft.

We will show that D(A1,U) ≤ ⟨αF0,U⟩+ 2
√
d− αλmin(F0). Note that

D(A1,U) = tr(A
1
2
1 )−2 tr(U

1
2 )+ ⟨A− 1

2
1 ,U⟩ ≤ ⟨αF0−c1I ,U⟩+

√
d = ⟨αF0,U⟩−c1+

√
d,

where we used tr(A
1
2
1 ) ≤

√
d as stated in Lemma 2.4 and U is also a density matrix.

So it remains to lower bound c1. Since F0 ≽ λmin(F0) · I and tr(A1) = 1, it follows
that

1 = tr(A1) ≤
tr(I )

(αλmin(F0)− c1)2
=

d

(αλmin(F0)− c1)2
=⇒ c1 ≥ −

√
d+αλmin(F0).

The corollary follows from Theorem 2.1 by plugging in this U and this upper bound
on D(A1,U).

One technical point used in [2, 3] is that the partial solution Zt :=
∑t−1

l=0 Fl at
time t and the action matrix At at time t have the same eigenbasis due to (2.1). This

allows one to bound ⟨Zt,At⟩ and ⟨Zt,A
1
2
t ⟩ as follows.

Lemma 2.3 (Claim 2.11 in [3]). Let Z ≽ 0 be a d × d PSD matrix and A =
(αZ − cI )−2 for some α > 0 where c is the unique constant such that A is a density
matrix. Then

⟨Z ,A⟩ ≤
√
d

α
+ λmin(Z ) and α⟨Z ,A

1
2 ⟩ ≤ d+ α

√
d · λmin(Z ).

We will use the above lemma in the analysis of the combinatorial algorithm for
E-design. We also use the following simple fact about the action matrix.

Lemma 2.4. For any d× d matrix A ≽ 0 satisfying tr(A) = 1, tr
(
A

1
2

)
≤
√
d.

2.3. One-sided spectral rounding and iterative randomized rounding.
The following one-sided spectral rounding result was formulated and proved by Allen-
Zhu et al. [3]. It is the main theorem that implies a (1± ε)-approximation algorithm
for a large class of experimental design problems with one cardinality constraint,
whenever the budget b ≳ d

ε2 .

Theorem 2.5 ([3]). Let v1, v2, . . . , vn ∈ Rd, x ∈ [0, 1]m, and b =
∑m

i=1 x(i).
Suppose

∑m
i=1 x(i) · viv⊤

i = Id and b ≥ 5d
ε2 for some ε ∈ (0, 1

3 ]. Then there is a
polynomial time algorithm to return a subset S ⊆ [m] with

|S| ≤ b and
∑
i∈S

viv
⊤
i ≽ (1− 3ε) · Id.

Theorem 2.5 was extended in [26] to incorporate nonnegative linear constraints,
where the goal is to output a subset S that approximately satisfies the spectral lower
bound and also c(S) ≈ ⟨c , x⟩ for any nonnegative linear constraint c ∈ Rn

+. The
randomized exchange algorithm in this paper is almost the same as the iterative
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randomized rounding algorithm in [26]. In the following, we describe the algorithm
in [26] and state several results that we will use in our analysis.

In the iterative randomized rounding algorithm, we start with an initial solution
set S0 ⊆ [n], which is constructed by sampling each vector i with probability x(i)
independently for all i ∈ [n]. In each iteration t, with the current solution set St−1,
we randomly choose a vector it ∈ St−1 and a vector jt ∈ [n] \ St−1 and set St ←
St−1 − it + jt. The sampling distributions in each iteration depend on the action
matrix At as defined in (2.1). The probability of choosing a vector it ∈ St−1 is
1
k ·
(
1−x(i)

)
·
(
1−2α⟨viv⊤

i ,A
1
2
t ⟩)
)
, and the probability of choosing a vector jt ∈ [n]\St−1

is 1
k · x(j) ·

(
1+2α⟨vjv⊤

j ,A
1
2
t ⟩
)
, where k is a large enough denominator so that the two

distributions are well-defined. Informally, the terms 1− x(i) and x(j) in the sampling
probability helps us maintain the cost c(St) ≈ ⟨c , x⟩, and the term depending on At

helps us improve the spectral lower bound. The following are the precise statements
that we will use in this paper.

Theorem 2.6 (Theorem 3.8 of [26]). Let α =
√
d

γ be the learning rate used in

computing the action matrix as defined in (2.1). Let τ be the first time such that
the solution Sτ of the iterative randomized rounding algorithm satisfies

∑
i∈Sτ

viv⊤
i ≽

(1− 2γ) · I . The probability that τ ≤ 2k
γ is at least 1− e−Ω(

√
d).

Theorem 2.7 (Theorem 3.12 of [26]). Let α =
√
d

γ be the learning rate used

in computing the action matrix as defined in (2.1). Suppose that the solution St of
the iterative randomized rounding algorithm satisfies λmin

(∑
i∈St

viv⊤
i

)
< 1 for all

1 ≤ t < τ . Then, for any given c ∈ Rn
+ and any δ ∈ [0, 1],

Pr

[
c(Sτ ) ≤ (1 + δ) · ⟨c , x⟩+

15d ∥c∥∞
γ

]
≥ 1− e−Ω

(
δd
γ

)
.

These two results together imply a one-sided spectral rounding result with non-
negative linear constraints, which can be used to give a (1 + ε)-approximation al-
gorithm for experimental design problems with knapsack constraints, as long as the

budget b ≳ d∥c∥∞
ε2 (see Theorem 4.11 in [26]).

We will also use the following two lemmas in [26] that were used in proving
Theorem 2.6. Define

∆+
t :=

⟨vjtv⊤
jt
,At⟩

1 + 2α⟨vjtv⊤
jt
,A

1
2
t ⟩

, ∆−
t :=

⟨vitv⊤
it
,At⟩

1− 2α⟨vitv⊤
it
,A

1
2
t ⟩

, and ∆t := ∆+
t −∆−

t .

(2.2)

Lemma 2.8 (Lemmas 3.5 and 3.7 of [26]). Let τ ≥ τ ′ ≥ 1 be two time steps in
the iterative randomized rounding algorithm. Let λ := maxτ ′≤t≤τ λmin

(∑
i∈St

viv⊤
i

)
,

∆t be defined as in (2.2), and k be the denominator used in the sampling distributions.
Then

τ∑
t=τ ′+1

E [∆t | St−1] ≥
τ∑

t=τ ′+1

1

k

(
1− γ − λmin(Zt−1)

)
≥ τ − τ ′

k
· (1− γ − λ).

Furthermore, for any η > 0,

Pr

[
τ∑

t=τ ′+1

∆t ≤
τ∑

t=τ ′+1

E[∆t | St−1]− η

]
≤ exp

(
− η2k

√
d/2

(τ − τ ′)γ(1 + λ+ γ) + ηkγ/3

)
.
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2.4. Martingales. A sequence of random variables Y1, . . . , Yτ is a martingale
with respect to a sequence of random variables Z1, . . . , Zτ if for all t > 0, it holds that

1. Yt is a function of Z1, . . . , Zt−1;
2. E[|Yt|] <∞;
3. E[Yt+1|Z1, . . . , Zt] = Yt.

We will use the following theorem by Freedman to bound the probability that Yτ

is large.

Theorem 2.9 ([20, 37]). Let {Yt}t be a real-valued martingale with respect to
{Zt}t, and let {Xt = Yt − Yt−1}t be the difference sequence. Assume that Xt ≤ R
deterministically for 1 ≤ t ≤ τ . Let Wt :=

∑t
j=1 E[X2

j |Z1, . . . , Zj−1] for 1 ≤ t ≤ τ .

Then, for all δ ≥ 0 and σ2 > 0,

Pr
(
∃t ∈ [τ ] : Yt ≥ δ and Wt ≤ σ2

)
≤ exp

(
−δ2/2

σ2 +Rδ/3

)
.

2.5. Inequalities for objective functions. To analyze the change of the D-
design objective value under exchange operations, we will derive a bound for determi-
nant under rank-two update based on the following well-known matrix determinant
lemma.

Lemma 2.10. For any invertible matrix X and any vector v ∈ Rd,

det(X ± vv⊤) = det(X )(1± ⟨vv⊤,X−1⟩).

The following determinant lower bound under a rank-two update is a simple
consequence and was implicitly contained in [28]. We provide a proof for completeness.

Lemma 2.11. Given a matrix A ≻ 0 and two vectors u, v ∈ Rd, if ⟨uu⊤,A−1⟩ ≤ 1,
then

det(A− uu⊤ + vv⊤) ≥ det(A)
(
1− ⟨uu⊤,A−1⟩

) (
1 + ⟨vv⊤,A−1⟩

)
.(2.3)

Proof. We first consider the case when ⟨uu⊤,A−1⟩ < 1. This is equivalent to

u⊤A− 1
2 A− 1

2 u < 1, which implies that A− 1
2 uu⊤A− 1

2 ≺ I and thus A − uu⊤ ≻ 0.
Applying Lemma 2.10 twice,

det(A− uu⊤ + vv⊤) = det(A) ·
(
1− ⟨uu⊤,A−1⟩

)
·
(
1 + ⟨vv⊤, (A− uu⊤)−1⟩

)
≥ det(A)

(
1− ⟨uu⊤,A−1⟩

) (
1 + ⟨vv⊤,A−1⟩

)
,

the last inequality holds as 0 ≺ A− uu⊤ ≼ A.
In the case when ⟨uu⊤,A−1⟩ = 1, the right-hand side of (2.3) is zero. The same

argument as above implies that A− uu⊤ ≽ 0, and it follows that the left-hand side is
nonnegative.

Similarly, to analyze the change of A-design objective value under exchange oper-
ations, we need an upper bound on the trace of the inverse of a matrix under rank-two
update. We use the following observation in [3] to derive the inequality below.

Lemma 2.12 (Claim 2.10 in [3]). Given a, c > 0 and b ∈ R, if 2c < 1 and(
a b
b c

)
≽ 0, then((

1
−1

)
+

(
a b
b c

))−1

≽

((
1
−1

)
+

(
2a

2c

))−1

.
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Lemma 2.13. Let A ∈ Rd×d ≻ 0 and v , u ∈ Rd. If 2⟨vv⊤,A−1⟩ < 1, then it holds
for any X ≽ 0 that

⟨X ,
(
A− vv⊤ + uu⊤)−1⟩ ≤ ⟨X ,A−1⟩+ ⟨X ,A−1vv⊤A−1⟩

1− 2⟨vv⊤,A−1⟩
− ⟨X ,A−1uu⊤A−1⟩

1 + 2⟨uu⊤,A−1⟩
.

Proof. Let P := [u, v ] ∈ Rd×2; then we have(
A− vv⊤ + uu⊤)−1

=
(
A + P

(
1
−1

)
P⊤
)−1

= A−1 − A−1P
((

1
−1

)
+ P⊤A−1P

)−1

P⊤A−1,

where the second equality follows by the Woodbury formula that(
A + UCV

)−1
= A−1 − A−1U

(
C−1 + VA−1U

)−1VA−1.

Since

P⊤A−1P =

(
⟨uu⊤,A−1⟩ ⟨vu⊤,A−1⟩
⟨uv⊤,A−1⟩ ⟨vv⊤,A−1⟩

)
≽ 0 and 2⟨vv⊤,A−1⟩ < 1,

we can apply Lemma 2.12 to conclude that(
A− vv⊤ + uu⊤)−1

≼ A−1 − A−1P
((

1
−1

)
+
(

2⟨uu⊤,A−1⟩
2⟨vv⊤,A−1⟩

))−1

P⊤A−1

= A−1 +
A−1vv⊤A−1

1− 2⟨vv⊤,A−1⟩
− A−1uu⊤A−1

1 + 2⟨uu⊤,A−1⟩
.

Finally, the lemma follows by noting that (A−vv⊤+uu⊤)−1≻0, because 2⟨vv⊤,A−1⟩<1
implies that vv⊤ ≺ A (as was done in the proof of Lemma 2.11).

We will also use the following simple claim in the analysis of combinatorial algo-
rithms, whose proof is done by checking the derivatives of f(x) and g(x).

Claim 2.14. The functions f(x) = x−c1
c2+c3

√
x
and g(x) = x−c1

c2+c3x
with c1, c2, c3 ≥ 0

are monotone increasing for x ≥ 0.

3. Combinatorial algorithms. In this section, we present combinatorial local
search algorithms for D/A/E-design problems. In section 3.1, we show that Fedorov’s
exchange method is a polynomial time algorithm to achieve b−d−1

b -approximation
for D-design, which extends the result in [28] to the without-repetition setting. In
section 3.2, we analyze Fedorov’s exchange method for A-design and prove that it
works well as long as there is a well-conditioned optimal solution. As a corollary,
this extends the result in [28] for A-design to the without-repetition setting, with an
arguably simpler proof. In section 3.3, we show that Fedorov’s exchange method does
not work with the minimum eigenvalue objective, and we propose a modified local
search algorithm and prove that it works well as long as there is a well-conditioned
optimal solution.

A common theme in the analysis of all these algorithms is that we compare the
current integral solution S to an optimal fractional solution x . As long as the objective
value of x is significantly better than that of S, we use x to define two probability
distributions to sample a pair of vectors vi, vj so that the expected objective value of
S−i+j improves that of S considerably, and so we can conclude that the combinatorial

D
ow

nl
oa

de
d 

11
/0

2/
22

 to
 1

28
.9

5.
10

4.
10

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A LOCAL SEARCH FRAMEWORK FOR EXPERIMENTAL DESIGN 913

algorithms will find such an improving exchange pair. One advantage of this approach
is that this allows us the flexibility to compare with a fractional solution with smaller
budget (which still has objective value close to the optimal one), and this makes the
analysis easier and simpler.

The following notation will be used throughout this section. Given a fractional
solution x ∈ [0, 1]n and an integral solution S ⊆ [n], we denote

X :=

n∑
i=1

x(i)·viv⊤
i , XS :=

∑
i∈S

x(i)·viv⊤
i , x(S) :=

∑
i∈S

x(i), Z :=
∑
i∈S

viv⊤
i .

3.1. Combinatorial local search algorithm for D-design. We analyze the
following version of Fedorov’s exchange method for D-design, where we always choose
a pair that maximizes the improvement of the objective value and we stop as soon as
the improvement is not large enough.

Fedorov’s exchange method for D-design
Input: n vectors v1, . . . , vn ∈ Rd, a budget b ≥ d.

1. Let S0 ⊆ [n] be an arbitrary set of full-rank vectors with |S0| = b.
2. Let t← 1 and Z1 :=

∑
i∈St−1

viv⊤
i .

3. Repeat
(a) Find it ∈ St−1 and jt ∈ [n] \ St−1 such that

(it, jt) = argmax
(i,j):i∈St−1,j∈[n]\St−1

det
(
Zt − viv⊤

i + vjv⊤
j

)
.

(b) Set St ← St−1 ∪ {jt} \ {it} and Zt+1 ← Zt − vitv
⊤
it

+ vjtv
⊤
jt

and
t← t+ 1.

Until det(Zt) <
(
1 + d

4b3

)
det(Zt−1).

4. Return St−2 as the solution set.

To analyze the change of the objective value in each iteration, note that, for any
t, ⟨vitv⊤

it
,Z−1

t ⟩ ≤ 1 as it ∈ St−1, and so it follows from Lemma 2.11 that

det(Zt+1) = det(Zt− vitv
⊤
it + vjtv

⊤
jt ) ≥ det(Zt) · (1−⟨vitv⊤

it ,Z
−1
t ⟩︸ ︷︷ ︸

loss

) · (1+ ⟨vjtv⊤
jt ,Z

−1
t ⟩︸ ︷︷ ︸

gain

).

Therefore, in order to lower bound the determinant of the solution, we lower bound
the “gain” term and upper bound the “loss” term to quantify the progress in each
iteration. First, we prove the existence of it with small loss, with respect to a fractional
solution x with ∥x∥1 = q < b.

Lemma 3.1 (loss). For any x ∈ [0, 1]n with
∑n

i=1 x(i) = q < b and any S ⊆ [n]
with |S| = b, there exists i ∈ S with

⟨viv⊤
i ,Z−1⟩ ≤ d− ⟨XS ,Z−1⟩

b− x(S)
.

Proof. Consider the probability distribution of removing a vector vi where each
i ∈ S is sampled with probability

(
1− x(i)

)
/
∑

j∈S

(
1− x(j)

)
, so that the “staying”

probability is proportional to the value x(i). Note that the denominator is positive
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914 LAP CHI LAU AND HONG ZHOU

as x(S) ≤ q < b, and thus the probability distribution is well-defined. Then, the
expected loss using this probability distribution is

E
[
⟨vitv⊤

it ,Z
−1⟩
]
=

∑
i∈S

(
1− x(i)

)
· ⟨viv⊤

i ,Z−1⟩∑
j∈S

(
1− x(j)

) =
d− ⟨XS ,Z−1⟩

b− x(S)
,

where the last equality follows as
∑

i∈S viv⊤
i = Z and |S| = b. Therefore, there must

exist one vector i with ⟨viv⊤
i ,Z−1⟩ at most the expected value.

Next, we prove the existence of jt with large gain, again with respect to a fractional
solution x with ∥x∥1 = q < b.

Lemma 3.2 (gain). For any x ∈ [0, 1]n with
∑n

i=1 x(i) = q < b and any S ⊆ [n]
with |S| = b and x(S) < q, there exists j ∈ [n]\S with

⟨vjv⊤
j ,Z−1⟩ ≥ ⟨X ,Z−1⟩ − ⟨XS ,Z−1⟩

q − x(S)
.

Proof. Consider the probability distribution of adding a vector vj where each
j ∈ [n] \ S is sampled with probability x(j)/

∑
i∈[n]\S x(i), so that the “adding”

probability is proportional to the value x(i). Note that the denominator is positive
by our assumption that x(S) < q, and so the probability distribution is well-defined.
Then, the expected gain using this probability distribution is

E[⟨vjv⊤
j ,Z−1⟩] =

∑
j∈[n]\S x(j) · ⟨vjv⊤

j ,Z−1⟩∑
i∈[n]\S x(i)

=
⟨X ,Z−1⟩ − ⟨XS ,Z−1⟩

q − x(S)
.

Therefore, there must exist one vector j with ⟨vjv⊤
j ,Z−1⟩ at least the expected value.

We are about ready to analyze when the objective value would increase. The
following lemma will be used to relate the numerator of the gain term to the current
objective value det(Z ).

Lemma 3.3. For any given d× d positive definite matrices A,B ≻ 0,

⟨A,B⟩ ≥ d · det(A) 1
d · det(B)

1
d .

Proof. Let A =
∑d

i=1 aiuiu
⊤
i and B =

∑d
j=1 bjwjw⊤

j be the spectral decomposi-
tions of A and B.

1

d
· ⟨A,B⟩ =

∑
1≤i,j≤d

aibj ·
⟨ui,wj⟩2

d
≥

∏
1≤i,j≤d

(
aibj

) ⟨ui,wj⟩
2

d

=

( d∏
i=1

d∏
j=1

a
⟨ui,wj⟩

2

d
i

)( d∏
j=1

d∏
i=1

b
⟨ui,wj⟩

2

d
j

)

=

d∏
i=1

a
1
d
i ·

d∏
j=1

b
1
d
j

= det(A)
1
d det(B)

1
d ,

where the inequality follows by the weighted AM-GM inequality as
∑d

i,j=1⟨ui,wj⟩2 =

d, and the second to last equality follows as {ui}di=1 and {wj}dj=1 are orthonormal
bases.
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The following is the main technical result for D-design, which lower bounds the
improvement of the objective value in each iteration. In the proof, we compare our
current integral solution S with size b to a fractional solution y with size q = b−d− 1

2 .

Proposition 3.4 (progress). Let x ∈ [0, 1]n be a feasible solution to the convex
programming relaxation (1.1) for D-design with

∑n
i=1 x(i) = b for b ≥ d + 1. Let Zt

be the current solution in the tth iteration of Fedorov’s exchange method. Then

det(Zt)
1
d ≤ b− d− 1

b
· det(X )

1
d =⇒ det(Zt+1) ≥

(
1 +

d

4b3

)
· det(Zt).

Proof. We consider the following scaled-down version y ,Y of the fractional solu-
tion x ,X . Define

q := b− d− 1

2
, y :=

q

b
· x , Y :=

n∑
i=1

y(i) · viv⊤
i =

q

b
· X .

Note that det(Y )
1
d = q

b ·det(X )
1
d and 1

2 ≤ q < b. Let S := St−1 be the current solution
set at time t. Note that we can assume x(S) < b and hence y(S) < q, as otherwise
det(Zt) ≥ det(X ) and there is nothing to prove. Hence, we can apply Lemmas 3.1
and 3.2 on Y and S to ensure the existence of it ∈ S and jt ∈ [n] \ S such that

det(Zt+1) ≥ det(Zt)·
(
1− d− ⟨YS ,Z−1

t ⟩
b− y(S)

)
·
(
1 +

⟨Y ,Z−1
t ⟩ − ⟨YS ,Z−1

t ⟩
q − y(S)

)
≥ det(Zt)·

(
1− d− ⟨YS ,Z−1

t ⟩
b− y(S)

)
·

(
1 +

ddet(Y )
1
d det(Z−1

t )
1
d − ⟨YS ,Z−1

t ⟩
q − y(S)

)

≥ det(Zt)·
(
1− d− ⟨YS ,Z−1

t ⟩
b− y(S)

)
·

(
1 +

d q
b
det(X )

1
d b

b−d−1
det(X )−

1
d −⟨YS ,Z−1

t ⟩
q − y(S)

)

= det(Zt)·
(
1− d− ⟨YS ,Z−1

t ⟩
b− y(S)

)
·

(
1 +

(
1 + 1

2q−1

)
d− ⟨YS ,Z−1

t ⟩
q − y(S)

)
,

where the second inequality follows from Lemma 3.3, the third inequality follows from
Y = q

bX and the assumption det(Z )
1
d ≤ b−d−1

b det(X )
1
d , and the last equality is by

q = b− d− 1
2 .

To lower bound the improvement, we write a := d− ⟨YS ,Z−1
t ⟩ as shorthand, and

then the multiplicative factor is(
1− d− ⟨YS ,Z−1

t ⟩
b− y(S)

)
·

(
1 +

(
1 + 1

2q−1

)
d− ⟨YS ,Z−1

t ⟩
q − y(S)

)

=

(
1− a

b− y(S)

)
·

(
1 +

a+ d
2q−1

q − y(S)

)

=1 +
(b− q)a− a2 + (b−y(S))d

2q−1 − ad
2q−1(

b− y(S)
)
·
(
q − y(S)

)
≥1 +

(b− q)a− a2 + (b−q)d
2q−1 −

ad
2q−1(

b− y(S)
)
·
(
q − y(S)

) ,

where the last inequality follows as y(S) ≤ q. Let f(x) = −x2 + (b − q)x − dx
2q−1 +

(b−q)d
2q−1 be a univariate quadratic function in x. Note that f ′′(x) < 0, and thus
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916 LAP CHI LAU AND HONG ZHOU

minx∈[x1,x2] f(x) is attained at one of the two ends x = x1 or x = x2. Since

a = d − ⟨YS ,Z−1
t ⟩ ∈ [0, d] (the expected loss is nonnegative and YS ,Z ≽ 0), the

numerator of the second term above is lower bounded by

f(a) ≥ min
x∈[0,d]

f(x) ≥ min{f(0), f(d)} = min

{
(b− q)d

2q − 1
,
2qd(b− q − d)

2q − 1

}
= min

{
(d+ 1

2 )d

2(b− d− 1)
,
(b− d− 1

2 )d

2(b− d− 1)

}
≥ d

4(b− d− 1)
,

where the equality in the second line is by plugging in q = b − d − 1
2 , and the last

inequality follows the assumption b ≥ d+ 1. Therefore, we conclude that

det(Zt+1) ≥ det(Zt) ·
(
1 +

d

4(b− d− 1)
(
b− y(S)

)(
q − y(S)

))
≥ det(Zt) ·

(
1 +

d

4b3

)
.

The main result in this subsection follows immediately from Proposition 3.4.

Theorem 1.1. The Fedorov’s exchange method is a b−d−1
b -approximation poly-

nomial time algorithm for D-design in the without-repetition setting. In particular,
this is a (1− ε)-approximation algorithm whenever b ≥ d+ 1 + d

ε for any ε > 0.

Proof. Let X ∗ =
∑n

i=1 x∗(i) · viv⊤
i be an optimal fractional solution for D-design

with budget b for x∗ ∈ [0, 1]n. Let Z1 ≻ 0 be an arbitrary initial solution.
When the combinatorial local search algorithm terminates at the τth iteration,

the termination condition implies that det(Zτ+1) < (1 + d
4b3 ) det(Zτ ). It follows from

Proposition 3.4 with X = X ∗ that

det(Zτ )
1
d ≥ b− d− 1

b
· det(X ∗)

1
d ,

and thus Fedorov’s exchange method returns a b−d−1
b -approximate solution.

Finally, we bound the time complexity of the algorithm. If the algorithm runs for

τ > 8b3

d ln det(X∗)
det(Z1)

iterations, then the termination condition implies that the determi-

nant of Zτ+1 is at least

det(Zτ+1) ≥
(
1 +

d

4b3

)τ

· det(Z1) ≥ e
dτ
8b3 · det(Z1) > det(X ∗),

where the second inequality follows as (1 + d
4b3 ) ≥ e

d
8b3 for d

4b3 ≤
1
4 . It was proved in

Appendix C of [28] that ln det(X∗)
det(Z1)

is polynomial in d, b, and ℓ, which is the maximum

number of bits to represent the numbers in the entries of the vectors. Specifically, they
proved that det(Z1) ≥ 2−4(2bℓ+1)d2

and det(X ∗) ≤ 24(2nℓ+1)d2

, and so τ = O(db3nℓ)
iterations of the algorithm is enough.

3.2. Combinatorial local search algorithm for A-design. We analyze the
following version of Fedorov’s exchange method for A-design, where we always choose
a pair that maximizes the improvement of the objective value and we stop as soon as
the improvement is not large enough.
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Fedorov’s exchange method for A-optimal design
Input: n vectors v1, . . . , vn ∈ Rd, a budget b ≥ d, and an accuracy parameter
ε ∈ (0, 1).

1. Let S0 ⊆ [n] be an arbitrary set of full-rank vectors with |S0| = b.
2. Let t← 1 and Z1 ←

∑
i∈S0

viv⊤
i .

3. Repeat
(a) Find it ∈ St−1 and jt ∈ [n] \ St−1 such that

(it, jt) = argmin
(i,j):i∈St−1,j∈[n]\St−1

tr
((

Zt − viv⊤
i + vjv⊤

j

)−1)
.

(b) Set St ← St−1 ∪ {jt} \ {it} and Zt+1 ← Zt − vitv
⊤
it

+ vjtv
⊤
jt

and
t← t+ 1.

Until tr(Z−1
t ) >

(
1− ε

b

)
tr(Z−1

t−1).

4. Return St−2 as the solution set.

To analyze the change of the objective value in each iteration, we will apply
Lemma 2.13 which states that if 2⟨vitv⊤

it
,Z−1

t ⟩ < 1, then

(3.1) tr(Z−1
t+1)− tr(Z−1

t ) ≤
⟨vitv⊤

it
,Z−2

t ⟩
1− 2⟨vitv⊤

it
,Z−1

t ⟩︸ ︷︷ ︸
loss

−
⟨vjtv⊤

jt
,Z−2

t ⟩
1 + 2⟨vjtv⊤

jt
,Z−1

t ⟩︸ ︷︷ ︸
gain

.

Therefore, to upper bound the A-design objective of the solution, we upper bound the
loss term and lower bound the gain term to quantify the progress in each iteration.

In the following lemma, we first prove the existence of it with small loss term,
with respect to a fractional solution x with ∥x∥1 = q < b − 2d. Note that we only
restrict our choice of it to those vectors that satisfy 2⟨vitv⊤

it
,Z−1

t ⟩ < 1 so that (3.1)
applies; clearly Fedorov’s exchange method could only do better by considering all
possible vectors in the current solution.

Lemma 3.5 (loss). For any x ∈ [0, 1]n with
∑n

i=1 x(i) = q < b − 2d and any
S ⊆ [n] with |S| = b, there exists i ∈ S′ := {j ∈ S : 2⟨vjv⊤

j ,Z−1⟩ < 1} with

⟨viv⊤
i ,Z−2⟩

1− 2⟨viv⊤
i ,Z−1⟩

≤ tr(Z−1)− ⟨XS ,Z−2⟩
b− x(S)− 2d

.

Proof. Consider the distribution of removing a vector vi with probability

Pr[it = i] =

(
1− x(i)

)
·
(
1− 2⟨viv⊤

i ,Z−1⟩
)∑

j∈S′

(
1− x(j)

)
·
(
1− 2⟨vjv⊤

j ,Z−1⟩
) for each i ∈ S′.

We first check that the probability distribution is well-defined. Note that the nu-
merator is nonnegative as 1 − 2⟨viv⊤

i ,Z−1⟩ > 0 for each i ∈ S′. The denominator
is ∑

j∈S′

(
1− x(j)

)
·
(
1− 2⟨vjv⊤

j ,Z−1⟩
)
≥
∑
j∈S

(
1− x(j)

)
·
(
1− 2⟨vjv⊤

j ,Z−1⟩
)

≥
∑
j∈S

(
1− x(j)

)
− 2

∑
j∈S

⟨vjv⊤
j ,Z−1⟩

= b− x(S)− 2d > 0,
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918 LAP CHI LAU AND HONG ZHOU

where the first inequality holds as 1 − 2⟨vjv⊤
j ,Z−1⟩ ≤ 0 for j ∈ S \ S′, the second

inequality follows from 1 − x(j) ≤ 1 for each j ∈ [n], and the equality is by |S| = b
and ⟨

∑
j∈S vjv⊤

j ,Z−1⟩ = ⟨Z ,Z−1⟩ = d, and the strict inequality is by the assumption
b > q+2d ≥ x(S)+2d. Thus, Pr[it = i] ≥ 0 for each i ∈ S′, and clearly

∑
i∈S′ Pr[it =

i] = 1.
The expected loss using this probability distribution is

E

[
⟨vitv⊤

it ,Z
−2⟩

1− 2⟨vitv⊤
it
,Z−1⟩

]
=
∑
i∈S′

(
1− x(i)

)
·
(
1− 2⟨viv⊤

i ,Z−1⟩
)∑

j∈S′
(
1− x(j)

)
·
(
1− 2⟨vjv⊤

j ,Z−1⟩
) · ⟨viv⊤

i ,Z−2⟩
1− 2⟨viv⊤

i ,Z−1⟩

=

∑
i∈S′

(
1− x(i)

)
· ⟨viv⊤

i ,Z−2⟩∑
j∈S′

(
1− x(j)

)
·
(
1− 2⟨vjv⊤

j ,Z−1⟩
)

≤ tr(Z−1)− ⟨XS ,Z−2⟩
b− x(S)− 2d

,

where the last inequality follows from the inequality above for the denominator and∑
i∈S′

(
1− x(i)

)
· ⟨viv⊤

i ,Z−2⟩ ≤
∑
i∈S

(
1− x(i)

)
· ⟨viv⊤

i ,Z−2⟩ = ⟨Z ,Z−2⟩ − ⟨XS ,Z−2⟩

= tr(Z−1)− ⟨XS ,Z−2⟩

for the numerator. Therefore, there exists an i ∈ S′ with loss at most the expected
value.

Next we show the existence of jt with large gain term, again with respect to a
fractional solution x .

Lemma 3.6 (gain). For any x ∈ [0, 1]n with
∑n

i=1 x(i) = q < b and any S ⊆ [n]
with |S| = b and x(S) < q, there exists j ∈ [n] \ S with

⟨vjv⊤
j ,Z−2⟩

1 + 2⟨vjv⊤
j ,Z−1⟩

≥ ⟨X ,Z−2⟩ − ⟨XS ,Z−2⟩
q − x(S) + 2⟨X ,Z−1⟩

.

Proof. Consider the probability distribution of adding a vector vj where each
j ∈ [n] \ S is sampled with probability

Pr[jt = j] =
x(j) ·

(
1 + 2⟨vjv⊤

j ,Z−1⟩
)∑

i∈[n]\S x(i) ·
(
1 + 2⟨viv⊤

i ,Z−1⟩
) for each j ∈ [n] \ S.

Note that the denominator is positive by the assumption x(S) < q which implies that
x([n] \ S) > 0, and so the probability distribution is well-defined.

The expected gain using this probability distribution is

E

[
⟨vjtv⊤

jt
,Z−2⟩

1 + 2⟨vjtv⊤
jt
,Z−1⟩

]
=
∑

j∈[n]\S

x(j) ·
(
1 + 2⟨vjv⊤

j ,Z−1⟩
)∑

i∈[n]\S x(i)·
(
1 + 2⟨viv⊤

i ,Z−1⟩
) · ⟨vjv⊤

j ,Z−2⟩
1+2⟨vjv⊤

j ,Z−1⟩

=

∑
j∈[n]\S x(j) · ⟨vjv⊤

j ,Z−2⟩∑
i∈[n]\S x(i) ·

(
1 + 2⟨viv⊤

i ,Z−1⟩
)

=
⟨X ,Z−2⟩ − ⟨XS ,Z−2⟩

q − x(S) +
∑

i∈[n]\S 2x(i) · ⟨viv⊤
i ,Z−1⟩

≥ ⟨X ,Z−2⟩ − ⟨XS ,Z−2⟩
q − x(S) + 2⟨X ,Z−1⟩

,
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where the third equality is by
∑n

i=1 x(i) = q, and the last inequality holds because∑
i∈[n]\S x(i) · viv⊤

i ≼ X . Therefore, there exists j ∈ [n]\S with gain at least the
expected value.

We are about ready to analyze when the objective value would decrease. The
following lemma will be used to bound the denominator of the gain term, and also to
relate the numerator of the gain term to the current objective value tr(Z−1).

Lemma 3.7. For any given d× d positive definite matrices A,B ≻ 0,

⟨A,B2⟩ ≥ (tr(B))2

tr
(
A−1

) and(3.2)

⟨A,B⟩ ≤
√
tr(A) · ⟨A,B2⟩.(3.3)

Proof. Let A =
∑d

i=1 aiuiu
⊤
i and B =

∑d
j=1 bjwjw⊤

j be the eigendecomposition
of A and B. Then,

tr(B) =

d∑
j=1

bj =
∑

1≤i,j≤d

bj · ⟨ui,wj⟩2 =
∑

1≤i,j≤d

√
aibj⟨ui,wj⟩ ·

1
√
ai
⟨ui,wj⟩

≤
√ ∑

1≤i,j≤d

aib2j ⟨ui,wj⟩2 ·
∑

1≤i,j≤d

1

ai
⟨ui,wj⟩2

=
√
⟨A,B2⟩ · tr(A−1),

where the second equality and the last equality hold as {ui}di=1 and {wj}dj=1 are or-
thonormal bases, and the inequality is by Cauchy–Schwarz. For the second inequality,

⟨A,B⟩ =
∑

1≤i,j≤d

aibj⟨ui,wj⟩2 ≤
√ ∑

1≤i,j≤d

ai⟨ui,wj⟩2 ·
∑

1≤i,j≤d

aib2j ⟨ui,wj⟩2

=
√
tr(A) · ⟨A,B2⟩,

where the equalities hold as {ui} and {wj} are orthonormal bases and the inequality
is by Cauchy–Schwarz.

The following is the main technical result for A-design, which lower bounds the
improvement of the objective value in each iteration. Note that the result depends
on tr(X ) · tr(X−1).

Proposition 3.8 (progress). Suppose we are given a fractional solution x ∈
[0, 1]n such that

∑n
i=1 x(i) = q. Let Zt be the current solution in the tth iteration of

Fedorov’s exchange method. For any ε > 0, if

tr(Z−1
t ) ≥ (1 + ε) tr(X−1) and b ≥ q + 2d+ 2(1 + ε)

√
tr(X ) · tr(X−1),

then

tr
(
Z−1
t+1

)
≤
(
1− ε

b

)
· tr
(
Z−1
t

)
.

Proof. For simplicity, we denote S := St−1 as the current solution set and Z := Zt

as the current solution matrix at time t. Note thatx(S) < q, as otherwise tr(Z−1) ≤
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tr(X−1) and the assumption does not hold. Hence, we can apply Lemma 3.6 to prove
the existence of a jt ∈ [n]\S such that the gain term is

⟨vjtv⊤
jt
,Z−2⟩

1 + 2⟨vjtv⊤
jt
,Z−1⟩

≥ ⟨X ,Z−2⟩ − ⟨XS ,Z−2⟩
q − x(S) + 2⟨X ,Z−1⟩

≥ ⟨X ,Z−2⟩ − ⟨XS ,Z−2⟩
q − x(S) + 2

√
tr(X ) · ⟨X ,Z−2⟩

≥
tr(Z−1)2

tr(X−1) − ⟨XS ,Z−2⟩

q − x(S) + 2
√
tr(X ) · tr(Z

−1)2

tr(X−1)

=

tr(Z−1)
tr(X−1) · tr(Z

−1)− ⟨XS ,Z−2⟩

q − x(S) + 2 tr(Z−1)
tr(X−1) ·

√
tr(X ) · tr(X−1)

≥ (1 + ε) tr(Z−1)− ⟨XS ,Z−2⟩
q − x(S) + 2(1 + ε)

√
tr(X ) · tr(X−1)

≥ (1 + ε) tr(Z−1)− ⟨XS ,Z−2⟩
b− x(S)− 2d

,

where the second inequality is by (3.3), the third inequality follows from ⟨X ,Z−2⟩ ≥
(tr(Z−1))2

tr(X−1) by (3.2) and an application of Claim 2.14 with f(x) = x−c1
c2+c3

√
x
to establish

monotonicity, the fourth inequality follows from the first assumption that tr(Z−1) ≥
(1+ ε) tr(X−1) and another application of Claim 2.14 with g(x) = x−c1

c2+c3x
to establish

monotonicity, and the last inequality follows from the second assumption that b ≥
q + 2d+ 2(1 + ε)

√
tr(X ) · tr(X−1).

For the loss term, note that q < b − 2d by the assumption on b, and so we can
apply Lemma 3.5 to prove the existence of an it ∈ S′ ⊆ S such that the loss term is

⟨vitv⊤
it
,Z−2⟩

1− 2⟨vitv⊤
it
,Z−1⟩

≤ tr(Z−1)− ⟨XS ,Z−2⟩
b− x(S)− 2d

.

Since it ∈ S′ satisfies 2⟨vitv⊤
it
,Z−1

t ⟩ < 1, we can apply (3.1) to conclude that

tr(Z−1
t+1)− tr(Z−1

t ) = tr
(
(Zt − vitv

⊤
it + vjtv

⊤
jt )

−1
)
− tr

(
Z−1
t

)
≤

⟨vitv⊤
it
,Z−2⟩

1− 2⟨vitv⊤
it
,Z−1⟩

−
⟨vjtv⊤

jt
,Z−2⟩

1 + 2⟨vjtv⊤
jt
,Z−1⟩

≤ −ε tr(Z−1
t )

b− x(S)− 2d
≤ −ε

b
tr(Z−1

t ).

The main result in this subsection follows from Proposition 3.8 by a simple scaling
argument.

Theorem 1.2. Let X :=
∑n

i=1 x(i) · viv⊤
i with

∑n
i=1 x(i) = b and x(i) ∈ [0, 1]

for 1 ≤ i ≤ n be a fractional solution to A-design. For any ε ∈ (0, 1), the Fedorov’s
exchange method returns an integral solution Z =

∑n
i=1 z(i) · viv⊤

i with
∑n

i=1 z(i) ≤ b
and z(i) ∈ {0, 1} for 1 ≤ i ≤ n such that

tr
(
Z−1

)
≤ (1 + ε) · tr(X−1) whenever b ≳

d+
√

tr(X ) tr (X−1)

ε
.
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In particular, let κ = λmax(X∗)
λmin(X∗) be the condition number of an optimal solution X ∗; then

the Fedorov’s exchange method gives a (1 + ε)-approximation algorithm for A-design

whenever b ≳
(1+

√
κ)·d

ε , and the time complexity is polynomial in n, d, 1
ε , κ.

Proof. We consider the following scaled-down version y ,Y of the fractional solu-
tion x ,X . Let

q := b−2d−2(1+ε)
√

tr(X ) · tr((X )−1), y :=
q

b
·x , Y :=

n∑
i=1

y(i)·viv⊤
i =

q

b
·X .

Note that tr(Y ) · tr
(
Y −1

)
= tr(X ) · tr

(
X−1

)
and so it holds that b ≥ q + 2d+ 2(1 +

ε)
√

tr(Y ) · tr(Y −1). Thus, we can apply Proposition 3.8 on y to conclude that if
the algorithm terminates at the τth iteration such that tr(Z−1

τ+1) > (1 − ε
b ) tr(Z

−1
τ ),

then

tr
(
Z−1
τ

)
< (1 + ε) · tr

(
Y −1

)
=

(1 + ε)b

q
· tr
(
X−1

)
≤
(
1 +O(ε)

)
· tr
(
X−1

)
,

where the last inequality follows from the assumption b ≳ 1
ε

(
d +

√
tr(X ) tr(X−1)

)
,

which implies that q ≥ (1− O(ε))b. This proves the approximation guarantee of the
returned solution.

Finally, we bound the time complexity of the algorithm. If the algorithm runs for

τ > b
ε ln

tr(Z−1
1 )

tr(X−1) iterations, then the termination condition implies that the objective

value of Zτ+1 is at most

tr(Z−1
τ+1) ≤

(
1− ε

b

)τ
· tr
(
Z−1
1

)
≤ e−

ετ
b · tr

(
Z−1
1

)
≤ tr

(
X−1

)
.

Note that ln
tr(Z−1

1 )
tr(X−1) is upper bounded by a polynomial in d, n and the input size as

proved in [28] (and the corresponding bound for D-design is discussed in the proof of
Theorem 1.1 in section 3.1).

As a corollary, we extend the analysis of Fedorov’s exchange method in [28] to
the more general without-repetition setting.

Corollary 3.9. Let x ∈ [0, 1]n be a fractional solution to the convex program-

ming relaxation (1.1) for A-design with
∑n

i=1 x(i) = b. If ∥vi∥2 ≤ ε2b
2 tr(X−1) for

each 1 ≤ i ≤ n and b ≳ d
ε for some ε ∈ (0, 1), then Fedorov’s exchange method

for A-design returns a solution with at most b vectors with objective value at most(
1 +O(ε)

)
· tr
(
X−1

)
in polynomial time.

Proof. It follows from the assumption ∥vi∥2 ≤ ε2b
2 tr(X−1) that

tr
(
X−1

)
· tr(X ) = tr

(
X−1

)
·

n∑
i=1

x(i) · ∥vi∥22 ≤ tr(X−1) · ε2b2

2 tr(X−1)
=

ε2b2

2
.

For b ≳ d
ε , it follows that b ≥

1
ε (d+

√
ε2b2/2) ≥ 1

ε (d+
√

tr(X ) tr(X−1)), and so The-
orem 1.2 implies that Fedorov’s exchange method will find a (1 +O(ε))-approximate
solution in polynomial time.
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3.3. Combinatorial local search algorithm for E-design. Different from
D-design and A-design, there are simple examples (see section 3.3.2) showing that Fe-
dorov’s exchange method does not work for E-design, even if there is a well-conditioned
optimal solution.

Instead, we prove that the rounding algorithm by Allen-Zhu et al. [3] for E-design
can be used as a combinatorial local search algorithm as well. The only difference is
that the rounding algorithm in [3] will first compute an optimal fractional solution
x to the convex programming relaxation and then perform a linear transformation
so that

∑n
i=1 x(i) · viv⊤

i = I , before applying the following combinatorial algorithm.
Our analysis will show that the combinatorial algorithm works well as long as there
is an approximately optimal fractional solution with good condition number, so this
tells us that the only essential use of an optimal fractional solution in the rounding
algorithm is for preconditioning.

The following algorithm assumes the knowledge of the objective value λ∗ of the
optimal fractional solution of the following natural convex programming relaxation
for E-design:

(3.4)

maximize
x∈Rn

λmin

( n∑
i=1

x(i) · viv⊤
i

)

subject to

n∑
i=1

x(i) ≤ b,

0 ≤ x(i) ≤ 1 for 1 ≤ i ≤ n.

We will guess this value in the proof of Theorem 1.3.

Combinatorial local search algorithm for E-optimal design
Input: n vectors v1, . . . , vn ∈ Rd, a budget b ≥ d, an accuracy parameter ε ∈
(0, 1), and a targeted objective value λ∗.

1. Initialization: Let S0 ⊆ [n] be an arbitrary set with |S0| = b. Set t ← 1

and α←
√
d

ελ∗ .
2. Repeat

(a) Let Zt :=
∑

i∈St−1
viv⊤

i . Compute At ← (αZt − ctI )
−2

where ct ∈ R
is the unique scalar such that At ≻ 0 and tr(At) = 1.

(b) Let S′
t−1 := {i ∈ St−1 : 2α⟨viv⊤

i ,A1/2
t ⟩ < 1}.

(c) Find it ∈ S′
t−1 and jt ∈ [n] \ St−1 such that

(it, jt) = argmax
(i,j): i∈S′

t−1, j∈[n]\St−1

Φ(At, i, j),

where Φ(At, i, j) :=
⟨vjv⊤

j ,At⟩
1+2α⟨vjv⊤

j ,A1/2
t ⟩
− ⟨viv⊤

i ,At⟩
1−2α⟨viv⊤

i ,A1/2
t ⟩

.

(d) Set St ← St−1 ∪ {jt} \ {it} and t← t+ 1.
Until Φ(At−1, it−1, jt−1) <

ελ∗

b or λmin(Zt−1) ≥ (1− 2ε)λ∗.
3. Return St−2 as the solution set.

The regret minimization framework developed in [1, 3] bounds the minimum
eigenvalue of the current solution using the potential functions Φ(At, i, j) that we are
optimizing in each iteration. ApplyingCorollary 2.2 with feedback matrices F0 = Z1 ≽
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0 and Ft = vjtv
⊤
jt
− vitv

⊤
it

for t ≥ 1, as long as 1 > 2α⟨vitv⊤
it
,A

1
2
t ⟩ for all 1 ≤ t ≤ τ , we

have

(3.5)

λmin(Zτ+1) ≥
τ∑

t=1

(
⟨vjtv⊤

jt
,At⟩

1 + 2α⟨vjtv⊤
jt
,A

1
2
t ⟩︸ ︷︷ ︸

gain

−
⟨vitv⊤

it
,At⟩

1− 2α⟨vitv⊤
it
,A

1
2
t ⟩︸ ︷︷ ︸

loss

)
− 2
√
d

α

=

τ∑
t=1

Φ(At, it, jt)−
2
√
d

α
.

Therefore, in order to lower bound the minimum eigenvalue of the solution, we upper
bound the loss term and lower bound the gain term to quantify the progress in each
iteration.

First, we show the existence of it with small loss, with respect to a fractional
solution x .

Lemma 3.10 (loss). Let S := St−1, S
′ := S′

t−1, Z := Zt, and A := At. For any

x ∈ [0, 1]n with
∑n

i=1 x(i) = q < b− 2α⟨Z ,A
1
2 ⟩, there exists i ∈ S′ with

⟨viv⊤
i ,A⟩

1− 2α⟨viv⊤
i ,A

1
2 ⟩
≤ ⟨Z ,A⟩ − ⟨XS ,A⟩

b− x(S)− 2α⟨Z ,A
1
2 ⟩

.

Proof. Consider the probability distribution of removing a vector vi with proba-
bility

Pr[it = i] =
(1− x(i))(1− 2α⟨viv⊤

i ,A
1
2 ⟩)∑

j∈S′(1− x(j))(1− 2α⟨vjv⊤
j ,A

1
2 ⟩)

∀i ∈ S′.

We check that the probability distribution is well-defined. Note that the numerator
is nonnegative as 1− 2α⟨viv⊤

i ,A
1
2 ⟩ > 0 for each i ∈ S′. The denominator is∑

j∈S′

(
1− x(j)

)
·
(
1− 2α⟨vjv⊤

j ,A
1
2 ⟩
)
≥
∑
j∈S

(
1− x(j)

)
·
(
1− 2α⟨vjv⊤

j ,A
1
2 ⟩
)

≥
∑
j∈S

(
1− x(j)

)
− 2α

∑
j∈S

⟨vjv⊤
j ,A

1
2 ⟩

= b− x(S)− 2α⟨Z ,A
1
2 ⟩ > 0,

where the first inequality holds as 1 − 2α⟨vjv⊤
j ,A

1
2 ⟩ ≤ 0 for j ∈ S \ S′, the second

inequality follows from 1 − x(j) ≤ 1 for each j ∈ [n], and the equality is by |S| = b,

and the strict inequality is by the assumption b > q+2α⟨Z ,A
1
2 ⟩ ≥ x(S)+ 2α⟨Z ,A

1
2 ⟩.

Thus, Pr[it = i] ≥ 0 for each i ∈ S′, and clearly
∑

i∈S′ Pr[it = i] = 1.
The expected loss using this probability distribution is

E

[
⟨vitv⊤

it ,A⟩
1− 2α⟨vitv⊤

it
, A

1
2 ⟩

]
=
∑
i∈S′

(
1− x(i)

)
·
(
1− 2α⟨viv⊤

i ,A
1
2 ⟩
)∑

j∈S′
(
1− x(j)

)
·
(
1− 2α⟨vjv⊤

j ,A
1
2 ⟩
) · ⟨viv⊤

i ,A⟩
1− 2α⟨viv⊤

i ,A
1
2 ⟩

=

∑
i∈S′

(
1− x(i)

)
· ⟨viv⊤

i ,A⟩∑
j∈S′

(
1− x(j)

)
·
(
1− 2α⟨vjv⊤

j ,A
1
2 ⟩
)

≤ ⟨Z ,A⟩ − ⟨XS ,A⟩
b− x(S)− 2α⟨Z ,A

1
2 ⟩

,

where the inequality is from the above inequality for the denominator and∑
i∈S′

(
1− x(i)

)
· ⟨viv⊤

i ,A⟩ ≤
∑
i∈S

(
1− x(i)

)
· ⟨viv⊤

i ,A⟩ = ⟨Z ,A⟩ − ⟨XS ,A⟩
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for the numerator. Therefore, there exists an i ∈ S′ with loss at most the expected
value.

Next, we show the existence of jt with large gain term, again with respect to a
fractional solution.

Lemma 3.11 (gain). Let S := St−1 and A := At. For any x ∈ [0, 1]n with∑n
i=1 x(i) = q < b and x(S) < q, there exists j ∈ [n] \ S with

⟨vjv⊤
j ,A⟩

1 + 2α⟨vjv⊤
j ,A

1
2 ⟩
≥ ⟨X ,A⟩ − ⟨XS ,A⟩

q − x(S) + 2α⟨X ,A
1
2 ⟩

.

Proof. Consider the probability distribution of adding a vector vj where each
j ∈ [n] \ S is sampled with probability

Pr[jt = j] =
x(j) ·

(
1 + 2α⟨vjv⊤

j ,A
1
2 ⟩
)∑

i∈[n]\S x(i) ·
(
1 + 2α⟨viv⊤

i ,A
1
2 ⟩
) for each j ∈ [n] \ S.

Note that the denominator is positive by the assumption x(S) < q which implies that
x([n] \ S) > 0.

The expected gain with respect to this probability distribution is

E

[
⟨vjtv⊤

jt ,A⟩
1 + 2α⟨vjtv⊤

jt
,A

1
2 ⟩

]
=

∑
j∈[n]\S

x(j) ·
(
1 + 2α⟨vjv⊤

j ,A
1
2 ⟩
)∑

i∈[n]\S x(i)
(
1 + 2α⟨viv⊤

i ,A
1
2 ⟩
) ·

⟨vjv⊤
j ,A⟩

1 + 2α⟨vjv⊤
j ,A

1
2 ⟩

=

∑
j∈[n]\S x(j) · ⟨vjv⊤

j ,A⟩∑
i∈[n]\S x(i) ·

(
1 + 2α⟨viv⊤

i ,A
1
2 ⟩
)

=
⟨X ,A⟩ − ⟨XS ,A⟩

q − x(S) + 2α
∑

i∈[n]\S x(i)⟨viv⊤
i ,A

1
2 ⟩

≥ ⟨X ,A⟩ − ⟨XS ,A⟩
q − x(S) + 2α⟨X ,A

1
2 ⟩

,

where the third equality is by
∑n

i=1 x(i) = q and the last inequality holds because∑
i∈[n]\S x(i) · viv⊤

i ≼ X . Therefore, there exists j ∈ [n] \ S with gain at least the
expected value.

The following is the main technical result for E-design, which lower bounds the
improvement of the potential function in each iteration. Note that the result depends
on the condition number of the fractional solution.

Proposition 3.12 (progress). Let x ∈ [0, 1]n be a fractional solution with∑n
i=1 x(i) = q. Let Zt =

∑
i∈St−1

viv⊤
i be the current solution in the tth iteration.

For any 0 < ε < 1
2 , if

α =

√
d

ε · λmin(X )
, λmin(Zt) ≤ (1−2ε)·λmin(X ), and b ≥ q+2

(
d+

d

ε

)
+
2d

ε

√
λavg(X )

λmin(X )
,

where λavg(X ) = tr(X)
d is the average eigenvalue of X , then the value of the potential

function is

Φ(At, it, jt) =
⟨vjtv⊤

jt
,At⟩

1 + 2α⟨vjtv⊤
jt
,A

1
2
t ⟩
−

⟨vitv⊤
it
,At⟩

1− 2α⟨vitv⊤
it
,A

1
2
t ⟩
≥ ε

b
· λmin(X ).
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Proof. Let S := St−1 be the current solution set at time t, A = At, and Z = Zt.
Note that x(S) < q, as otherwise λmin(Z ) ≥ λmin(X ) and the assumption does not
hold. Hence, we can apply Lemma 3.11 to show the existence of jt ∈ [n]\S with gain

⟨vjtv⊤
jt
,A⟩

1 + 2α⟨vjtv⊤
jt
,A

1
2 ⟩
≥ ⟨X ,A⟩ − ⟨XS ,A⟩

q − x(S) + 2α⟨X ,A
1
2 ⟩
≥ ⟨X ,A⟩ − ⟨XS ,A⟩

q − x(S) + 2α
√
tr(X ) · ⟨X ,A⟩

≥ λmin(X )− ⟨XS ,A⟩
q − x(S) + 2α

√
tr(X ) · λmin(X )

=
λmin(X )− ⟨XS ,A⟩

q − x(S) + 2d
ε

√
λavg(X)
λmin(X)

,

where the second inequality is by (3.3) in Lemma 3.7, the third inequality is by
Claim 2.14 and the fact that ⟨X ,A⟩ ≥ ⟨λmin(X ) · I ,A⟩ ≥ λmin(X ) as tr(A) = 1, and

the last equality is by the choice α =
√
d

ελmin(X) and the definition of λavg(X ).

For the loss term, we need to check the condition that b > q + 2α⟨Zt,A
1
2 ⟩ before

applying Lemma 3.10. It follows from Lemma 2.3 and the assumptions of α, λmin(Z ),
and b that

α⟨Z ,A
1
2 ⟩ ≤ d+ α

√
d · λmin(Z ) ≤ d+

d

ε
=⇒ b > q + 2α · ⟨Z ,A

1
2 ⟩.(3.6)

Hence, Lemma 3.10 implies the existence of an it ∈ S with loss

⟨vitv⊤
it
,A⟩

1− 2α⟨vitv⊤
it
,A

1
2 ⟩
≤ ⟨Z ,A⟩ − ⟨XS ,A⟩

b− x(S)− 2α⟨Z ,A
1
2 ⟩
≤

λmin(Z ) +
√
d

α − ⟨XS ,A⟩
b− x(S)− 2

(
d+ d

ε

)
≤ (1− ε)λmin(X )− ⟨XS ,A⟩

q − x(S) + 2d
ε

√
λavg(X)
λmin(X)

,

where the second inequality is by Lemma 2.3 and the inequality about α⟨Z ,A
1
2 ⟩

in (3.6), and the last inequality is by our assumptions about α, λmin(Z ) and b.
Therefore, we conclude that the progress in each iteration is

Φ(A, it, jt) =
⟨vjtv⊤

jt
,A⟩

1 + 2α⟨vjtv⊤
jt
,A

1
2 ⟩
−

⟨vitv⊤
it
,A⟩

1− 2α⟨vitv⊤
it
,A 1

2 ⟩

≥ ε · λmin(X )

q − x(S) + 2d
ε

√
λavg(X)
λmin(X)

≥ ε

b
· λmin(X ),

where the last inequality follows from the assumption about b.

By guessing the targeted objective value, the main result in this subsection follows
from Proposition 3.12 by a simple scaling argument.

Theorem 1.3. Let X :=
∑n

i=1 x(i) · viv⊤
i with

∑n
i=1 x(i) = b and x(i) ∈ [0, 1]

for 1 ≤ i ≤ n be a fractional solution to E-design. For any ε ∈ (0, 1), there is a
combinatorial local search algorithm which returns an integral solution Z =

∑n
i=1 z(i)·

viv⊤
i with

∑n
i=1 z(i) ≤ b and z(i) ∈ {0, 1} for 1 ≤ i ≤ n such that

λmin(Z ) ≥ (1− ε) · λmin (X ) whenever b ≳
d

ε2

√
λavg(X )

λmin(X )
,

where λavg(X ) = tr(X)
d is the average eigenvalue of X .
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926 LAP CHI LAU AND HONG ZHOU

In particular, let κ = λmax(X∗)
λmin(X∗) be the condition number of an optimal solution

X ∗; then the combinatorial local search method gives a polynomial time (1 − ε)-

approximation algorithm for E-design whenever b ≳ d
√
κ

ε2 , and the time complexity
is polynomial in n, d, 1

ε , κ.

Proof. We consider the following scaled-down version y ,Y of the fractional solu-
tion x ,X . Let

q = b− 2
(
d+

d

ε

)
− 2d

ε

√
λavg(X )

λmin(X )
, y :=

q

b
· x , Y :=

n∑
i=1

y(i) · viv⊤
i =

q

b
· X .

Note that λl(Y ) = q
b · λl(X) for each 1 ≤ l ≤ d, and this implies that b = q + 2(d +

d
ε ) +

2d
ε

√
λavg(Y )
λmin(Y ) .

Suppose the combinatorial local search algorithm is running with the accuracy
parameter ε and λ∗ := λmin(Y ) and terminates at the τth iteration. If Φ(Aτ , iτ , jτ ) <
ε
b · λmin(Y ), then we can apply Proposition 3.12 on y to conclude that

λmin(Zτ ) > (1− 2ε) · λmin(Y ) =
(1− 2ε)q

b
· λmin(X ) ≥

(
1−O(ε)

)
· λmin(X ),

where the last inequality is by the assumption that b ≳ d
ε2

√
λavg(X)
λmin(X) . This proves

the approximate guarantee of the returned solution if the algorithm is run with λ∗ =
λmin(Y ).

Our final algorithm runs the local search algorithm on different values of λ∗.
Initially, we start from an upper bound on λmin(X ) by setting λ∗ = λmin

(∑n
i=1 viv⊤

i

)
.

Then it runs the local search algorithm with targeted objective value λ∗. If the
returned solution Z satisfies λmin(Z ) ≥

(
1−O(ε)

)
·λ∗, then it stops and returns Z as

our final solution; otherwise, we set λ∗ ← (1 − ε) · λ∗ and repeat until the first time
that the local search algorithm finds a solution with λmin(Z ) ≥

(
1 − O(ε)

)
· λ∗. For

correctness, it is enough to show that the algorithm will stop when (1−ε) ·λmin(X ) ≤
λ∗ ≤ λmin(X ). This follows by applying the argument in the previous paragraphs on
X ′ := λ∗

λmin(X) ·X , so that λmin(X ′) = λ∗ and then the returned solution Z ′ will satisfy

λmin(Z ′) ≥
(
1−O(ε)

)
· λmin(X ′) ≥

(
1−O(ε)

)
· λmin(X ).

Finally, we bound the time complexity of the algorithm. Note that b
n

∑
i=1 viv⊤

i

is a feasible solution with objective value b
n · λmin

(∑n
i=1 viv⊤

i

)
. This implies that the

number of executions of the local search algorithm is at most O
(
1
ε log

n
b

)
. In each

execution with a fixed λ∗, if the algorithm runs for τ ≥ b
ε iterations, the termination

condition together with (3.5) imply that

λmin(Zτ+1) ≥
τ∑

t=1

Φ(At, it, jt)−
2
√
d

α
≥ τ

(ελ∗

b

)
− 2ελ∗ > (1− 2ε)λ∗,

and so it would stop. Thus, the total number of iterations is at most O
(

b
ε2 log

n
b

)
.

Each iteration can be implemented in polynomial time as shown in [3].

The following is a corollary in the short vector setting.

Corollary 3.13. Let x ∈ [0, 1]n be a fractional solution to the E-design problem

with budget b. For any 0 < ε < 1, if ∥vi∥2 ≤ ε2 · λmin(X ) for 1 ≤ i ≤ n and b ≳ d
ε2 ,

then the combinatorial local search algorithm for E-design returns a solution with at
most b vectors and objective value at least

(
1−O(ε)

)
· λmin(X ) in polynomial time.
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Proof. It follows from the assumption ∥vi∥2 ≤ ε2 · λmin(X ) that

λavg(X ) =
tr(X )

d
≤ bε2 · λmin(X )

d
=⇒ 2d

ε2

√
λavg(X )

λmin(X )
≤ 2
√
bd

ε
.

Thus, for b ≳ d
ε2 , it follows that b ≥

√
bd
ε ≥

d
ε2

√
λavg(X)
λmin(X) , and so Theorem 1.3 implies

that the combinatorial local search algorithm will find a
(
1 − O(ε)

)
-approximate

solution in polynomial time.

3.3.1. Maximizing algebraic connectivity. In this problem, we are given a
graph G = (V,E) with Laplacian matrix LG =

∑
e∈E beb⊤

e , and the goal is to find
a subgraph H with at most b edges to maximize λ2(LH). This problem is known as
maximizing algebraic connectivity in the literature. It is a special case of E-design
and Theorem 1.3 bounds the performance guarantee of a simple combinatorial local
search algorithm.

Corollary 1.6. For any 0 < ε < 1, there is a polynomial time combinato-
rial (1− ε)-approximation algorithm for maximizing algebraic connectivity in an un-
weighted graph whenever b ≳ n

ε4λ∗
2
, where λ∗

2 is the optimal value of a natural convex

programming relaxation (see (3.4)).

Proof. Note that this is an E-design problem by using the vectors be project-
ing onto the (n−1)-dimensional subspace orthogonal to the all-one vector. Let x∗

be an optimal fractional solution of the convex relaxation for maximizing algebraic

connectivity in (3.4). Note that λavg(Lx∗) = tr(Lx∗ )
n ≤ 2b

n , and so

b ≳
n

ε4λ2(Lx∗)
=⇒ b ≥ n

ε2

√
2b

nλ2(Lx∗)
≥ n

ε2

√
λavg(Lx∗)

λ2(Lx∗)
.

Therefore, by Theorem 1.3, the combinatorial local search algorithm for E-design
returns a subgraph H with λ2(LH) ≥

(
1−O(ε)

)
·λ2(Lx∗) in polynomial time whenever

b ≳ n
ε4λ2(Lx∗ )

.

3.3.2. Bad examples for local search algorithms. We first present a simple
example showing that Fedorov’s exchange method does not work with the E-design
objective function, even if there is a well-conditioned optimal solution. The reason
is simply that the E-design objective function is not smooth and sometimes it is
impossible to improve it by an exchange operation.

Example 3.14. Suppose the input vectors v1, . . . , vn are in Rd for some d ≥ 3.
Suppose that we have an initial solution set S0 ⊆ [n] such that Z1 =

∑
i∈S0

viv⊤
i = I .

For any i1 ∈ S0 and j1 ∈ [n]\S0, note that λmin(Z1 − vi1v
⊤
i1

+ vj1v
⊤
j1
) ≤ 1. Therefore,

Fedorov’s method fails to improve the objective value even if there is a well-conditioned
optimal solution, say, Ne1, . . . , Ned for a large N .

Then, we present an example where all exchanges strictly decrease the minimum
eigenvalue, even though the current solution is far away from the well-conditioned
optimal solution.

Example 3.15. Let N ≥ 0 be some large scalar. The input contains exactly b
2

copies of each v1, v2,w1,w2 ∈ R2 defined as follows:
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v1v⊤
1 =

(
1 0
0 0

)
, v2v⊤

2 =

(
0 0
0 1

)
,

w1w⊤
1 =

N

2

(
1 1
1 1

)
, w2w⊤

2 =
N

2

(
1 −1
−1 1

)
.

The optimal solution Z∗ contains b
2 copies of w1w⊤

1 and w2w⊤
2 . Suppose the algorithm

starts with the solution Z1 containing b
2 copies of v1v⊤

1 and v2v⊤
2 such that

Z∗ =

(
bN
2

bN
2

)
with λmin(Z∗) =

bN

2
, Z1 =

(
b
2

b
2

)
with λmin(Z1) =

b

2
.

Without loss of generality, we assume the exchange step removes v1 and adds w1.
After the exchange, the solution is

Z2 =

(
b+N
2 − 1 N

2
N
2

b+N
2

)
.

We can verify that the minimum eigenvalue of Z2 is b−1+N−
√
N2−1

2 , which tends to
b−1
2 when N → ∞. Since all other exchanges are symmetric, we conclude that all

exchanges decrease the objective value by 1
2 , and thus Fedorov’s exchange method

fails.

Finally, we adopt an example by Madan et al. [28] to show that even if we use a
smooth objective function from the regret minimization framework, the combinatorial
local search algorithm may return bad solution when there are no well-conditioned
optimal solutions.

Example 3.16. Let N ≥ 0 be some large scalar. The input contains M ≫ b ≥ 3
copies of each v1, v2,w1,w2 ∈ R2 defined as follows:

v1v⊤
1 =

(
N2 1
1 1

N2

)
, v2v⊤

2 =

(
N2 −1
−1 1

N2

)
,

w1w⊤
1 =

1

b
·
(
N8 N4

N4 1

)
, w2w⊤

2 =
1

b
·
(

N8 −N4

−N4 1

)
.

Proposition 3.17. The combinatorial local search algorithm proposed in this sub-
section may return a solution with an unbounded approximation ratio.

Proof. Note that b
2 copies of w1w⊤

1 and b
2 copies of w2w⊤

2 form an optimal solution
Z∗ with budget b such that

Z∗ =

(
N8

1

)
and λmin(Z∗) = 1.

So our algorithm will choose α =
√
d

ελmin(Z∗) =
√
d
ε =

√
2
ε .

Consider an initial solution Z containing b
2 copies of v1v⊤

1 and b
2 copies of v2v⊤

2

such that

Z =

(
bN2

b
N2

)
and λmin(Z ) =

b

N2
.

The approximation ratio between Z and Z∗ is N2

b , which is unbounded for fixed b
when N →∞.
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With Z as the current solution, the action matrix A is

A = (αZ − cI )−2 =

(√
2bN2

ε − c √
2b

εN2 − c

)−2

≈
(

ε2

2b2N4

1

)
,

where the last approximate equality holds when N →∞ as tr(A) = 1.
The loss of removing vector v1 (removing v2 is similar) from the current solution

is

⟨v1v⊤
1 ,A⟩

1− 2α⟨v1v⊤
1 ,A

1
2 ⟩
≈

ε2

2b2N2 + 1
N2

1− 2
√
2

ε

(
ε√
2b

+ 1
N2

) ≥ 1

N2
,

where we used b ≥ 3 and N is large for the last inequality.
The gain of adding vector v2 is strictly less than the loss of removing v1

⟨v2v⊤
2 ,A⟩

1 + 2α⟨v2v⊤
2 ,A

1
2 ⟩

<
⟨v1v⊤

1 ,A⟩
1− 2α⟨v1v⊤

1 ,A
1
2 ⟩

,

as ⟨v2v⊤
2 ,A⟩ = ⟨v1v1,A⟩ and ⟨v2v⊤

2 ,A
1
2 ⟩ = ⟨v1v1,A

1
2 ⟩. Also, the gain of adding vector

w1 (adding w2 is similar) to the current solution is

⟨w1w⊤
1 , A⟩

1 + 2α⟨w1w⊤
1 ,A

1
2 ⟩
≈

ε2N4

2b3 + 1
b

1 + 2
√
2

ε ( εN6√
2b2

+ 1
b )
≤ ε2

4bN2
+

b

2N6
.

For appropriately chosen b and ε, this gain is always less than the loss when N →∞.
Therefore, the combinatorial local search algorithm will stop and return the initial
solution Z .

4. D/A-optimal design with knapsack constraints. In this section, we pro-
pose the following randomized exchange algorithm to solve the D/A-optimal design
problems with knapsack constraints.

Randomized exchange algorithm
Input: n vectors u1, . . . , un ∈ Rd, an accuracy parameter ε ∈ (0, 1), and m

knapsack constraints cj ∈ Rn
+ with budgets bj ≥

d∥cj∥∞
ε for all j ∈ [m].

1. Solve the convex programming relaxation (1.1) for D-design or A-design
and obtain an optimal solution x ∈ [0, 1]n with at most d2+m fractional
entries, i.e., |{i ∈ [n] | 0 < x(i) < 1}| ≤ d2+m. Let X =

∑n
i=1 x(i) ·uiu⊤

i .
2. Preprocessing: Let vi ← X−1/2ui for all i ∈ [n], so that

∑n
i=1 x(i)·viv⊤

i =
Id.

3. Initialization: t← 1, S0 ← ∅, α← 8
√
d, and k ← 16d+ d2 +m.

4. Add i into S0 independently with probability x(i) for each i ∈ [n]. Let
Z1 ←

∑
i∈S0

viv⊤
i .

5. While the termination condition is not satisfied and t = O
(
k
ε

)
do the

following, where the termination conditions for D-design and A-design
are respectively

det(Zt)
1/d ≥ 1− 10ε and ⟨X−1,Z−1

t ⟩ ≤ (1 + ε) tr(X−1).

(a) St ← Exchange(St−1).
(b) Set Zt+1 ←

∑
i∈St

viv⊤
i and t← t+ 1.

6. Return St−1 as the solution.
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The exchange subroutine is described as follows.

Exchange subroutine
1. Compute the action matrix At := (αZt−ctI )−2, where Zt =

∑
i∈St−1

viv⊤
i

and ct is the unique scalar such that At ≻ 0 and tr(At) = 1.

2. Define S′
t := {i ∈ St−1 | 2α⟨viv⊤

i ,A1/2
t ⟩ ≤ 1

2}.
3. Sample it ∈ S′

t−1 from the following probability distribution:

Pr(it = i) =
1− x(i)

k
·
(
1− 2α⟨viv⊤

i ,A1/2
t ⟩

)
for i ∈ S′

t−1 and

Pr(it = ∅) = 1−
∑

i∈S′
t−1

1− x(i)
k

·
(
1− 2α⟨viv⊤

i ,A1/2
t ⟩

)
.

4. Sample jt ∈ [n]\St−1 from the following probability distribution:

Pr(jt = j) =
x(j)
k
·
(
1 + 2α⟨vjv⊤

j ,A1/2
t ⟩

)
for j ∈ [n]\St−1 and

Pr(jt = ∅) = 1−
∑

j∈[n]\St−1

x(j)
k
·
(
1 + 2α⟨vjv⊤

j ,A1/2
t ⟩

)
.

5. Return St := St−1 ∪ {jt}\{it}.

Remark 4.1. The randomized exchange algorithm is almost the same as the iter-
ative randomized rounding algorithm in [26]. There are only two differences. One is

that α← 8
√
d instead of α←

√
d
ε in [26]. The other is that the termination condition

for E-design, which is λmin(Zt) ≥ 1− 2ε, is replaced by the termination condition for
D-design or the termination condition for A-design.

The parameter α is used to control the approximation guarantee of the algorithm
for E-design. If the termination condition is λmin(Zt) ≥ 3

4 , then it was proved in
Theorem 2.6 (Theorem 3.8 of [26]) that the algorithm will terminate successfully in
O(k) steps with high probability.

Intuition and proof ideas. Given the analysis of Fedorov’s exchange method
for D-design and A-design in section 3, the most natural algorithm is to use the same
distributions there for the rounding algorithm as well. We use D-design to illustrate
the difficulty of analyzing this natural algorithm and to motivate the modifications
made in the randomized exchange algorithm. By applying Lemma 2.11 repeatedly,
for any τ ≥ 1,

det(Zτ+1) ≥ det(Z1) ·
τ∏

t=1

(
1− v⊤

it Z−1
t vit

) (
1 + v⊤

jt Z
−1
t vjt

)
.

Using the distributions Pr(it = i) ∝ 1 − xi and Pr(jt = j) ∝ xj as in section 3.1,
Lemmas 3.1 and 3.2 show that there exist it ∈ St−1 and jt /∈ St−1 such that setting
St ← St−1 − it + jt will improve the D-design objective. However, if we randomly
sample it and jt from these distributions, we cannot prove that the objective value
is consistently improving with good probability. For D-design, we are analyzing a
product of random variables where each random variable could have a large variance,
and existing martingale inequalities are not applicable to establish concentration of
the product.
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To bound the variance, one important observation is that when x is an optimal
fractional solution, it follows from the optimality condition of the convex program-
ming relaxation that any vector vi with x(i) ∈ (0, 1) satisfies ∥vi∥22 ≤ ε. The current
algorithm is motivated by the observation that if we can also lower bound the min-
imum eigenvalue of Zt, then we can upper bound v⊤Z−1

t v and this would allow us
to establish concentration of the objective value. So our idea is to use the same al-
gorithm in [26] for E-design to ensure that the minimum eigenvalue of Zt is at least
Ω(1) as mentioned in Remark 4.1. Surprisingly, we prove that sampling from the
distributions for E-design can also improve the objective values for D-design and A-
design, and this is particularly interesting for A-design where the minimum eigenvalue
condition is needed to prove so. Having these in place, we can use Freedman’s mar-
tingale inequality to prove that the objective values for D-design and A-design will
be improving consistently after the minimum eigenvalue of the current solution is at
least Ω(1).

Proof outline and organization. In the analysis of the randomized exchange
algorithm, we conceptually divide the algorithm into two phases. In the first phase,
we show that the minimum eigenvalue of the current solution will reach 3

4 in O(k)
iterations with high probability. In the second phase, we prove that the objective
value for D/A-design will be (1± ε)-approximation of the optimal in O

(
k
ε

)
iterations

with high probability. The following is an outline of the proof steps.
1. In section 4.1.1, we first prove that the randomized exchange algorithm is

well-defined. In particular, we show that a fractional optimal solution to
the convex relaxation (1.1) with at most O(d2 +m) fractional entries can be
found in polynomial time, and the probability distributions in the exchange
subroutine are well-defined for k = O(d2 +m).

2. In section 4.1.2, we prove that the minimum eigenvalue will reach 3
4 in O(k)

iterations with high probability. Furthermore, the minimum eigenvalue will
be at least 1

4 during the next Θ
(
k
ε

)
iterations with good probability, for which

we require the assumption that ε is not too small. The proofs are based on
the regret minimization framework and the iterative randomized rounding
algorithm developed in [3, 26].

3. In sections 4.2 and 4.3, we prove that the objective value of D-design and
A-design will improve consistently with high probability. These are the more
technical parts of the proof. We use the minimum eigenvalue condition in
multiple places, both in the martingale concentration arguments for D/A-
design and in the expected improvement of the A-design objective. We also
need the optimality conditions for the martingale concentration arguments.

4. In section 4.1.3, we prove the main approximation results including Theo-
rem 1.4 for experimental design, by combining the previous steps and using
the concentration inequality for the knapsack constraints proved in [26]. As
a corollary, we slightly improve the previous rounding results of D/A-design
with a single cardinality constraint in [36, 33]. We also prove Corollary 1.5
as an application of the main result.

4.1. Analysis of the common algorithm. The algorithm is identical for D-
design and A-design except the termination condition. In this subsection, we will
present the proofs of the common parts and the main results, and then present the
specific proofs for D-design and A-design in sections 4.2 and 4.3, respectively.
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4.1.1. Sparse optimal solution and probability distributions in the ex-
change subroutine. In this subsection, we first show that we can find an optimal
fractional solution to the convex programming relaxation (1.1) with sparse support in
polynomial time. The sparsity of an optimal solution to the convex program (1.1) was
proved and used in [38, 27] for experimental design problems. The following lemma
is proved using similar ideas.

Lemma 4.2. Given any feasible fractional solution x̂ to the convex program (1.1),
there exists another feasible fractional solution x with |{i ∈ [n] | 0 < x(i) < 1}| ≤
d2 +m such that

det

(
n∑

i=1

x(i) · uiu⊤
i

)
= det

(
n∑

i=1

x̂(i) · uiu⊤
i

)
for d-design, or

tr

(( n∑
i=1

x(i) · uiu⊤
i

)−1
)

= tr

(( n∑
i=1

x̂(i) · uiu⊤
i

)−1
)

for A-design.

Furthermore, the solution x can be found in polynomial time:

Proof. Given the feasible fractional solution x̂ , we compute an extreme point
solution x to the following polytope, which can be done in polynomial time.

n∑
i=1

x(i) · uiu⊤
i =

n∑
i=1

x̂(i) · uiu⊤
i ,

⟨cj , x⟩ ≤ bj for 1 ≤ j ≤ m,

0 ≤ x(i) ≤ 1 for 1 ≤ i ≤ n.

In the extreme point solution x , the number of variables is equal to the number of
linearly independent tight constraints attained by x . Clearly, the number of integral
variables in x is equal to the number of linear independent tight constraints in 0 ≤
x(i) ≤ 1 for 1 ≤ i ≤ n attained by x . So, the number of fractional variables in x
is equal to the number of linear independent tight constraints in

∑n
i=1 x(i) · uiu⊤

i =∑n
i=1 x̂(i)·uiu⊤

i and ⟨cj , x⟩ ≤ bj for 1 ≤ j ≤ m attained by x . As there are only d2+m
such constraints in the above linear program, there are at most d2+m fractional entries
in x . Due to the first matrix equality constraint of the polytope, x and x̂ have the
same objective value.

Then, we make a simple observation of the randomized exchange algorithm, that
only vectors with fractional entries will be exchanged, as those vectors with x(i) = 1
will always be in the solution and vectors with x(i) = 0 will always not be in the
solution.

Observation 4.3. For any t ≥ 0, it holds that i ∈ St for all i with x(i) = 1 and
j ∈ [n]\St for all j with x(j) = 0. This further implies that Pr(it = i) = 0 for all i
with x(i) ∈ {0, 1} and Pr(jt = j) = 0 for all j with x(j) ∈ {0, 1}.

Proof. The observation follows as all vectors with x(i) = 1 are selected and all
vectors with x(j) = 0 are not selected initially. In each iteration, the probability
distributions in the exchange subroutine guarantee that vectors with x(i) = 1 have
zero probability to be removed from the solution set, and vectors with x(j) = 0 have
zero probability to be added into the solution set. Therefore, the exchange subroutine
of the algorithm would only exchange those vectors with fractional entries x(i)’s.
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Finally, we are ready to show that the probability distributions in the exchange
subroutine are well-defined for k = O(d2+m), which will be used to upper bound the
number of iterations and the failure probability of the algorithm.

Claim 4.4. The probability distributions at any tth iteration of the randomized
exchange algorithm are well-defined for k = 16d+ d2 +m.

Proof. First, we verify that the probability distribution for sampling it is well-
defined. We need to show that Pr(it = i) ≥ 0 for i ∈ S′

t−1 and
∑

i∈S′
t−1

Pr(it = i) ≤ 1.

Since At ≻ 0 and xi ∈ [0, 1] and 2α⟨viv⊤
i ,A

1
2
t ⟩ ≤ 1/2 for i ∈ S′

t−1, it holds for i ∈ S′
t−1

that

0 ≤ Pr(it = i) =
1

k
(1− x(i))(1− 2α⟨viv⊤

i ,A
1
2
t ⟩) ≤

1

k
.

Thus,
∑

i∈S′
t−1

Pr(it = i) ≤ 1
k |{i ∈ [n] | 0 < x(i) < 1}| < 1, where the first inequality

follows by Observation 4.3, and the second inequality follows by the choice of k =
16d+ d2 +m and Lemma 4.2.

Next, we verify that the probability distribution for sampling jt is well-defined.
It is clear that Pr(jt = j) ≥ 0 as At ≻ 0 and x(j) ∈ [0, 1]. Then, we consider∑

j∈[n]\St−1

Pr(jt = j) =
1

k

∑
j∈[n]\St−1

x(j) ·
(
1 + 2α⟨vjv⊤

j ,A
1
2
t ⟩
)

≤ 1

k

( ∑
j∈[n]\St−1

x(j) + 2α tr
(
A

1
2
t

))
,

where the inequality is by
∑n

j=1 x(j) · vjv⊤
j = Id. Notice that

∑
j∈[n]\St−1

x(j) ≤ |{i ∈
[n] | 0 < x(i) < 1}| ≤ d2 +m by Observation 4.3 and Lemma 4.2. Thus,∑

j∈[n]\St−1

Pr(jt = j) ≤ 1

k

(
d2 +m+ 2α tr(A

1
2
t )
)
≤ 1

k
(d2 +m+ 16d) ≤ 1,

where the second last inequality is by α = 8
√
d and tr

(
A

1
2
t

)
≤
√
d from Lemma 2.4,

and the last inequality is by the choice of k.

Combining Lemma 4.2 and Claim 4.4, we have shown that the randomized ex-
change algorithm is well-defined.

4.1.2. Lower bounding minimum eigenvalue. As discussed above, the mini-
mum eigenvalue of Zt plays a key role in our analysis of the algorithm. We conceptually
divide the execution of the randomized exchange algorithm into two phases. In the
first phase, we show that the minimum eigenvalue of the current solution will reach
3
4 in O(k) iterations with high probability.

Proposition 4.5. The probability that the randomized exchange algorithm has
terminated successfully within 16k iterations or there exists τ1 ≤ 16k with λmin(Zτ1) ≥
3
4 is at least 1− exp(−Ω(

√
d)).

Proof. As noted in Remark 4.1, except for the termination condition, the random-
ized exchange algorithm is exactly the same as the algorithm in [26] with α = 8

√
d.

So, the proposition follows from Theorem 2.6 with γ = 1
8 .

In the second phase, we prove that the minimum eigenvalue of Zt is at least
1
4 in

the next Θ
(
k
ε

)
iterations with good probability.

D
ow

nl
oa

de
d 

11
/0

2/
22

 to
 1

28
.9

5.
10

4.
10

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

934 LAP CHI LAU AND HONG ZHOU

Proposition 4.6. Suppose λmin(Zτ1) ≥ 3
4 for some τ1. In the randomized ex-

change algorithm, the probability that λmin(Zt) ≥ 1
4 for all τ1 ≤ t ≤ τ1 +

2k
ε is at least

1− 4k2

ε2 · e
−Ω(

√
d).

Proof. Consider the bad event that there exists a time t ∈ [τ1, τ1 + 2k
ε ] with

λmin(Zt) < 1
4 . As the initial solution Zτ1 satisfies λmin(Zτ1) ≥ 3

4 , there must exist

a time period [t0, t1] ⊆ [τ1, τ1 +
2k
ε ) such that λmin(Zt0) ≥ 3

4 , λmin(Zt1+1) <
1
4 , and

λmin(Zt) ∈ [ 14 ,
3
4 ) for all t ∈ [t0 + 1, t1].

We show that the decrease of the minimum eigenvalue from t0 to t1 implies
that the sum of ∆t defined in (2.2) has decreased significantly. Let Ft0 = Zt0 and
Ft = vjtv

⊤
jt
− vitv

⊤
it

for all t ∈ [t0 + 1, t1]. Note that the exchange subroutine ensures

that α⟨vitv⊤
it
,A

1
2
t ⟩ ≤ 1

4 for any t. So, it follows from Corollary 2.2 with α = 8
√
d that

1

4
> λmin(Zt1+1) ≥

t1∑
t=t0+1

∆t −
2
√
d

α
+ λmin(Zt0) ≥

t1∑
t=t0+1

∆t −
1

4
+

3

4

=⇒
t1∑

t=t0+1

∆t < −
1

4
.

On the other hand, ∆t is expected to be positive when λmin(Zt) <
3
4 . The expectation

bound in Lemma 2.8 with τ ′ = t0, τ = t1, λ ≤ 3
4 , and γ = 1

8 implies that

t1∑
t=t0+1

E[∆t|St−1] ≥
t1 − t0
8k

.

So, the sum of ∆t’s has a large deviation from the expectation, i.e.,

t1∑
t=t0+1

∆t ≤
t1∑

t=t0+1

E[∆t|St−1]−
(
1

4
+

t1 − t0
8k

)
.

We can apply the concentration bound in Lemma 2.8 with γ = 1
8 , λ ≤ 3

4 , and
η = 1

4 + t1−t0
8k to upper bound this probability by

Pr

[
t1∑

t=t0+1

∆t ≤
t1∑

t=t0+1

E[∆t | St−1]−
(1
4
+

t1 − t0
8k

)]

≤ exp

(
−

4
(

1
4 + t1−t0

8k

)2
k
√
d

(t1 − t0)(1 +
3
4 + 1

8 ) +
(

1
4 + t1−t0

8k

)
k/3

)
≤ exp

(
−Ω(
√
d)
)
,

where the last inequality follows as the denominator is in the order of Θ(k+ t1 − t0),

and the numerator is in the order of Ω(1+ t1−t0
k + (t1−t0)

2

k2 ) ·k
√
d = Ω(k+ t1− t0) ·

√
d.

The proposition follows by applying the union bound over the at most 4k2

ε2 possible

pairs of t0 and t1 from time τ1 to τ1 +
2k
ε .

4.1.3. Main approximation results. In this subsection, we prove the main
approximation results for experimental design, including Theorem 1.4. We will do so
by first assuming the following theorem about the improvement of the objective value
in the second phase, which will be proved in section 4.2 for D-design and in section 4.3
for A-design.
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Theorem 4.7. For both D-design and A-design, if bj ≥
d∥cj∥∞

ε for all j ∈ [m]
for some ε ≤ 1

100 , then the probability that the following three events happen simulta-

neously is at most e−Ω(
√
d): (1) λmin(Zτ1) ≥ 3

4 for some τ1; (2) λmin(Zt) ≥ 1
4 for all

τ1 ≤ t ≤ τ1 +
2k
ε ; (3) and the randomized exchange algorithm has not terminated by

time τ1 +
2k
ε .

First, we prove the following bicriteria approximation result for D/A-design with
knapsack constraints, by combining the previous steps and using the concentration
inequality for the knapsack constraints proved in [26].

Theorem 4.8. Given ε ≤ 1
100 , if bj ≥

d∥cj∥∞
ε for all j ∈ [m], then the randomized

exchange algorithm returns a solution set S within 16k + 2k
ε iterations such that

det

(∑
i∈S

uiu⊤
i

) 1
d

≥ (1−10ε)·det (X )
1
d or tr

((∑
i∈S

uiu⊤
i

)−1)
≤ (1+ε)·tr

(
X−1

)
for D-design and A-design, respectively, with probability at least 1−O(k

2

ε2 · e
−Ω(

√
d)),

where X is an optimal fractional solution. Moreover, for each j ∈ [m], the solution
set S satisfies

cj(S) ≤ (1 + ε)bj + 120d ∥cj∥∞ ≤
(
1 +O(ε)

)
bj

with probability at least 1− e−Ω(εd).

Proof. We start with defining some bad events for the randomized exchange al-
gorithm.

• B1: the algorithm has not terminated successfully within 16k iterations and
τ1 > 16k where τ1 is the first time such that λmin(Zτ1) ≥ 3

4 .
• B2: there exists some τ1 ≤ t ≤ τ1 +

2k
ε such that λmin(Zt) < 1/4.

• B3: the termination condition for D/A-design is not satisfied for all τ1 ≤ t ≤
τ1 +

2k
ε .

If none of the bad events happens, then either the algorithm has terminated suc-
cessfully within 16k iterations or the termination condition for D/A-design will be
satisfied at some time t ≤ τ1 +

2k
ε ≤ 16k + 2k

ε . So, the probability that the random-

ized exchange algorithm has not satisfied the termination condition within 16k + 2k
ε

iterations is upper bounded by

Pr[B1 ∪B2 ∪B3] = Pr[B1] + Pr[B2 ∩ ¬B1] + Pr[B3 ∩ ¬B2 ∩ ¬B1]

≤ O
(
e−Ω(

√
d)
)
+O

(
k2

ε2
· e−Ω(

√
d)

)
+O

(
e−Ω(

√
d)
)

≤ O

(
k2

ε2
· e−Ω(

√
d)

)
,

where Pr[B1] is bounded in Proposition 4.5, Pr[B2 ∩ ¬B1] is bounded in Proposi-
tion 4.6, and Pr[B3 ∩ ¬B2 ∩ ¬B1] is bounded in Theorem 4.7.

For D-design, since vi = X− 1
2 ui, the termination condition implies the approxi-

mation guarantee as

det

(∑
i∈S

viv⊤
i

) 1
d

> 1− 10ε =⇒ det

(∑
i∈S

uiu⊤
i

) 1
d

≥ (1− 10ε) · det(X )
1
d .
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For A-design, note that

(4.1)

〈
X−1,

(∑
i∈S

viv⊤
i

)−1〉
=

〈
X−1,

(∑
i∈S

X− 1
2 uiu⊤

i X− 1
2

)−1〉

=

〈
I ,
(∑

i∈S

uiu⊤
i

)−1〉
= tr

((∑
i∈S

uiu⊤
i

)−1)
,

and so the termination condition also implies the approximation guarantee as〈
X−1,

(∑
i∈S

viv⊤
i

)−1〉
≤ (1+ε) tr(X−1) =⇒ tr

((∑
i∈S

uiu⊤
i

)−1)
≤ (1+ε) tr(X−1).

Finally, we consider the knapsack constraints. Note that the termination conditions
of both D/A-design imply λmin(Zt) < 1 before the algorithm terminates. So, we can
apply Theorem 2.7 with γ = 1

8 to conclude that the returned solution S satisfies

cj(S) ≤ (1 + ε)⟨cj , x⟩+ 120d ∥cj∥∞ ≤ (1 + ε)bj + 120d ∥cj∥∞ ≤ (1 +O(ε))bj

with probability at least 1 − exp(−Ω(εd)), where the last inequality follows from

bj ≥
d∥cj∥∞

ε .

We are ready to prove the main theorem in this section by turning the above
bicriteria approximation result to a true approximation result using a simple scaling
argument.

Theorem 1.4. Let x ∈ [0, 1]n be an optimal fractional solution to D/A-design
with knapsack constraints. For any ε ≤ 1

200 , if each knapsack constraint budget sat-

isfies bj ≥
2d∥cj∥∞

ε , then there is a randomized exchange algorithm which returns
in polynomial time an integral solution Z =

∑n
i=1 z(i) · viv⊤

i with z(i) ∈ {0, 1} for
1 ≤ i ≤ n such that

det

( n∑
i=1

z(i) · viv⊤
i

) 1
d

≥
(
1−O(ε)

)
· det

( n∑
i=1

x(i) · viv⊤
i

) 1
d

for D-design,

tr

(( n∑
i=1

z(i) · viv⊤
i

)−1)
≤ (1 + ε) · tr

(( n∑
i=1

x(i) · viv⊤
i

)−1)
for A-design

with probability at least 1−O(k
2

ε2 · e
−Ω(

√
d)) where k = O(d2 +m). Furthermore, each

knapsack constraint ⟨cj , z⟩ ≤ bj is satisfied with probability at least 1− e−Ω(εd).

Proof. Let b1, . . . , bm be the input budgets for the m knapsack constraints. We
scale down the budget to b̃j =

bj
1+100ε for each j ∈ [m]. Since ε ≤ 1

200 and bj ≥
2d∥cj∥∞

ε by the assumption, the rescaled budget b̃j ≥ d∥cj∥∞
ε . Therefore, the budget

assumptions in Theorem 4.8 are satisfied by all b̃1, . . . , b̃m. In the following, we prove
the theorem for D-design only, as the proof for A-design follows by the same argument.

Let x̃ ∈ [0, 1]n be an optimal fractional solution of (1.1) with budget b̃j for

j ∈ {1, . . . ,m}. Let X̃ :=
∑n

i=1 x̃(i) · viv⊤
i and X =

∑n
i=1 x(i) · viv⊤

i . We run

the randomized exchange algorithm with budgets b̃1, . . . , b̃m. By Theorem 4.8, with

D
ow

nl
oa

de
d 

11
/0

2/
22

 to
 1

28
.9

5.
10

4.
10

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A LOCAL SEARCH FRAMEWORK FOR EXPERIMENTAL DESIGN 937

probability at least 1−O(k
2

ε2 · e
−Ω(

√
d)), the algorithm returns a solution set S within

O(kε ) iterations such that

det

(∑
i∈S

uiu⊤
i

) 1
d

≥ (1− 10ε) · det(X̃ )
1
d ≥ 1− 10ε

1 + 100ε
· det(X )

1
d =

(
1−O(ε)

)
· det(X )

1
d ,

where the second inequality holds as 1
1+100ε · X is a feasible solution to (1.1) with

budget b̃1, . . . , b̃m. Furthermore, for each knapsack constraint j ∈ [m], it follows from
Theorem 4.8 that

cj(S) ≤ (1 + ε)̃bj + 120d∥cj∥∞ ≤
1 + ε

1 + 100ε
· bj + 60εbj ≤ bj

with probability at least 1− exp(−Ω(εd)), where the second inequality follows by the

assumption bj ≥ 2d∥cj∥∞
ε and the last inequality follows as ε ≤ 1

200 .

Unweighted D/A-design. Using the main result, we improve the previous
result on D/A-design with a single cardinality constraint by replacing the assumption
b ≳ d

ε +
1
ε2 log

(
1
ε

)
in [36, 33] with b ≥ 2d

ε , although there is a mild assumption on the
range of ε. We remark that, for D-design, Fedorov’s exchange method can achieve
this optimal bound without solving a convex program (see Theorem 1.1).

Corollary 4.9. For any 1
200 ≥ ε ≥ e−δ

√
d for a small enough constant δ, if

b ≥ 2d
ε , then there is a randomized polynomial time algorithm that returns a

(
1+O(ε)

)
-

approximate solution for D/A-design with constant probability.

Proof. We apply Theorem 1.4 on the input. The probability that the output is
a
(
1 + O(ε)

)
-approximate solution and satisfies the cardinality constraint is at least

1 − e−Ω(εd) − e−Ω(
√
d) as k = O(d2). When εd = Ω(1), this success probability is at

least a constant for large enough d. Otherwise, this success probability can be lower
bounded by

1− e−Ω(εd) − e−Ω(
√
d) ≥ Ω(εd)− e−Ω(

√
d) ≥ max

{
e−Ω(

√
d),Ω

(d2
n

)}
≥ Ω

(d2
n

)
,

where the first inequality is by e−Ω(εd) ≤ 1 − Ω(εd) for εd = o(1), and the second
inequality is by the assumption ε ≥ exp(−δ

√
d) for a small enough δ and the fact

that we can assume ε ≥ 2d
n without loss of generality (otherwise we would have

b ≥ n). Therefore, we can amplify the success probability to be a constant by applying
Theorem 1.4 at most O

(
n
d2

)
times, and the total time complexity is still polynomial

in n and d.

Minimizing total effective resistance. We present an application of the main
result to the total effective resistance minimization problem. In this problem, we are
given a graph G = (V,E) with Laplacian matrix LG =

∑
e∈E beb⊤

e and a cost vector
c ∈ Rm

+ on the edges, and the goal is to find a subgraph H with cost at most b to

minimize the sum of all pairs effective resistances
∑

u,v ReffH(u, v) = n · tr(L†
H).

Corollary 1.5. For any 0 < ε < 1, there is a polynomial time randomized
(1 + ε)-approximation algorithm for minimizing total effective resistance in an edge

weighted graph whenever b ≳ n∥c∥∞
ε .

Proof. This is an A-design problem by using the vectors be projecting onto the
(n−1)-dimensional subspace orthogonal to the all-one vector. Let x∗ ∈ [0, 1]m be
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an optimal fractional solution to the problem and let Lx∗ :=
∑

e∈E x∗(e) · beb⊤
e .

Since b ≳ n∥c∥∞
ε , by Theorem 1.4, there is a randomized algorithm that returns a

subgraphH with tr
(
L†
H

)
≤
(
1+O(ε)

)
·tr
(
L†

x∗

)
withinO

(
k
ε

)
iterations with probability

at least 1 − O
(
k2

ε2 · e
−Ω(

√
n)
)
where k = O(n2). Moreover, the cost constraint is

satisfied with probability at least 1− e−Ω(εn). Since the number of edges m = O(n2),
we can assume ε ≥ n

m = Ω( 1n ) without loss of generality. The running time is
polynomial in the graph size and the failure probability of the algorithm is at most

O
(
k2

ε2 ·e
−Ω(

√
n)
)
+e−Ω(εn) ≤ e−Ω(

√
n)+e−Ω(1), a constant bounded away from 1, when

n is large enough.

4.2. Analysis of the D-design objective. We will prove Theorem 4.7 for D-
design in this subsection. Let τ1 be the start time of the second phase. For ease of
notation, we simply reset τ1 = 1 as the first time step in the second phase. We will
assume λmin(Z1) ≥ 3

4 and λmin(Zt) ≥ 1
4 for all t ≥ 1, which will be crucial in the

analysis.
To analyze the objective value for D-design, our plan is to transform the product

of random variables in Lemma 2.11 into a sum of random variables in the exponent
as follows:

det(Zτ+1) ≥ det(Z1) ·
τ∏

t=1

(
1− ⟨vitv⊤

it ,Z
−1
t ⟩

) (
1 + ⟨vjtv⊤

jt ,Z
−1
t ⟩

)
≥ det(Z1) · exp

( τ∑
t=1

(
(1− 4ε) ⟨vjtv⊤

jt ,Z
−1
t ⟩︸ ︷︷ ︸

gain gt

−(1 + 5ε) ⟨vitv⊤
it ,Z

−1
t ⟩︸ ︷︷ ︸

loss lt

))
,(4.2)

where the inequalities 1+x ≥ e(1−4ε)x and 1−x ≥ e−(1+5ε)x only hold when x ∈ [0, 4ε]
and ε is small enough such as ε ≤ 1

50 .

So, for our plan to work, we need to bound the gain term ⟨vjtv⊤
jt
,Z−1

t ⟩ and the loss

term ⟨vitv⊤
it
,Z−1

t ⟩. To do so, we will use the following lemma (the proof is deferred
to section 4.2.4).

Lemma 4.10. Let x ∈ [0, 1]n be an optimal fractional solution of the convex pro-

gramming relaxation (1.1) for D-design. Let X =
∑n

i=1 x(i) · uiu⊤
i , and vi = X− 1

2 ui
for 1 ≤ i ≤ n. Suppose bj ≥

d∥cj∥∞
ε for 1 ≤ j ≤ m. Then ∥vi∥22 ≤ ε for each 1 ≤ i ≤ n

with 0 < x(i) < 1. In particular, it holds that ∥vit∥
2
2 ≤ ε and ∥vjt∥

2
2 ≤ ε for all t ≥ 1

with probability 1 during the process of the randomized exchange algorithm.

Together with the assumption that Zt ≽ 1
4 I for all t ≥ 1, we can ensure that

⟨vjtv⊤
jt
,Z−1

t ⟩ ≤ 4ε and ⟨vitv⊤
it
,Z−1

t ⟩ ≤ 4ε for all t ≥ 1, and hence (4.2) holds.
Once this transformation is done and (4.2) is established, we can apply Freedman’s

martingale inequality to prove concentration of the exponent. In the following, we
define the gain gt, loss lt, and progress Γt in the tth iteration as

gt := ⟨vjtv⊤
jt ,Z

−1
t ⟩, lt := ⟨vitv⊤

it ,Z
−1
t ⟩, and Γt := (1− 4ε)gt − (1 + 5ε)lt.

In section 4.2.1, we will prove that the expected progress is large if the current solution
is far from optimal. Then, in section 4.2.2, we will prove that the total progress is
concentrated around its expectation, where the minimum eigenvalue assumption is
crucial in the martingale concentration argument. Finally, we finish the proof of
Theorem 4.7 for D-design in section 4.2.3 and present the proof of Lemma 4.10 in
section 4.2.4.
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4.2.1. Expected improvement of the D-design objective. Here we bound
the conditional expectation of progress Γt and show that E[Γt] is large if the current

objective value det(Zt)
1
d is small.

Lemma 4.11. Let γ ≥ 1. Let St−1 be the solution set at time t and Zt =∑
i∈St−1

viv⊤
i for 1 ≤ t ≤ τ . Suppose det(Zt)

1
d ≤ λ for 1 ≤ t ≤ τ . Then

τ∑
t=1

E[Γt | St−1] ≥
(
1− 4ε

λ
− (1 + 5ε)

)
· dτ
k
.

Proof. Let t ∈ [1, τ ]. Using the probability distribution for sampling vjt in the
randomized exchange algorithm, the expected gain of adding vector vjt is

E[gt | St−1] =
∑

j∈[n]\St−1

x(j)
k
·
(
1 + 2α⟨vjv⊤

j ,A
1
2
t ⟩
)
· ⟨vjv⊤

j ,Z−1
t ⟩

≥
∑

j∈[n]\St−1

x(j)
k
· ⟨vjv⊤

j ,Z−1
t ⟩

=
1

k

(
tr(Z−1

t )−
∑

i∈St−1

x(i) · ⟨viv⊤
i ,Z−1

t ⟩
)
,

where the last equality uses
∑n

j=1 x(j) · vjv⊤
j = I .

Using the probability distribution for sampling vit in the randomized exchange
algorithm, the expected loss of removing vector vit is

(4.3)

E[lt | St−1] =
∑

i∈S′
t−1

1− x(i)
k

·
(
1− 2α⟨viv⊤

i ,A
1
2
t ⟩
)
· ⟨viv⊤

i ,Z−1
t ⟩

≤ 1

k

∑
i∈S′

t−1

(
1− x(i)

)
· ⟨viv⊤

i ,Z−1
t ⟩

≤ 1

k

∑
i∈St−1

(
1− x(i)

)
· ⟨viv⊤

i ,Z−1
t ⟩

=
1

k

(
d−

∑
i∈St−1

x(i) · ⟨viv⊤
i ,Z−1

t ⟩
)
,

where the two inequalities hold as 1−2α⟨viv⊤
i ,A

1
2
t ⟩ ≤ 1 and (1−xi) · ⟨viv⊤

i ,Z−1
t ⟩ ≥ 0

for all i ∈ [n], and the last equality holds as
∑

i∈St−1
viv⊤

i = Zt.
Therefore, the expected progress is

E[Γt | St−1] = E[(1− 4ε)gt − (1 + 5ε)lt | St−1]

≥1− 4ε

k

(
tr(Z−1

t )−
∑

i∈St−1

x(i) · ⟨viv⊤
i ,Z−1

t ⟩
)
− 1 + 5ε

k

(
d−

∑
i∈St−1

x(i) · ⟨viv⊤
i ,Z−1

t ⟩
)

≥1

k

(
(1− 4ε) · tr(Z−1

t )− (1 + 5ε) · d
)

≥1

k

(
(1− 4ε) · d

det(Zt)
1
d

− (1 + 5ε) · d
)

≥
(
1− 4ε

λ
− (1 + 5ε)

)
· d
k
,
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where the second to last inequality follows from Lemma 3.3, and the last inequality
is by the assumption that maxt det(Zt)

1
d ≤ λ. The lemma follows by summing over

all 1 ≤ t ≤ τ .

4.2.2. Martingale concentration argument. Here we show that the total
progress is concentrated around the expectation. The proof uses the minimum ei-
genvalue assumption and the short vector condition from Lemma 4.10 to bound the
variance of the random process.

Lemma 4.12. For any η > 0, it holds that

Pr

[
τ∑

t=1

Γt ≤
τ∑

t=1

E[Γt | St−1]−η
⋂

min
1≤t≤τ

λmin(Zt) ≥
1

4

]
≤ exp

(
−Ω
( η2k

ετd1.5 + εηk

))
.

Proof. We define two sequences of random variables {Xt}t and {Yt}t, whereXt :=
E[Γt | St−1] − Γt and Yt :=

∑t
l=1 Xl. It is easy to check that {Yt}t is a martingale

with respect to {St}t. We will use Freedman’s inequality to bound Pr[Yτ ≥ η ∩
min1≤t≤τ λmin(Zt) ≥ 1

4 ].
In the following, we first show that if the event min1≤t≤τ λmin(Zt) ≥ 1

4 happens,
then we upper boundXt and E[X2

t | St−1] so that we can apply Freedman’s inequality.
Note that

0 ≤ gt = ⟨vjtv⊤
jt ,Z

−1
t ⟩ ≤ 4ε and 0 ≤ lt = ⟨vitv⊤

it ,Z
−1
t ⟩ ≤ 4ε

by our assumption that λmin(Zt) ≥ 1
4 and the fact that ∥vit∥

2
2 ≤ ε and ∥vjt∥

2
2 ≤ ε for

all 1 ≤ t ≤ τ (see Lemma 4.10). These imply that

Xt = E[Γt | St−1]− Γt ≤ (1− 4ε) · E[gt | St−1] + (1 + 5ε) · lt ≤ (2 + ε) · 4ε ≤ 10ε,

where the last inequality holds for ε ≤ 1
2 . Similarly, we can lower bound Xt and

conclude that |Xt| ≤ 10ε.
To upper bound E[X2

t | St−1], we first upper bound E[gt | St−1] and E[lt | St−1].
Note that

E[gt | St−1] =
∑

j∈[n]\St−1

x(j)
k
·
(
1 + 2α⟨vjv⊤

j ,A
1
2
t ⟩
)
· ⟨vjv⊤

j ,Z−1
t ⟩

≤ 1 + 16ε
√
d

k
·

∑
j∈[n]\St−1

x(j) · ⟨vjv⊤
j ,Z−1

t ⟩

≤ 1 + 16ε
√
d

k
· tr(Z−1

t )

≤ 4d+ 64εd1.5

k
,

where the first inequality holds as α = 8
√
d, At ≼ I and ∥vj∥22 ≤ ε for j ∈ [n]\St−1 with

x(j) > 0, the second inequality follows as
∑n

i=1 x(i) · viv⊤
i = I , and the last inequality

follows from the assumption that λmin(Zt) ≥ 1
4 . Note also that E[lt | St−1] ≤ d

k
from (4.3) in Lemma 4.11. So, we can upper bound E[X2

t | St−1] by

E[X2
t | St−1] ≤ 10εE[|Xt| | St−1] ≤ 20ε

(
(1− 4ε)E[gt | St−1] + (1 + 5ε)E[lt | St−1]

)
≤ O

(
εd1.5

k

)
,
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where the first inequality is by the upper bound on |Xt|, and the last inequality is

by the loose bound that E[gt | St−1] ≤ O
(
d1.5

k

)
. Therefore,

∑τ
t=1 E[X2

t | St−1] ≤
O
(
ετd1.5

k

)
, which implies Wt :=

∑t
l=1 E[X2

l | Sl−1] ≤ O
(
ετd1.5

k

)
for all t ∈ [τ ].

Finally, we can apply Freedman’s martingale inequality (Theorem 2.9) with R =

10ε and σ2 = O
(
ετd1.5

k

)
to conclude that

Pr

[
Yτ ≥ η

⋂
min

1≤t≤τ
λmin(Zt) ≥

1

4

]
≤ Pr

[
∃t ∈ [τ ] : Yt ≥ η

⋂
Wt ≤ σ2

]
≤ exp

(
− η2/2

σ2 +Rη/3

)
= exp

(
− Ω

( η2k

ετd1.5 + εηk

))
.

The lemma follows by noting that
∑τ

t=1 Γt ≤
∑τ

t=1 E[Γt | St−1] − η is equivalent to
Yτ ≥ η.

4.2.3. Proof of Theorem 4.7 for D-design. We are ready to prove Theo-
rem 4.7 for D-design. Let τ = 2k

ε . We want to upper bound the probability that the
following three events happen simultaneously:

• E1: The randomized exchange algorithm entered the second phase, i.e.,
λmin(Z1) ≥ 3

4 using the notation in this subsection.
• E2: min1≤t≤τ λmin(Zt) ≥ 1

4 .
• E3: The second phase of the algorithm has not terminated by time τ .

Suppose the event E3 happens. Then λ = max1≤t≤τ+1 det(Zt)
1
d < 1−10ε. Thus,

Lemma 4.11 implies that

τ∑
t=1

E [Γt | St−1] ≥
(1− 4ε

λ
− (1 + 5ε)

)
· dτ
k
≥ εdτ

k
= 2d.(4.4)

On the other hand, the initial solution of the second phase satisfies Z1 ≽ 3
4 I (follows

by E1), which implies that det(Z1) ≥
(
3
4

)d
. As the knapsack constraints satisfy

bj ≥
d∥cj∥∞

ε for j ∈ [m], we know from Lemma 4.10 that ∥vit∥
2
2 ≤ ε and ∥vjt∥

2
2 ≤ ε

for all t ≥ 1. Therefore, if the event E2 happens, then we have ⟨vjtv⊤
jt
,Z−1

t ⟩ ≤ 4ε and

⟨vitv⊤
it
,Z−1

t ⟩ ≤ 4ε for all 1 ≤ t ≤ τ . Hence, we can apply (4.2) to deduce that

(4.5) 1 > det(Zτ+1) ≥ det(Z1) · exp
( τ∑

t=1

Γt

)
≥
(3
4

)d
exp

( τ∑
t=1

Γt

)

=⇒
τ∑

t=1

Γt < d · ln 4

3
≤ d.

Combining (4.4) and (4.5), E1∩E2∩E3 implies a large deviation of the progress from
the expectation, i.e.,

∑τ
t=1 Γt −

∑τ
t=1 E[Γt | St−1] < d− 2d = d.
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Thus, we can apply Lemma 4.12 with η = d and τ = 2k
ε to conclude that

Pr [E1 ∩ E2 ∩ E3] ≤ Pr

[
τ∑

t=1

Γt <

(
τ∑

t=1

E [Γt | St−1]

)
− d

⋂
E2

]

≤ exp

(
− Ω

(
d2k

ε
(

2k
ε

)
d1.5 + εdk

))

≤ exp(−Ω(
√
d)).

4.2.4. Optimality condition of the convex program for D-design. The
following lemma uses the assumption about the budgets to prove that all vectors with
fractional value are short.

Lemma 4.10. Let x ∈ [0, 1]n be an optimal fractional solution of the convex pro-

gramming relaxation (1.1) for D-design. Let X =
∑n

i=1 x(i) · uiu⊤
i , and vi = X− 1

2 ui
for 1 ≤ i ≤ n. Suppose bj ≥

d∥cj∥∞
ε for 1 ≤ j ≤ m. Then ∥vi∥22 ≤ ε for each 1 ≤ i ≤ n

with 0 < x(i) < 1. In particular, it holds that ∥vit∥
2
2 ≤ ε and ∥vjt∥

2
2 ≤ ε for all t ≥ 1

with probability 1 during the process of the randomized exchange algorithm.

Proof. We rewrite the convex programming relaxation (1.1) for D-design as fol-
lows:

maximize
x∈Rd,X∈Rd×d

log det (X )

subject to X =

n∑
i=1

x(i) · uiu⊤
i ,

⟨cj , x⟩ ≤ bj ∀j ∈ [m],

0 ≤ x(i) ≤ 1 ∀i ∈ [n].

We will use a dual characterization to investigate the length of the vectors. We
introduce a dual variable Y for the first equality constraint, a dual variable µj ≥ 0
for each of the budget constraint bj−⟨cj , x⟩ ≥ 0, a dual variable β−

i ≥ 0 for each non-
negative constraint x(i) ≥ 0, and a dual variable β+

i ≥ 0 for each capacity constraint
1− x(i) ≥ 0.

The Lagrange function L(x ,X ,Y , µ, β+, β−) is defined as

log det(X )+

〈
Y ,

n∑
i=1

x(i) · uiu⊤
i − X

〉
+

m∑
j=1

µj

(
bj − ⟨cj , x⟩

)
+

n∑
i=1

β−
i x(i)+

n∑
i=1

β+
i (1− x(i))

= log det(X )−⟨Y ,X ⟩+
m∑

j=1

µjbj+

n∑
i=1

β+
i +

n∑
i=1

x(i) ·
(
⟨Y , uiu⊤

i ⟩ −
m∑

j=1

µjcj(i) + β−
i − β+

i

)
.

The Lagrangian dual program is

min
Y≻0,µ≥0,

β+≥0,β−≥0

max
X≻0,x

L(x ,X ,Y , µ, β+, β−).

Note that we can add the constraint X ≻ 0 to the inner maximization without loss of
generality, as otherwise the Lagrange function is not well-defined. Similarly, we can
assume that Y ≻ 0 in the outer minimization, as otherwise the inner maximization
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problem is unbounded above. Given Y ≻ 0, µ ≥ 0, β+ ≥ 0, β− ≥ 0, the maximizers
X ≻ 0, x of the Lagrange function satisfy the optimality conditions that

∇XL = X−1 − Y = 0 and ∇x(i)L = ⟨Y , uiu⊤
i ⟩ −

m∑
j=1

µjcj(i) + β−
i − β+

i = 0.

Therefore, the Lagrangian dual program can be written as

minimize
Y≻0,µ≥0,

β+≥0,β−≥0

log det
(
Y −1

)
− d+

m∑
j=1

µjbj +

n∑
i=1

β+
i

subject to ⟨Y , uiu⊤
i ⟩ =

m∑
j=1

µjcj(i)− β−
i + β+

i ∀i ∈ [n].

It is easy to verify that x = δ1⃗ is a strictly feasible solution of the primal program for
a small enough δ. So, Slater’s condition implies that strong duality holds. Let x ,X be
an optimal solution for the primal program and Y , µ, β+, β− be an optimal solution
for the dual program. The Lagrangian optimality condition implies that Y = X−1,
and it follows that

log det(X ) = log det(X )− d+

m∑
j=1

µjbj +

n∑
i=1

β+
i =⇒

m∑
j=1

µjbj ≤ d

=⇒
m∑
j=1

µj ∥cj∥∞ ≤ ε,

where the last implication follows by the assumption bj ≥
d∥cj∥∞

ε for each j ∈ [m].

Finally, by the complementary slackness conditions, we have β−
i · x(i) = 0 and

β+
i · (1− x(i)) = 0 for each i ∈ [n]. Therefore, for each i with 0 < x(i) < 1, we must

have β+
i = β−

i = 0, which implies that

m∑
j=1

µjcj(i) = ⟨Y , uiu⊤
i ⟩ = ⟨X−1, uiu⊤

i ⟩ = ∥vi∥22 =⇒ ∥vi∥22 ≤
m∑
j=1

µj ∥cj∥∞ ≤ ε.

The last part of the lemma follows by Observation 4.3 that 0 < x(it), x(jt) < 1 for all
t ≥ 1 with probability 1.

4.3. Analysis of the A-design objective. We will prove Theorem 4.7 for A-
design in this subsection. Let τ1 be the start time of the second phase. For ease
of notation, we simply reset τ1 = 1 as the first time step in the second phase. By
assumption, λmin(Z1) ≥ 3

4 and λmin(Zt) ≥ 1
4 for all t ≥ 1, which will be crucial in the

analysis.

To analyze the A-design objective tr
((∑

i∈St−1
uiu⊤

i

)−1)
, we analyze the equiva-

lent quantity ⟨X−1,Z−1
t ⟩ after the linear transformation vi = X− 1

2 ui as shown in (4.1).
By Lemma 2.13, if 2⟨vitv⊤

it
,Z−1

t ⟩ ≤ 1
2 , then the change of the objective value is

bounded by

⟨X−1,Z−1
t+1⟩ = ⟨X−1, (Zt − vitv

⊤
it + vjtv

⊤
jt )

−1⟩

≤ ⟨X−1,Z−1
t ⟩+

⟨X−1,Z−1
t vitv

⊤
it

Z−1
t ⟩

1− 2⟨vitv⊤
it
,Z−1

t ⟩
−
⟨X−1,Z−1

t vjtv
⊤
jt

Z−1
t ⟩

1 + 2⟨vjtv⊤
jt
,Z−1

t ⟩
.
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In section 3.2, we show in Lemmas 3.6 and 3.5 that if we sample it and jt from the
distributions

Pr[it = i] ∝
(
1−x(i)

)
·
(
1− 2⟨viv⊤

i ,Z−1
t ⟩

)
and Pr[jt = j] ∝ x(j)·

(
1 + 2⟨vjv⊤

j ,Z−1
t ⟩

)
,

then the objective value will improve in expectation when the current objective value
is far from optimal. In the randomized exchange algorithm, however, we sample it and
jt from the E-design distributions. An important observation is that the quantities
in these two distributions can be related when the minimum eigenvalue assumption
holds. The following lemma will be proved in section 4.3.1.

Lemma 4.13. If Zt ≽ 1
4 I , then ⟨viv⊤

i ,Z−1
t ⟩≤α⟨viv⊤

i ,A
1
2
t ⟩≤αλmin(Zt)⟨viv⊤

i ,Z−1
t ⟩

for 1 ≤ i ≤ n.

In the exchange subroutine of the randomized exchange algorithm, only those it

with 2α⟨vitv⊤
it
,A

1
2
t ⟩ ≤ 1

2 are sampled. So, when the minimum eigenvalue assumption
holds, Lemma 4.13 implies that the randomized exchange algorithm only samples it
that satisfies 2⟨vitv⊤

it
,Z−1

t ⟩ ≤ 1
2 . Therefore, we can apply Lemma 2.13 repeatedly to

obtain that for any τ ≥ 1,

⟨X−1,Z−1
τ+1⟩≤⟨X−1,Z−1

1 ⟩−
τ∑

t=1

( ⟨X−1,Z−1
t vjtv

⊤
jt

Z−1
t ⟩

1 + 2⟨vjtv⊤
jt
,Z−1

t ⟩
−
⟨X−1,Z−1

t vitv
⊤
it

Z−1
t ⟩

1− 2⟨vitv⊤
it
,Z−1

t ⟩

)
.

(4.6)

As in section 4.2, we define gain gt, loss lt and progress Γt in the tth iteration as
follows:

gt :=
⟨X−1,Z−1

t vjtv
⊤
jt

Z−1
t ⟩

1 + 2⟨vjtv⊤
jt
,Z−1

t ⟩
, lt :=

⟨X−1,Z−1
t vitv

⊤
it

Z−1
t ⟩

1− 2⟨vitv⊤
it
,Z−1

t ⟩
, and Γt := gt − lt.

In section 4.3.1, we will prove Lemma 4.13 and use it to prove that the expected
progress is large if the current objective value is far from optimal. Then, in sec-
tion 4.3.2, we will prove that the total progress is concentrated around its expectation,
while the minimum eigenvalue assumption and the optimality condition of the convex
programming relaxation are crucial in the martingale concentration argument. Fi-
nally, we complete the proof of Theorem 4.7 for A-design in section 4.3.3, and present
the proof of the optimality condition in section 4.3.4.

4.3.1. Expected improvement of the A-design objective. We first prove
Lemma 4.13, which will also be needed in bounding the expectation.

Proof of Lemma 4.13. Recall that At = (αZt−ctI )−2 where ct is the unique value
such that At ≻ 0 and tr(At) = 1. Since Zt ≽ λmin(Zt) · I , it follows that

1 = tr(At) ≤ (αλmin(Zt)− ct)
−2 · tr(I ) =⇒ αλmin(Zt)− ct ≤

√
d =⇒ ct ≥ 0,

where the last implication holds as α = 8
√
d and λmin(Zt) ≥ 1

4 . This implies that

A
1
2
t = (αZt − ctI )−1 ≽ α−1Z−1

t , proving the first inequality.

For the second inequality, consider the eigendecomposition of Zt=
∑d

j=1 λjwjw⊤
j ,

where 0 < λ1 ≤ · · · ≤ λd are the eigenvalues and {wj} are the corresponding or-
thonormal eigenvectors. Then,

⟨viv⊤
i ,A

1
2
t ⟩

⟨viv⊤
i ,Z−1

t ⟩
=

∑d
j=1

⟨vi,wj⟩2
αλj−ct∑d

j=1
⟨vi,wj⟩2

λj

≤ max
j∈[d]

λj

αλj − ct
≤ λ1

αλ1 − ct
≤ λ1,
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where the first inequality holds since αλj − ct > 0 as At ≻ 0, the second inequality
holds as ct ≥ 0 and the function f(x) = x

αx−ct
is decreasing for x ≥ lt

α when ct ≥ 0,

and the last inequality follows as 1 = tr(At) ≥ (αλ1−ct)−2 which implies αλ1−ct ≥ 1.

The following lemma shows that the expected progress is large if the current
objective value is far from optimal. Note that, in contrast to section 4.2 for D-design,
the minimum eigenvalue assumption is needed in the proof.

Lemma 4.14. Let λ ≥ 1. Let St−1 be the solution set at time t and Zt =∑
i∈St−1

viv⊤
i for 1 ≤ t ≤ τ . Suppose Zt ≽ 1

4 I and ⟨X−1,Z−1
t ⟩ ≥ λ · tr

(
X−1

)
for

1 ≤ t ≤ τ . Then
τ∑

t=1

E[Γt | St−1] ≥
(λ− 1)τ

k
· tr(X−1).

Proof. The expected gain of adding vector vjt is

E[gt|St−1] =
∑

j∈[n]\St−1

x(j)
k
·
(
1 + 2α⟨vjv⊤

j ,A
1
2
t ⟩
)
·
⟨X−1,Z−1

t vjv⊤
j Z−1

t ⟩
1 + 2⟨vjv⊤

j ,Z−1
t ⟩

≥
∑

j∈[n]\St−1

x(j)
k
· ⟨X−1,Z−1

t vjv⊤
j Z−1

t ⟩

=
1

k

(
⟨X−1,Z−2

t ⟩ −
〈

X−1,Z−1
t

( ∑
i∈St−1

x(i) · viv⊤
i

)
Z−1
t

〉)
,

where the inequality follows from Lemma 4.13 and the last equality follows from∑n
j=1 x(j) · vjv⊤

j = I .
The expected loss of removing vector vit is

E[lt | St−1] =
∑

i∈S′
t−1

1− x(i)
k

·
(
1− 2α⟨viv⊤

i ,A
1
2
t ⟩
)
· ⟨X

−1,Z−1
t viv⊤

i Z−1
t ⟩

1− 2⟨viv⊤
i ,Z−1

t ⟩

≤ 1

k

∑
i∈S′

t−1

(
1− x(i)

)
· ⟨X−1,Z−1

t viv⊤
i Z−1

t ⟩

≤ 1

k

∑
i∈St−1

(
1− x(i)

)
· ⟨X−1,Z−1

t viv⊤
i Z−1

t ⟩

=
1

k

(
⟨X−1,Z−1

t ⟩ −
〈

X−1,Z−1
t

( ∑
i∈St−1

x(i) · viv⊤
i

)
Z−1
t

〉)
,(4.7)

where the first inequality follows from Lemma 4.13 and 2α⟨viv⊤
i ,A

1
2
t ⟩ ≤ 1

2 by the
definition of S′

t−1, and the last equality holds as
∑

i∈St−1
viv⊤

i = Zt.
Therefore, the expected progress is

E[Γt | St−1] = E[gt | St−1]− E[lt | St−1] ≥
1

k

(
⟨X−1,Z−2

t ⟩ − ⟨X−1,Z−1
t ⟩

)
.

The term ⟨X−1,Z−2
t ⟩ can be lower bounded by

⟨X−1,Z−2
t ⟩ ≥

⟨X−1,Z−1
t ⟩2

tr(X−1)
≥ λ · ⟨X−1,Z−1

t ⟩,
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946 LAP CHI LAU AND HONG ZHOU

where the first inequality follows from (3.3) in Lemma 3.7, and the second inequality
follows from our assumption. This implies that

E[Γt | St−1] ≥
λ− 1

k
· ⟨X−1,Z−1

t ⟩ =
λ− 1

k
· tr
(( ∑

i∈St−1

uiu⊤
i

)−1)
≥ λ− 1

k
· tr(X−1),

where the equality is from (4.1) and the last inequality is because X is an optimal
solution. The lemma follows by summing over τ .

4.3.2. Martingale concentration argument. We first state a characteriza-
tion of the optimal fractional solution for A-design (the proof is deferred to sec-
tion 4.3.4), which is useful in proving the concentration of the progress.

Lemma 4.15. Let x ∈ [0, 1]n be an optimal fractional solution of the convex pro-

gramming relaxation (1.1) for A-design. Let X =
∑n

i=1 x(i) · uiu⊤
i , and vi = X− 1

2 ui
for 1 ≤ i ≤ n. Suppose bj ≥

d∥cj∥∞
ε for 1 ≤ j ≤ m. Then, for each 1 ≤ i ≤ n with

0 < x(i) < 1,

⟨X−1, viv⊤
i ⟩ ≤

ε

d
· tr(X−1).

In particular, it holds that ⟨X−1, vitv
⊤
it
⟩ ≤ ε

d · tr(X
−1) and ⟨X−1, vjtv

⊤
jt
⟩ ≤ ε

d · tr(X
−1)

for all t ≥ 1 with probability 1 during the process of the randomized exchange algo-
rithm.

Now, we are ready to prove that the total progress is concentrated around the
expectation. The proof uses the minimum eigenvalue assumption and the optimality
characterization in Lemma 4.15 to bound the variance of the random process.

Lemma 4.16. For any η > 0, it holds that

Pr

[
τ∑

t=1

Γt ≤
τ∑

t=1

E[Γt | St−1]− η
⋂

min
1≤t≤τ

λmin(Zt) ≥
1

4

]

≤ exp

(
− Ω

(
η2kd

ετ
√
d · tr(X−1)2 + εηk · tr(X−1)

))
.

Proof. We define two sequences of random variables {Xt}t and {Yt}t, whereXt :=
E[Γt | St−1] − Γt and Yt :=

∑t
l=1 Xl. It is easy to check that {Yt}t is a martingale

with respect to {St}t. We will use Freedman’s inequality to bound the probability
Pr[Yτ ≥ η ∩min1≤t≤τ λmin(Zt) ≥ 1

4 ].
In the following, we first show that if the event min1≤t≤τ λmin(Zt) ≥ 1

4 happens,
then we upper boundXt and E[X2

t | St−1] so that we can apply Freedman’s inequality.
To upper bound Xt, we first prove an upper bound on gt and lt. Note that

⟨X−1,Z−1
t vitv

⊤
it Z−1

t ⟩ = ⟨Z−1
t X−1Z−1

t , vitv
⊤
it ⟩ =

〈
X

1
2

( ∑
j∈St−1

uju⊤
j

)−2

X
1
2 , vitv

⊤
it

〉
= ⟨X− 1

2 Z−2
t X− 1

2 , vitv
⊤
it ⟩ ≤ 16⟨X−1, vitv

⊤
it ⟩ ≤

16ε

d
· tr(X−1),

where the second equality uses the fact that Zt = X− 1
2 (
∑

j∈St−1
uju⊤

j )X− 1
2 , the first

inequality holds when the event λmin(Zt) ≥ 1
4 happens, and the last inequality follows

from Lemma 4.15 that ⟨X−1, vitv
⊤
it
⟩ ≤ ε

d · tr(X
−1). This implies that

gt =
⟨X−1,Z−1

t vjtv
⊤
jtZ

−1
t ⟩

1 + 2⟨vjtv⊤
jt
,Z−1

t ⟩
≤ 16ε

d
tr(X−1) and lt =

⟨X−1,Z−1
t vitv

⊤
it Z−1

t ⟩
1− 2⟨vitv⊤

it
,Z−1

t ⟩
≤ 32ε

d
tr(X−1),
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where the second inequality holds as 2⟨vitv⊤
it
,Z−1

t ⟩≤2α⟨vitv⊤
it
,A

1
2
t ⟩≤ 1

2 by Lemma 4.13
and the definition that it ∈ S′

t−1 in the exchange subroutine. Therefore,

|Xt| =
∣∣E[Γt | St−1]− Γt

∣∣ ≤ gt + lt ≤
48ε

d
· tr(X−1).

Next, we upper bound E[X2
t | St−1] by

E[X2
t | St−1] ≤

48ε

d
· tr(X−1) · E[|Xt| | St−1]

≤ 96ε

d
· tr(X−1) ·

(
E[gt | St−1] + E[lt | St−1]

)
.

Using (4.7), we bound the expected loss term by

E[lt | St−1] ≤
1

k
· ⟨X−1,Z−1

t ⟩ ≤
4

k
· tr(X−1),

where the last inequality follows by the assumption that λmin(Zt) ≥ 1
4 happens. Then,

we bound the expected gain term by

E[gt | St−1] =
∑

j∈[n]\St−1

x(j)
k
·
(
1 + 2α⟨vjv⊤

j ,A
1
2
t ⟩
)
·
⟨X−1,Z−1

t vjv⊤
j Z−1

t ⟩
1 + 2⟨vjv⊤

j ,Z−1
t ⟩

≤ 1

k
·max
j∈[n]

{
α⟨vjv⊤

j ,A
1
2
t ⟩

⟨vjv⊤
j ,Z−1

t ⟩

}
·

n∑
j=1

x(j) · ⟨X−1,Z−1
t vjv⊤

j Z−1
t ⟩

≤ 1

k
· αλmin(Zt) · ⟨X−1,Z−2

t ⟩

≤ 32
√
d

k
· tr
(
X−1

)
,

where the first inequality follows from the first inequality in Lemma 4.13, and the sec-
ond inequality follows from the second inequality in Lemma 4.13 and

∑n
j=1 x(j) ·

vjv⊤
j = I , and the last inequality holds as α = 8

√
d, Z−2

t ≼ λmin(Zt)
−2I , and

λmin(Zt) ≥ 1
4 . Therefore, E[X

2
t | St−1] ≤ O( ε

k
√
d
) · tr(X−1)2, which implies

Wt :=
t∑

l=1

E[X2
l | Sl−1] ≤ O

( ετ

k
√
d

)
· tr
(
X−1

)2 ∀t ∈ [τ ].

Finally, we can apply Freedman’s martingale inequality Theorem 2.9 with R = 48ε
d ·

tr(X−1) and σ2 = O
(

ετ
k
√
d

)
· tr
(
X−1

)2
to conclude that

Pr

[
Yτ ≥ η

⋂
min

1≤t≤τ
λmin(Zt) ≥

1

4

]
≤ Pr[∃t ∈ [τ ] : Yt ≥ η ∩Wt ≤ σ2]

≤ exp

(
− η2/2

σ2 +Rη/3

)
= exp

(
−Ω

(
η2kd

ετ
√
d tr(X−1)2 + εηk tr(X−1)

))
.

The lemma follows by noting that
∑τ

t=1 Γt ≤
∑τ

t=1 E[Γt | St−1] − η is equivalent to
Yτ ≥ η.
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4.3.3. Proof of Theorem 4.7 for A-design. We are ready to prove Theo-
rem 4.7 for A-design. Let τ = 2k

ε . We want to upper bound the probability that the
following three events happen simultaneously:

• E1: The randomized exchange algorithm entered the second phase, i.e.,
λmin(Z1) ≥ 3

4 using the notation in this subsection.
• E2: min1≤t≤τ λmin(Zt) ≥ 1

4 .
• E3: The second phase of the algorithm has not terminated by time τ .

Suppose the event E3 happens. Then λ = min1≤t≤τ+1
⟨X−1,Z−1

t ⟩
tr(X−1) > (1+ ε). If the

event E2 also happens, then Lemma 4.14 implies that

τ∑
t=1

E [Γt | St−1] ≥
(λ− 1)τ

k
· tr
(
X−1

)
> 2 tr

(
X−1

)
.(4.8)

On the other hand, the initial solution of the second phase satisfies Z1 ≽ 3
4 I (follows

by E1), which implies that ⟨X−1,Z−1
1 ⟩ ≤ 4

3 tr(X
−1). When the event E2 happens,

we know from Lemma 4.13 that 2⟨vitv⊤
it
,Z−1

t ⟩ ≤ 2α · ⟨vitv⊤
it
,A

1
2
t ⟩ ≤ 1

2 , and so we can
apply (4.6) to deduce that

⟨X−1,Z−1
τ+1⟩ ≤ ⟨X−1,Z−1

1 ⟩ −
τ∑

t=1

Γt ≤
4

3
· tr
(
X−1

)
−

τ∑
t=1

Γt.

By (4.1) and the optimality of X ,

tr(X−1) ≤ ⟨X−1,Z−1
τ+1⟩ =⇒

τ∑
t=1

Γt ≤
1

3
· tr
(
X−1

)
.(4.9)

Combining (4.8) and (4.9), E1∩E2∩E3 implies a large deviation of the progress from
the expectation, i.e.,

∑τ
t=1 Γt−

∑τ
t=1 E[Γt | St−1] < − 5

3 ·tr(X
−1). Thus, we can apply

Lemma 4.16 with η = 5
3 · tr(X

−1) and τ = 2k
ε to conclude that

Pr [E1 ∩ E2 ∩ E3] ≤Pr

[
τ∑

t=1

Γt <

τ∑
t=1

E [Γt | St−1]−
5

3
· tr(X−1)

⋂
E2

]

≤ exp

(
− Ω

(
tr(X−1)2 · kd

ε
(
2k
ε

)√
d · tr (X−1)

2
+ εk · tr (X−1)

2

))
≤ exp

(
−Ω(
√
d)
)
.

4.3.4. Optimality condition for the convex program of A-design. This
lemma follows from the optimality condition of the convex programming relaxation
and the assumption about the budgets.

Lemma 4.15. Let x ∈ [0, 1]n be an optimal fractional solution of the convex pro-

gramming relaxation (1.1) for A-design. Let X =
∑n

i=1 x(i) · uiu⊤
i , and vi = X− 1

2 ui
for 1 ≤ i ≤ n. Suppose bj ≥

d∥cj∥∞
ε for 1 ≤ j ≤ m. Then, for each 1 ≤ i ≤ n with

0 < x(i) < 1,

⟨X−1, viv⊤
i ⟩ ≤

ε

d
· tr(X−1).

In particular, it holds that ⟨X−1, vitv
⊤
it
⟩ ≤ ε

d · tr(X
−1) and ⟨X−1, vjtv

⊤
jt
⟩ ≤ ε

d · tr(X
−1)

for all t ≥ 1 with probability 1 during the process of the randomized exchange algo-
rithm.
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Proof. We rewrite the convex relaxation (1.1) for A-design as follows:

minimize
x∈Rd,X∈Rd×d

tr
(
X−1

)
subject to X =

n∑
i=1

x(i) · uiu⊤
i

⟨cj , x⟩ ≤ bj ∀j ∈ [m],

0 ≤ x(i) ≤ 1 ∀i ∈ [n].

We will use a dual characterization to prove the lemma. We introduce a dual variable
Y for the first equality constraint, a dual variable µj ≥ 0 for each of the budget
constraints ⟨cj , x⟩ − bj ≤ 0, a dual variable β−

i ≥ 0 for each nonnegative constraint
−x(i) ≤ 0, and a dual variable β+

i ≥ 0 for each capacity constraint x(i)− 1 ≤ 0.
The Lagrange function L(x ,X ,Y , µ, β+, β−) is defined as

tr
(
X−1)+〈Y ,X −

n∑
i=1

x(i) · uiu⊤
i

〉
+

m∑
j=1

µj

(
⟨cj , x⟩ − bj

)
−

n∑
i=1

β−
i x(i) +

n∑
i=1

β+
i (x(i)− 1)

= tr
(
X−1)+⟨Y ,X ⟩−

m∑
j=1

µjbj−
n∑

i=1

β+
i −

n∑
i=1

x(i) ·
(
⟨Y , uiu⊤

i ⟩ −
m∑

j=1

µjcj(i) + β−
i − β+

i

)
.

The Lagrangian dual program is

max
Y≻0,µ≥0,

β+≥0,β−≥0

min
X≻0,x

L(x ,X ,Y , µ, β+, β−).

Note that we can add the constraint X ≻ 0 to the inner minimization without loss of
generality, as otherwise the Lagrange function is not well-defined. Similarly, we can
assume that Y ≻ 0 in the outer maximization, as otherwise the inner maximization
problem is unbounded below. Given Y ≻ 0, µ, β+, β− ≥ 0, the minimizers X ≻ 0, x
of the Lagrange function satisfy the optimality conditions that

∇XL = −X−2 + Y = 0 and ∇x(i)L = −⟨Y , uiu⊤
i ⟩+

m∑
j=1

µjcj(i)− β−
i + β+

i = 0.

Therefore, the Lagrangian dual program can be written as

maximize
Y≻0,µ≥0,

β+≥0,β−≥0

2 tr(Y
1
2 )−

m∑
j=1

µjbj −
n∑

i=1

β+
i

subject to ⟨Y , uiu⊤
i ⟩ =

m∑
j=1

µjcj(i)− β−
i + β+

i ∀i ∈ [n].

It is easy to verify that x = δ1⃗ is a strictly feasible solution of the primal program for
a small enough δ. So, Slater’s condition implies that strong duality holds. Let x ,X
be an optimal solution for the primal program, and let Y , µ, β+, β− be an optimal
solution for the dual program. The Lagrangian optimality condition implies that
Y = X−2, and it follows that
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tr(X−1) = 2 tr(X−1)−
m∑
j=1

µjbj −
n∑

i=1

β+
i =⇒

m∑
j=1

µjbj +

n∑
i=1

β+
i = tr(X−1)

=⇒
m∑
j=1

µj ∥cj∥∞ ≤
ε

d
· tr(X−1),

where the last implication follows from β+
i ≥ 0 for all i ∈ [n] and the assumption

bj ≥
d∥cj∥∞

ε for all j ∈ [m].

Finally, by the complementary slackness conditions, we have β−
i · x(i) = 0 and

β+
i · (1 − x(i)) = 0 for all i ∈ [n]. Therefore, for each i ∈ [n] with 0 < x(i) < 1, we

must have β+
i = β−

i = 0, which implies that

m∑
j=1

µjcj(i) = ⟨X−2, uiu⊤
i ⟩ = ⟨X−1, viv⊤

i ⟩

=⇒ ⟨X−1, viv⊤
i ⟩ ≤

m∑
j=1

µj ∥cj∥∞ ≤
ε

d
tr(X−1).

The last part of the lemma simply follows from Observation 4.3.
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