
ar
X

iv
:1

50
7.

02
06

9v
1 

 [
cs

.D
S]

  8
 J

ul
 2

01
5

Random Walks and Evolving Sets:

Faster Convergences and Limitations
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Abstract

Analyzing the mixing time of random walks is a well-studied problem with applications in
random sampling and more recently in graph partitioning. In this work, we present new analysis
of random walks and evolving sets using more combinatorial graph structures, and show some
implications in approximating small-set expansion. On the other hand, we provide examples
showing the limitations of using random walks and evolving sets in disproving the small-set
expansion hypothesis.

1. We define a combinatorial analog of the spectral gap, and use it to prove the convergence
of non-lazy random walks. A corollary is a tight lower bound on the small-set expansion
of graph powers for any graph.

2. We prove that random walks converge faster when the robust vertex expansion of the graph
is larger. This provides an improved analysis of the local graph partitioning algorithm using
the evolving set process.

3. We give an example showing that the evolving set process fails to disprove the small-set
expansion hypothesis. This refutes a conjecture of Oveis Gharan and shows the limitations
of local graph partitioning algorithms in approximating small-set expansion.
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1 Introduction

Analyzing the mixing time of random walks is a fundamental problem with many applications in
random sampling [LPW08]. The evolving set process is an elegant tool introduced by Morris and
Peres [MP05] to provide sharp analyses of mixing time (see the survey [MT06]). Recently, random
walks and the evolving set process have also been used in designing local algorithms for graph
partitioning [ST13, ACL06, AP09, OT12, KL12]. The evolving set process is the most powerful
among the local graph partitioning algorithms, and Oveis Gharan [Ove13] even conjectured that it
can be used to disprove the small-set expansion hypothesis [RS10]. A common theme of this paper
is to study the power and limitations of this technique, from analyzing mixing time to local graph
partitioning and approximating small-set expansion.

Random Walks and Mixing Time

We consider random walks in a weighted undirected graph G = (V,E) with a nonnegative weight
w(e) on each edge e ∈ E. Let n = |V | and m = |E|. For simplicity, we assume that the graph G is
regular and the weights are scaled such that the weighted degree of i is

∑

j:ij∈E w(i, j) = 1 for all
i ∈ V throughout this paper, but we will mention how to deal with general graphs in Section 2.5.
Let A be the n × n random walk matrix of G with Aij = w(i, j). Let p0 ∈ R

n be an initial
probability distribution, and let pt := Atp0 be the probability distribution after t steps of random
walks. When G is connected and non-bipartite, it is well-known that pt will converge to the uniform
distribution. The mixing time is defined as

Tmix = min{t : ‖pt −
~1

n
‖1 6 1/4 for all initial distribution p0}.

One approach to analyze the mixing time is to look at the eigenvalues of the random walk matrix.
Let the eigenvalues of A be 1 = λ1 > λ2 > . . . > λn > −1. By basic spectral graph theory, it can
be shown that 1 > λ2 if and only if G is connected, and λn > −1 if and only if G is non-bipartite.
This implies that, when G is connected and non-bipartite, pt will converge to the first eigenvector,
and thus the uniform distribution is the unique limiting distribution of the random walk. Let
λ := max{λ2, |λn|}, and let 1 − λ be the spectral gap of the random walk matrix. A standard
calculation shows that the mixing time is upper bounded by O(log(n)/(1− λ)).

For many problems, it is useful to have combinatorial characterizations of graphs with fast mixing
time. For two subsets S, T ⊆ V , let E(S, T ) be the set of edges with one vertex in S and another
vertex in T , and let w(S, T ) :=

∑

e∈E(S,T )w(e). The expansion of a set S ⊆ V and the expansion
of a graph G are defined as

φ(S) :=
w(S, V − S)

|S| and φ(G) := min
S:|S|6n/2

φ(S).

Cheeger’s inequality for graphs [Alo86, AM85] states that

1

2
(1− λ2) 6 φ(G) 6

√

2(1 − λ2),
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and thus 1 − λ2 = Ω(φ(G)2). Having large conductance is not enough to guarantee fast mixing
time, as λn may be very close to −1. There is a simple trick to bypass this issue: one can guarantee
that λn > 0 by considering “lazy” random walks (with probability 1/2 stay put), and this implies
that the mixing time of lazy random walks is upper bounded by O(log(n)/φ(G)2).

Another approach to analyze the mixing time is to directly use the graph structures. Lovász
and Simonovits [LS90] developed a combinatorial method to prove that the mixing time of lazy
random walks is O(log(n)/φ(G)2). This method is more flexible in incorporating additional graph
structures. Given a parameter 0 < δ 6 1/2, the δ-small-set expansion is defined as

φδ(G) := min
S:|S|6δn

φ(S).

Lovász and Kannan [LK99] proved that the mixing time of lazy random walks is

Tmix 6

∫ 1/2

1/n

dx

xφx(G)2
.

As we will discuss in more details shortly, this combinatorial approach can also be used to design
local graph partitioning algorithms for approximating small-set expansion.

Evolving Sets

The evolving set process is a Markov chain on subsets of V with the following transition rule: If
the current set is S, choose U uniformly from [0, 1] and the next set is defined as

S̃ := {y : w(y, S) > U}.

Morris and Peres [MP05] used the evolving set process to strengthen Lovász and Kannan result
to bound the uniform mixing time of lazy random walks by the expansion profile. An important
definition in their analysis is the gauge of a set S and the gauge of a graph G, which are defined as

ψ(S) = 1− E[

√

|S̃|/|S|] and ψ(G) := min
S:|S|6n/2

ψ(S).

Morris and Peres [MP05] showed that the convergence rate of random walks is bounded by the
gauge, and the mixing time of random walks is O(log(n)/ψ(G)). They proved that ψ(G) >

Ω(φ2(G)) for lazy graphs, and this implies that the mixing time of lazy random walks is upper
bounded by O(log(n)/φ(G)2). We refer the interested reader to [LPW08] for an excellent introduc-
tion of the evolving set process.

Local Graph Partitioning Algorithms

Spielman and Teng [ST13] used random walks to design the first local graph partitioning algorithm,
which outputs a set S of approximately optimal expansion with running time depends only on |S|
and polylog(n). Their analysis is based on the approach of Lovász and Simonovits [LS90] on
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analyzing mixing time. Andersen and Peres [AP09] and Oveis Gharan and Trevisan [OT12] used
the evolving set process for local graph partitioning, and provide the current best known algorithm
in terms of both the approximation ratio and the running time.

Theorem 1 ([AP09, OT12]). For any target set S∗ and any ǫ > 0, there is a subset S′ with
|S′| > |S∗|/2, such that if we start the evolving set process with {v} for v ∈ S′, then with constant
probability the algorithm returns a set S with φ(S) = O(

√

φ(S∗)/ǫ) and |S| = O(|S∗|1+ǫ), and the

running time is O(|S∗|1+2ǫφ(S)−
1

2 log2 n).

Small Set Expansion

The small set expansion hypothesis proposed by Raghavendra and Steurer [RS10] states that for
any ǫ, there exists δ such that it is NP-hard to distinguish the following two cases:

1. There is a set S with φ(S) 6 ǫ and |S| 6 δn;

2. φ(S) > 1− ǫ for every set S with |S| 6 δn.

This hypothesis is shown to be closely related to the unique games conjecture [RS10]. The local
graph partitioning algorithms provide bicriteria approximation algorithms for computing small set
expansion φδ(G). It is observed in [OT12, KL12] that if the output size guarantee of the above local
graph partitioning algorithm is improved from O(|S∗|1+ǫ) to O(|S∗|), then the small-set expansion
hypothesis is false. Oveis Gharan [Ove13] suggested a plan to prove such an output size guarantee
using the evolving set process.

1.1 Our Results

Combinatorial Analog of Spectral Gap

We define a combinatorial analog of spectral gap with which we can directly analyze the mixing
time of non-lazy random walks. Recall that φ(G) is defined as

min
S⊆V,|S|6n/2

w(S, V − S)

|S| = min
S⊆V,|S|6n/2

1− w(S, S)

|S| .

We define the combinatorial gap as

ϕ(G) := min
S⊆V,T⊆V,|S|=|T |6n/2

1− w(S, T )

|S| . (1.1)

Note that ϕ(G) is small if there exists a near-bipartite component. We prove the following combi-
natorial analog of the spectral analysis of mixing time.

Theorem 2. For any graph G, ψ(G) > Ω(ϕ2(G)).

3



By the aforementioned result of Morris and Peres [MP05], one immediate corollary is that the mixing
time of non-lazy random walks is upper bounded by O(log(n)/ϕ2(G)). An implication is that adding
self-loops of weight φ(G) (instead of 1/2) is enough to guarantee mixing time O(log(n)/φ2(G)) in
any graph, which may have applications in speeding up random sampling algorithms.

Our proof of Theorem 2 is based on a new analysis of the approach by Lovász and Simonovits [LS90]
using the bar chart in Figure 2.2. We believe that the new analysis is more intuitive and provides
better insights into what combinatorial properties are needed for fast mixing.

Using Theorem 2 and the results in [KL14], another corollary is the following lower bound on
small-set expansion of graph powers.

Corollary 1. For any graph G and any integer t > 1,

φδ/4(G
t) = Ω(min{

√
t · φδ(G), 1}).

The same result is proved in [KL14] for lazy graphs, and here we prove it for all graphs. Note that
it is not true that φ(Gt) = Ω(min{

√
t ·φ(G), 1}) when G is bipartite, but the above corollary shows

that it is true for small-set expansion even when G is bipartite. As shown in [RS14], this result can
be used to amplify hardness results for the small-set expansion problem.

Vertex Expansion

The robust vertex expansion is defined by Kannan, Lovász and Montenegro [KLM06] as follows:
For S ⊆ V , let N1/2(S) := min{|T | | T ⊆ V − S and w(S, T ) > 1

2w(S, V − S)}. Define

φV (S) := min

{

N1/2(S)

|S| , 1

}

and φV (G) := min
S:|S|6n/2

φV (S)

as the robust vertex expansion of a set S and the graph G. This definition slightly differ from the
original definition in [KLM06] by bounding the vertex expansion above by one. We do this because
it is the range of interest and the statement of our result would be much cleaner. Also define

Ψ(S) := φ(S) · φV (S) and Ψ(G) := min
S:|S|6n/2

Ψ(S)

as the minimum product of the edge expansion and the robust vertex expansion. It is proved
in [KLL15] that

1− λ2 = Ω(Ψ(G)),

and that the spectral partitioning algorithm and the local graph partitioning algorithm using per-
sonal pagerank vectors [ACL06] achieve better approximation when the robust vertex expansion is
large. We prove a similar result for random walks and evolving sets.

Theorem 3. For lazy graphs G, ψ(G) > Ω(Ψ(G)).

A corollary is an improved analysis of Theorem 1 when the robust vertex expansion of G is large.
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Corollary 2. For any target set S∗ and any ǫ > 0, there is a subset S′ with |S′| > |S∗|/2, such
that if we start the evolving set process with {v} for v ∈ S′, then with constant probability the
algorithm returns a set S with Ψ(S) = O(φ(S∗)/ǫ) and |S| = O(|S∗|1+ǫ), and the running time is

O(|S∗|1+2ǫφ(S)−
1

2 log2 n).

Note that the conclusion Ψ(S) = O(φ(S∗)/ǫ) implies that φ(S) = O(φ(S∗)/φV (S)) = O(φ(S∗)/φV (G)).
In particular, this implies that the evolving set algorithm is a constant factor approximation algo-
rithm when φV (G) is a constant, for example when G is a planted random graph. This shows that
the evolving set algorithm matches the improved analysis of the spectral partitioning algorithm
in [KLL15]. We refer the reader to [KLL15] for more discussions and motivations for robust vertex
expansion.

Limitations

The subexponential time algorithm for small-set expansion by Arora, Barak and Steurer [ABS10]
uses eigenspace enumeration and random walks. The short code example in [BGHMRS12] shows
the limitation of the eigenspace enumeration method. It is a natural question to ask whether
random walks can be used to disprove the small-set expansion hypothesis. There were very few
results showing the limitations of these random walks based algorithms (see [ZLM13] for the only
such result that we know of). One main difference between the truncated random walk algorithm
by Spielman and Teng [ST13] and the evolving set algorithm by Andersen and Peres [AP09] and
Oveis Gharan and Trevisan [OT12] is that the random walk algorithm is deterministic while the
evolving set algorithm involves much randomness. Oveis Gharan [Ove13] conjectured in his thesis
(Conjecture 12.3.4) that there is a small but nontrivial probability that all the sets explored by the
evolving set process is of size O(|S∗|), and argued that this would disprove the small-set expansion
hypothesis. We present an example for which the evolving set algorithm fails with probability one,
refuting Oveis Gharan’s conjecture.

Theorem 4. Given any ǫ, there exists δǫ such that for any δ > 0, there is a graph G such that
φδ(G) 6 ǫ, but any subset of volume 6 δǫn returned by the evolving set algorithm in [AP09, OT12]
has expansion at least 1− ǫ with probability one.

The example is a k-ary ǫ-noisy hypercube, where the dimension cuts are of size n/k with expansion
ǫ. We show that, however, the evolving set algorithm will only explore the Hamming balls, and the
expansion is at least 1 − ǫ for all Hamming balls of size O(n/k). We note that this example also
shows that the random walk algorithm [ST13, KL12] and the pagerank algorithm [ACL06, ZLM13]
fail to disprove the small-set expansion hypothesis; see Section 3.

We believe that this example exposes the limitations of all known local graph partitioning algo-
rithms, and can be used as a basis to prove further lower bounds (e.g. to show that the analysis
of the O(

√

φ(S) log(|S|))-approximation of the evolving set algorithm in Theorem 1 is tight when
ǫ = 1/ log(|S|)).
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1.2 Relations with Previous Work

Combinatorial Analog of Spectral Gap

We note that the original analyses of Lovász and Simonovits [LS90] and Andersen and Peres [AP09]
heavily rely on the laziness assumption and cannot be used to work with the combinatorial gap.
The bar chart in Figure 2.2 is the new element introduced to analyze the combinatorial gap as well
as the robust vertex expansion.

Trevisan [Tre12] defined the bipartiteness ratio β(G) of a graph and proved that λn + 1 is related
to β(G) as if 1 − λ2 is related to φ(G) stated by Cheeger’s inequality. After formulated and
proved Theorem 2, we observe that Trevisan’s result combined with the spectral argument can
also be used to derive the corollary that the mixing time of non-lazy random walks is bounded by
O(log(n)/ϕ(G)2). However, we remark that Theorem 2 and Corollary 1 cannot be derived from
Trevisan’s result and the spectral approach, and also that the formulation of Theorem 2 is new.

Bilu and Linial [BL06] defined a combinatorial property called “jumbleness”, proved that it is a
log(d)-approximation to the spectral gap where d is the maximum degree of the graph, and used it
to establish a converse to the expander mixing lemma. The definition of the jumbleness is similar
to our definition of the combinatorial gap in that it also concerns about w(S, T ) for two subsets of
vertices S, T ⊆ V , but the precise definition and the theorem obtained are incomparable to what
we have in this paper.

Mixing Time and Local Graph Partitioning

The results in Lovász and Kannan [LK99] and Kannan, Lovász and Montenegro [KLM06] show that
the mixing time of lazy random walks is O(log(n)/Ψ(G)), among other conditions that imply faster
mixing. However, their results cannot be applied to analyze local graph partitioning algorithms as
in Corollary 2.

Besides the random walk algorithm [ST13, KL12] and the evolving set algorithm [AP09, OT12],
there is also a local graph partitioning algorithm using pagerank vectors [ACL06, ZLM13]. In terms
of the approximation guarantee, the output size, and the running time, the pagerank algorithm is
subsumed by the evolving set algorithm in [AP09, OT12].

In [KLL15], it was shown that the pagerank algorithm performs better when the robust vertex
expansion is large. Similar results were not known for random walks and evolving sets, as the
spectral techniques in [KLL15] are not applicable. These results are proved in this paper by a
new analysis of the combinatorial approach of Lovász and Simonovits [LS90]. Finally, we remark
that this paper is a subsequent work of [KLL15], and both the results and the techniques are
different from [KLL15], especially the combinatorial analog of spectral gap, the counterexample
for the evolving set algorithm, and the new analysis of Lovász and Simonovits approach using the
barchart.
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2 Faster Convergence

In this section, we prove the positive results about faster convergence rates of random walks and
evolving sets. Our proofs are based on the combinatorial method of Lovász and Simonovits [LS90],
and we will begin with an introduction of their techniques in Section 2.1, and then we will discuss
the proof outline and highlight the new idea in Section 2.2. Then, we will prove Theorem 2 about
combinatorial analog of spectral gap in Section 2.3 and then prove Corollary 1 about small-set
expansion of graph powers. Then, we will prove Theorem 3 about robust vertex expansion in
Section 2.4 and then show its application in local graph partitioning. Finally, we will discuss how
to extend the results to non-regular graphs in Section 2.5.

2.1 Lovász-Simonovits Curve

For any vector p ∈ R
n, Lovász and Simonovits [LS90] study the curve C(p) : [0, n] → R that plots

the cumulative sum of p defined as

C(p, x) = max
c∈[0,1]n:

∑
i
c(i)=x

∑

i∈V

c(i) · p(i). (2.1)

In words, C(p, x) is just the sum of the first x largest elements in p when x is a positive integer,
and the curve C(p, x) is defined for all x ∈ [0, n] by piecewise linear extension. It is clear from
the definition that C(p) is a concave function. We are interested in studying the curve C(Atp, x)
where A is a random walk matrix and p is a probability distribution. Notice that as Atp converges
to the uniform distribution as t becomes larger, C(Atp) converges to the line x/n and vice versa.
In [LS90], their method to bound the mixing time is to bound the difference between C(Atp) and
the line x/n. When A is the lazy random walk matrix, they proved that

C(Atp, x) 6
x

n
+

√
x(1− φ(G)2

8
)t, (2.2)

and this implies that the mixing time of lazy random walks is O(log n/φ(G)2). The key lemma in
their proof is the following inequality: For any lazy random walk matrix A, any p ∈ R

n and any
integral x,

C(Ap, x) 6
1

2

(

C(p, x(1− φ(G))) +C(p, x(1 + φ(G)))
)

. (2.3)

The bound in (2.2) follows from an inductive argument using (2.3); see [LS90, ST13, KL12] and
also a slightly more general version in Lemma 7 in Section 2.4. We remark that their proof of (2.3)
crucially relies on the assumption that there is a self-loop of weight 1/2 on each vertex and is a bit
magical.

2.2 Proof Outline

We mainly outline the proof of Theorem 2 in this subsection, but we will briefly mention the
modifications to prove Theorem 3 at the end. We will prove the following inequality similar to
(2.3) using the combinatorial gap (without the laziness assumption that Aii > 1/2 for all i ∈ V ).
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Upper Area x =
∑

i

max{dS(i)−
1

2
, 0} ≤ 1

2
(1− ϕ(G))|S|

dS(i)

1

0 |S| n

i

0.5

Figure 2.1: An illustration of the proof ideas.

Lemma 1. For any random walk matrix A, any p ∈ R
n and any integral x 6 n/2,

C(Ap, x) 6
1

2

(

C(p, x(1− ϕ(G))) +C(p, x(1 + ϕ(G)))
)

.

With Lemma 1 in place of (2.3), the same inductive argument that we mentioned before implies
the convergence result in (2.2) with φ(G) replaced by ϕ(G). It turns out that the analysis of the
Lovász-Simonovits curve can be used to analyze the evolving set process, and the arguments in
Lemma 1 can be adapted to prove Theorem 2. To prove Lemma 1, we consider an arbitrary S ⊆ V
and try to bound the total probability in S after one step of random walk (Ap)(S) :=

∑

i∈S(Ap)i.
To bound (Ap)(S), we look at where the probability in S is coming from. For each i ∈ V , let

dS(i) := w(i, S)

be the total weight coming from i to S. Recall that we assume the weighted degree of each vertex
is one. So, we have dS(i) ∈ [0, 1] for any i and

∑

i∈V

dS(i) = |S|. (2.4)

The reason of this definition is that (Ap)(S) =
∑n

i=1 dS(i) · p(i). We sort the vertices so that
dS(1) > dS(2) > . . . > dS(n). Let T := {1, 2, . . . , |S|} be the |S| vertices with largest dS values;
note that T is in general not equal to S. See Figure 2.2 for an illustration of the proof setup.
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The obstruction for mixing is when dS(1) = dS(2) = . . . = dS(|S|) = 1 and p(1), . . . , p(|S|) are the
highest probability in p, in which case we would have C(Ap, |S|) > (Ap)(S) =

∑

i∈S p(i) = C(p, |S|)
and thus the curve is not dropping after one step of random walk. This could happen when S = T
in which case S is a disconnected component of G (corresponding to λ2 = 1), or when S and T
form a bipartite component (corresponding to λn = −1), and in these cases the random walk may
not mix (depending on the initial distribution).

The combinatorial gap in (1.1) is defined precisely to exclude the obstruction. It states that any
subset T with |T | = |S| can only contribute w(S, T ) 6 (1 − ϕ(G))|S| to w(S, V ) = |S|, so as to
guarantee that the curve would drop, i.e. C(Ap, |S|) = maxS′:|S′|=|S|Ap(S

′) < C(p, |S|). To prove
Lemma 1, we look at the bar chart in Figure 2.2 horizontally and consider the telescoping sum

(Ap)(S) =
n
∑

i=1

dS(i) · p(i) =
n
∑

i=1

(dS(i) − dS(i+ 1))
i
∑

j=1

p(j) 6
n
∑

i=1

(dS(i)− dS(i+ 1))) · C(p, i).

Suppose we put a threshold 1/2 and consider the upper area x =
∑n

i=1 max{dS(i)− 1
2 , 0} and the

lower area y =
∑n

i=1min{dS(i), 12}; see Figure 2.2. By concavity of the curve C, we will prove in
Lemma 2 that

(Ap)(S) 6
1

2
(C(p, 2x) +C(p, 2y)) =

1

2
(C(p, 2x) + C(p, 2|S| − 2x)).

The definition of combinatorial gap in (1.1) forces dS to spread out, and we will prove in Lemma 3
that it implies that

x 6
1

2
(1− ϕ(G))|S|.

Combining these two steps gives Lemma 1. Once we prove Lemma 1, the same calculations can be
used to prove Theorem 2 about the gauge in the evolving set process.

The proof of Theorem 3 is also based on the idea of using the bar chart in Figure 2.2. First, we
translate the definition of robust vertex expansion to an upper bound of the area of the largest
vertices. Then, we will choose a different threshold, and then we will modify the inductive argument
accordingly to establish a similar bound as in (2.2). The proof will work for the gauge in the evolving
set process to prove Theorem 3.

2.3 Combinatorial Analog of Spectral Gap

As described in the outline, we will prove the following two lemmas.

Lemma 2. For any subset S ⊆ V with |S| 6 n/2, let x =
∑

i∈V max{dS(i)− 1
2 , 0}, then

(Ap)(S) 6
1

2
(C(p, 2x) + C(p, 2(|S| − x))),

for any random walk matrix A and any vector p ∈ R
n.

Lemma 3. For any subset S ⊆ V with |S| 6 n/2, let x =
∑

i∈V max{dS(i)− 1
2 , 0}, then

x 6
1

2
(1− ϕ(G))|S|.

9



First, we assume the lemmas are correct and derive Lemma 1.

Proof of Lemma 1. Let S be a subset of V . By Lemma 2, Lemma 3 and the concavity of C, we
have

(Ap)(S) 6
1

2
(C(p, 2x) + C(p, 2(|S| − x))) 6

1

2
(C(p, (1− ϕ(G))|S|) + C(p, (1 + ϕ(G))|S|)),

where the last inequality holds since for any concave function f and any values a 6 b 6 c 6 d with
a+ d = b+ c, we have f(a) + f(d) 6 f(b) + f(c). Since the argument applies to all subset S ⊆ V
with |S| 6 n/2, we have

C(Ap, |S|) = max
S′⊆V,|S′|=|S|

(Ap)(S′) 6
1

2

(

C(p, (1− ϕ(G))|S|) + C(p, (1 + ϕ(G))|S|)
)

.

Next we prove Lemma 2, which follows from the concavity of the curve C.

Proof of Lemma 2. Recall that (Ap)(S) =
∑

i p(i) ·dS(i). For convenience, we define the boundary
values to be dS(0) = 1 and dS(n+1) = 0, and also define p(0) = 0. Then, there is an index k such
that dS(k) > 1/2 > dS(k + 1). By looking at the bar chart in Figure 2.2 horizontally as in the
outline and considering the telescoping sum, we have

(Ap)(S) =

n
∑

i=0

dS(i) · p(i) =
n
∑

i=0

(dS(i)− dS(i+ 1))(

i
∑

j=1

p(j)) 6

n
∑

i=0

(dS(i)− dS(i+ 1)) · C(p, i)

=

(

k−1
∑

i=0

(dS(i)− dS(i+ 1)) · C(p, i) + (dS(k)−
1

2
) · C(p, k)

)

+

(

(
1

2
− dS(k + 1)) · C(p, k) +

n
∑

i=k+1

(dS(i)− dS(i+ 1)) · C(p, i)

)

.

Recall that C(p) is concave, and for any concave function f , we have by Jensen’s inequality

∑

i

aif(i) 6 (
∑

i

ai)f
(

∑

i

ai
∑

i ai
i
)

.

Since
k−1
∑

i=0

(dS(i)− dS(i+ 1)) + (dS(k)−
1

2
) = dS(0)−

1

2
=

1

2

and

(
1

2
− dS(k + 1)) +

n
∑

i=k+1

(dS(i)− dS(i+ 1)) =
1

2
− dS(n+ 1) =

1

2
,

10



by applying Jensen’s inequality with f = C(p), we have

(Ap)(S) 6
1

2
C

(

p, 2
(

k−1
∑

i=0

(dS(i)− dS(i+ 1)) · i+ (dS(k)−
1

2
) · k

)

)

+
1

2
C

(

p, 2
(

(
1

2
− dS(k + 1)) · k +

n
∑

i=k+1

(dS(i)− dS(i+ 1)) · i
)

)

.

Finally, note that the first sum

k−1
∑

i=0

(dS(i)− dS(i+ 1)) · i+ (dS(k)−
1

2
) · k =

k
∑

i=1

(dS(i)−
1

2
) =

n
∑

i=1

max(dS(i)−
1

2
, 0) = x.

Since
∑n

i=0(dS(i)− dS(i+ 1)) · i =∑n
i=1 dS(i) = |S| by (2.4), the second sum is |S| − x, and so we

have

(Ap)(S) 6
1

2
C(p, 2x) + C(p, 2(|S| − x)).

Now we prove Lemma 3, which uses the definition of the combinatorial gap in (1.1).

Proof of Lemma 3. Recall that we sort the vertices such that 1 > dS(1) > . . . > dS(n) > 0. Let k
be the index such that dS(k) > 1/2 > dS(k + 1). Let T = {1, . . . , |S|} be the subset of the first |S|
vertices. We consider two cases. The first case is when k 6 |S|, in which

x =

n
∑

i=1

max{dS(i) −
1

2
, 0} =

k
∑

i=1

(dS(i) −
1

2
) 6

k
∑

i=1

dS(i)

2
6

|S|
∑

i=1

dS(i)

2
6

1

2
(1− ϕ(G))|S|,

where the first inequality holds as dS(i) ∈ [0, 1], and the last inequality holds by using (1.1) to

obtain ϕ(G) 6 1− w(S, T )/|S| = 1−∑|S|
i=1 dS(i)/|S|.

The second case is when k > |S|. Note that dS(|S|) 6 1−ϕ(G), as otherwise T would violate (1.1).
Then, for any i > |S|, we have dS(i) 6 dS(|S|) 6 1− ϕ(G). Therefore, for any i > |S|,

dS(i)−
1

2
6 dS(i)

(

1
2 − ϕ(G)

1− ϕ(G)

)

6
dS(i) · (1− ϕ(G))

2
,

and we have

x =

k
∑

i=1

(dS(i)−
1

2
) 6

|S|
∑

i=1

(dS(i)−
1

2
) +

k
∑

i=|S|+1

(dS(i)−
1

2
) 6

|S|
∑

i=1

(dS(i)−
1

2
) + (

1− ϕ(G)

2
)

k
∑

i=|S|+1

dS(i)

=
(

w(S, T )− |S|
2

)

+ (
1− ϕ(G)

2
)(|S| − w(S, T )) = (

1 + ϕ(G)

2
)w(S, T ) − |S|

2
+ (

1− ϕ(G)

2
)|S|

6 (
1 + ϕ(G)

2
)(1− ϕ(G))|S| − |S|

2
+ (

1− ϕ(G)

2
)|S| 6 (

1− ϕ(G)

2
)|S|,

where the second last inequality is by (1.1). Hence, in any case, we have x 6
1
2 (1− ϕ(G))|S|.
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Evolving Sets

Finally, we prove Theorem 2 about the gauge of the evolving set process, which involves very similar

calculations as in the proof of Lemma 1. Recall that the gauge is defined as ψ(S) = 1−E[
√

|S̃|/|S|].
The following claim follows from Morris and Peres [MP05].

Claim 1 ([MP05], Equation 27). For any t ∈ [0, 1], we have

t · E[|S̃| | U 6 t] =
∑

i∈V

min{t, dS(i)}.

Proof. Note that P[i ∈ S̃ | U 6 t] = min{1, dS(i)/t}. It follows that

E[|S̃| | U 6 t] =
∑

i∈V

P[i ∈ S̃ | U 6 t] =
∑

i∈V

min{1, dS(i)/t}.

When t = 1/2, Claim 1 implies that

1

2
E[|S̃| | U 6

1

2
] =

∑

i∈V

min{1
2
, dS(i)},

which is the lower area under the threshold 1/2 (see Figure 2.2). And

1

2
E[|S̃| | U >

1

2
] = E[S̃]− 1

2
E[|S̃| | U 6

1

2
] =

∑

i∈V

dS(i)−
∑

i∈V

min{1
2
, dS(i)} =

∑

i∈V

max{dS(i)−
1

2
, 0},

which is the upper area above the threshold 1/2, and this is at most 1
2(1− ϕ(G))|S| by Lemma 3.

We are ready to prove Theorem 2.

Proof of Theorem 2. By definition,

ψ(S) = 1− E[

√

|S̃|/|S|] = 1− 1

2
E[

√

|S̃|/|S| | U 6
1

2
]− 1

2
E[

√

|S̃|/|S| | U >
1

2
].

Let x =
∑

imax{dS(i)− 1
2 , 0} be the upper area. We know that x 6 1

2(1− ϕ(G))|S| by Lemma 3.
By concavity,

1

2
E[

√

|S̃|/|S| | U >
1

2
] 6

1

2

√

1

|S|E[|S̃| | U >
1

2
] =

1

2

√

2x

|S| .

Similarly,

1

2
E[

√

|S̃|/|S| | U 6
1

2
] 6

1

2

√

1

|S|E[|S̃| | U 6
1

2
] =

1

2

√

2(|S| − x)

|S| .
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Plugging these two inequalities back into the first one, we have

ψ(S) > 1− 1

2
(

√

2− 2x

|S| +
√

2x

|S|) > 1− 1

2
(
√

1 + ϕ(G) +
√

1− ϕ(G)) > ϕ(G)2/8,

where the second inequality is because
√

2− 2x/|S| +
√

2x/|S| 6
√

2− 2y/|S| +
√

2y/|S| for
x 6 y 6 |S|/2 and we put in y = 1

2(1− ϕ(G))|S|, and the last inequality is by Taylor expansion of
the function

√
1 + ϕ.

Small-Set Expansion of Graph Powers

In this subsection, we prove Corollary 1 about small-set expansion of graph powers. Recall that
the δ-small-set expansion is defined as

φδ(G) = min
S⊆V,|S|6δn

1− w(S, S)

|S| .

We define the δ-small-set combinatorial gap as

ϕδ(G) = min
S⊆V,T⊆V,|S|=|T |6δn

1− w(S, T )

|S| .

The following is a simple relation between these two quantities.

Lemma 4. For any δ 6 1/2, we have ϕδ/2(G) > φδ(G)/2.

Proof. Suppose S, T are two subsets of size at most δn/2 that achieve w(S, T ) = (1 − ϕδ/2(G))|S|
and |S| = |T |. We argue that S ∪ T has small expansion, since

w(S ∪ T, S ∪ T ) > 2w(S, T ) − w(S ∩ T, S ∩ T ) > 2(1− ϕδ/2(G))|S| − |S ∩ T |
= 2|S| − |S ∩ T | − 2|S|ϕδ/2(G) = |S ∪ T | − 2|S|ϕδ/2(G) > |S ∪ T |(1− 2ϕδ/2(G)).

Since |S ∪ T | 6 2|S| 6 δn, this implies that φδ(G) 6 1− w(S ∪ T, S ∪ T )/|S ∪ T | 6 2ϕδ/2(G).

In [KL14], using the inequality (2.3), it is proved that for any lazy graph,

φδ/2(G
t) > Ω(min(

√
t · φδ(G), 1)).

The assumption of laziness is only used for the inequality (2.3) to hold. Now, with Lemma 1, we
can replace φδ(G) by ϕδ(G) and prove that for any graph G,

φδ/2(G
t) > Ω(min(

√
t · ϕδ(G), 1)).

Combining with Lemma 4, it follows that for any graph G,

φδ/4(G
t) > Ω(min(

√
t · φδ(G), 1)).
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2.4 Vertex Expansion

We will prove Theorem 3 in this subsection. As in Section 2.3, we will first prove faster convergence
for random walks and then for evolving sets. Intuitively, larger vertex expansion will lead to faster
mixing, as the probability coming into a set S is from many different vertices, and so it cannot
be the case that all probability in S come from a small number of vertices with high probability.
Our proof idea is also to look at the bar chart in Figure 2.2, and translate the definition of robust
vertex expansion into an upper bound of the area of the largest vertices.

For S ⊆ V , we consider the vector dS ∈ R
n with the i-th entry being dS(i), and as before we

assume that dS(1) > dS(2) > . . . > dS(n). We use the notation C(dS , x) in (2.1) on dS so that we
can talk about the largest x values in the vector dS (note that x could be non-integral).

In Theorem 3, unlike in Theorem 2, we need the additional assumption that the random walk
matrix is lazy, such that w(i, i) > 1/2 for any i ∈ V . The main reason of this assumption is to have
dS(i) > 1/2 for i ∈ S and dS(j) 6 1/2 for j /∈ S, so that we can assume that

S = {1, 2, . . . , |S|},

i.e. the vertices in S are the vertices with the largest values in dS . Recall that we defined

N1/2(S) := min{|T | | T ⊆ V − S and w(S, T ) >
1

2
w(S, V − S)}.

Since S = {1, . . . , |S|}, we have for any integral x,

max
T :T⊆V−S,|T |=x

w(S, T ) = max
T :T⊆V−S,|T |=x

∑

i∈T

dS(i) =

|S|+x
∑

i=|S|+1

dS(i) = C(dS , |S|+ x)− C(dS , |S|).

In words, the set of vertices T ⊆ V −S that maximize w(S, T ) are the vertices {|S|+1, . . . , |S|+|T |}
in the ordering defined by dS . So, we can rewrite the definition of N1/2(S) as

N1/2(S) := min{x | C(dS , |S|+ x)−C(dS , |S|) >
1

2
w(S, V − S)}.

Note that we allow x to be non-integral. This differs by at most one compared with the original
definition in [KLM06], and will make our proofs much cleaner. The robust vertex expansion is
defined as φV (S) := min{N1/2(S)/|S|, 1} and φV (G) := minS:|S|6|V |/2 φ

V (S) as before. Similarly,
Ψ(S) is defined as before using the new definition of N1/2(S). The following lemma translates the

definition of φV (S) to a bound on the cumulative sum of the largest vertices in the bar chart.

Lemma 5. For any S ⊆ V with |S| 6 |V |/2, we have

C(dS , (1 + φV (S))|S|) 6 (1− φ(S)

2
)|S|.

Proof. Since C(dS , |S|+x) is continuous with respect to x, the minimum in the definition of N1/2(S)

is attained when C(dS , |S|+ x)−C(dS , |S|) = 1
2w(S, V −S). As x = N1/2(S) 6 φV (S)|S|, we have

C(dS , (1 + φV (S))|S|) − C(dS , |S|) 6
1

2
w(S, V − S).

14



Finally, since S = {1, . . . , |S|}, we have C(dS , |S|) = w(S, S) = (1 − φ(S))|S| and w(S, V − S) =
φ(S) · |S|, we have

C(dS , (1 + φV (S))|S|) 6 (1− φ(S)

2
)|S|.

Using Lemma 5, we will prove a bound similar to that of Lemma 1. The two steps (Lemma 2 and
Lemma 3) of proving Lemma 1 are integrated and steamlined in the proof of the following lemma.

Lemma 6. Assume C(dS, a|S|) 6 b|S| for any |S| 6 n/2 for some a > 1 and b < 1, then for any
p ∈ R

n, we have for any S with |S| 6 n/2,

C(Ap, |S|) 6
( a− b

a− b2
)

· C(p, b|S|) +
( b− b2

a− b2
)

· C(p,
a|S|
b

).

Proof. Using the same concavity argument as in Lemma 2, for any threshold t ∈ (0, 1) and k such
that dS(k) > t > dS(k + 1), we have for any S with |S| 6 n/2,

(Ap)(S) 6 (1− t) · C
(

p,
1

1− t

(

k−1
∑

i=0

(dS(i)− dS(i+ 1)) · i+ (dS(k)− t) · k
)

)

+ t · C
(

p,
1

t

(

(t− dS(k + 1)) · k +
n
∑

i=k+1

(dS(i)− dS(i+ 1)) · i
)

)

.

Let x =
∑k−1

i=0 (dS(i)− dS(i+1)) · i+ (dS(k)− t) · k be the upper area above the threshold t. Then,
it follows that

C(p, |S|) = max
S

(Ap)(S) 6 (1− t) · C(p,
x

1− t
) + t · C(p,

|S| − x

t
).

It remains to prove an analog of Lemma 3 to bound the upper area x. We again consider two cases.
The first case is when k 6 a|S|, in which

x =

k
∑

i=1

(dS(i)− t) 6

k
∑

i=1

(1− t) · dS(i) = (1− t) · C(dS , a|S|) 6 (1− t) · b|S|,

where the last inequality uses the assumption that C(dS , a|S|) 6 b|S|. The second case is when
k > a|S|. Note that for any i > a|S|, dS(i) 6 dS(a|S|) 6 b/a, as otherwise the assumption
C(dS , a|S|) 6 b|S| would be violated. Hence, for any i > a|S|,

dS(i)− t 6
(b/a− t

b/a

)

· dS(i) = (1− at

b
) · dS(i),

and we get

x =
k
∑

i=1

(dS(i)− t) 6 C(dS , a|S|) − a|S|t+
k
∑

i=a|S|+1

(1− at

b
) · dS(i)

= C(dS , a|S|)− a|S|t+
(

|S| − C(dS , a|S|)
)

(1− at

b
) 6 |S|(1 − at

b
),
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where the last inequality uses the assumption that C(dS , a|S|) 6 b|S| and some simple calculations.
We balance the two upper bounds b|S|(1 − t) and |S|(1 − at/b) by choosing t = (b− b2)/(a − b2),
so that in both cases we have

x 6
b(a− b)

a− b2
|S|. (2.5)

Putting the choice of t and the bound on x back (and using concavity), we obtain the conclusion
of the lemma.

Lemma 6 is a generalization of (2.3), and we can use it to derive a generalization of (2.2). Note
that any probability distribution p satisfies the condition C(p, x) 6

x
n +

√

min{x, n− x} in the
following lemma.

Lemma 7. Assuming C(dS , a|S|) 6 b|S| for any |S| 6 n/2 for some a > 1 and b < 1, then for any
p ∈ R

n satisfying C(p, x) 6 x
n + c

√

min{x, n − x} for all x ∈ [0, n] for some c, we have

C(Atp, x) 6
x

n
+ c
√

min{x, n− x} · (1− (
√
a−

√
b)(1 −

√
b)√

a+ b
)t.

Proof. We only consider the case that x 6 n/2 in the following; the case x > n/2 can be handled
in the same manner. When x 6 n/2, we have C(p, x) 6 x

n + c
√
x. By Lemma 6,

C(Ap, x) 6
( a− b

a− b2
)

· C(p, bx) +
( b− b2

a− b2
)

· C(p,
ax

b
)

6
( a− b

a− b2
)

· (x
n
+ c

√
bx) +

( b− b2

a− b2
)

· (x
n
+ c

√

ax

b
)

=
x

n
+ c

√
x
(

( a− b

a− b2
)

·
√
b+

( b− b2

a− b2
)

·
√

a

b

)

=
x

n
+ c

√
x ·
( 1

a− b2
(

(a− b) + (1− b)
√
a
)
√
b
)

=
x

n
+ c

√
x ·
( 1

a− b2
(
√
a− b)(1 +

√
a)
√
b
)

=
x

n
+ c

√
x ·
((1 +

√
a)
√
b√

a+ b

)

.

Now note that,

1− (1 +
√
a)
√
b√

a+ b
=

√
a+ b−

√
b−

√
ab√

a+ b
=

(
√
a−

√
b)(1 −

√
b)√

a+ b
.

The above argument shows that C(Ap, x) 6 x
n + c

√
x(1− (

√
a−

√
b)(1−

√
b)/(

√
a+ b)). Apply the

same argument inductively (with different c in each iteration) gives the lemma.

In particular, for any probability distribution p, we have the following generalization of (2.2):

C(Atp, x) 6
x

n
+

√
x · (1− (

√
a−

√
b)(1−

√
b)√

a+ b
)t.

16



Evolving Sets

We prove Theorem 3 about the gauge in the evolving set process.

Proof of Theorem 3. By Claim 1, for any t ∈ [0, 1], the lower area below threshold t is

t · E[|S̃| | U 6 t] =
∑

i∈V

min{t, dS(i)} = |S| −
∑

i∈V

max{dS(i) − t, 0},

and the upper area above threshold t is

(1− t) · E[|S̃| | U > t] = E[S̃]− t · E[|S̃| | U 6 t] =
∑

i∈V

max{dS(i)− t, 0}.

By the same argument in Lemma 6, using the assumption C(dS , a|S|) 6 b|S| and setting t =
(b− b2)/(a− b2), the upper area above threshold t is

x :=
∑

i∈V

max{dS(i)− t, 0} 6
b(a− b)

a− b2
|S|

as stated in (2.5). Therefore,

ψ(S) = 1− E[

√

|S̃|/|S|]

= 1− t · E[
√

|S̃|/|S| | U 6 t]− (1 − t) · E[
√

|S̃|/|S| | U > t]

> 1− t

√

E[|S̃|/|S| | U 6 t]− (1− t)

√

E[|S̃|/|S| | U > t]

= 1− t

√

1

|S|
|S| − x

t
− (1− t)

√

1

|S|
x

1− t

> 1− t

√

1

t|S| (|S| −
b(a− b)

a− b2
|S|)− (1− t)

√

1

(1− t)|S|
b(a− b)

a− b2
|S|,

where the first inequality is by the concavity of the square root function, and the second inequality is
by the following fact: Suppose f is a concave function and c1 > c2 > c3 > c4 satisfy tc1+(1− t)c4 =
tc2 + (1− t)c3 for some t ∈ [0, 1], then tf(c1) + (1− t)f(c4) 6 tf(c2) + (1− t)f(c3). Note that

1

t|S| (|S| −
b(a− b)

a− b2
|S|) = a− b2

b− b2
(1− b(a− b)

a− b2
) =

a− b2 − b(a− b)

b− b2
=
a

b
,

and
1

(1− t)|S|
b(a− b)

a− b2
|S| = a− b2

a− b

b(a− b)

a− b2
= b.

Hence,

ψ(S) > 1− t

√

a

b
− (1− t)

√
b >

(
√
a−

√
b)(1−

√
b)√

a+ b
,
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where the last inequality follows from the calculations in Lemma 7 (starting from the third line in

the first block of calculations). We put a = 1+φV (S) and b = 1− φ(S)
2 . Note that since φV (S) 6 1

by definition, we have
√
a ≥ 1 + φV (S)/3. This is the only place we need to assume φV (S) 6 1.

On the other hand
√
b 6 1− φ(S)/2. Therefore we have

ψ(S) >
(13φ

V (S) + 1
2φ(S))

1
2φ(S)

3
>
φV (S)φ(S)

18
=

Ψ(S)

18
.

Local Graph Partitioning

We obtain Corollary 2 about the performance of the evolving set algorithm in [AP09, OT12].
In Lemma 5.2 of [OT12], Oveis Gharan and Trevisan actually showed that the (volume biased)
evolving set process will return a set S with ψ(S) = O(φ(S∗)/ǫ), and they used the fact that
ψ(S) = Ω(φ(S)2) to get Theorem 1. Now, with Theorem 3, we can replace φ(S)2 by Ψ(S) and
obtain Corollary 2.

2.5 General Graphs

Our results generalize to non-regular undirected graphs, with appropriate changes in various defi-
nitions.

Expansion: For a general undirected graph G, we use vol(S) :=
∑

i∈S deg(i) to denote the volume
of a subset S. It is the non-regular analog of the size |S|. The conductance of a set S ⊆ V and the
conductance of the graph are defined as

φ(S) :=
w(S, V − S)

vol(S)
and φ(G) := min

S:vol(S)6vol(V )/2
φ(S).

Ideally, the analog of the combinatorial gap would be

ϕ(G) := min
S,T :vol(S)=vol(T )6vol(V )/2

1− w(S, T )

vol(S)
.

However, this definition may not say much since it can happen that any two different subsets have
different volume. In order to handle this situation, we revise the definition and allow S and T to
be fractional. Let ~d be the degree vector of G. We define the combintarial gap as

ϕ(G) := min
χS∈[0,1]V ,χT∈[0,1]V :〈χS ,~d〉=〈χT ,~d〉6vol(V )/2

1− 〈χS , AχT 〉
〈χS , ~d〉

.

Lovász Simonovits curve: In general graphs, the Lovász Simonovits curve C(p) : vol(V ) → R is
defined as

C(p, x) := max
c∈[0,1]n:〈c,~d〉=x

〈c, p〉.
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Suppose the vertices are sorted so that p(1) ≥ p(2) ≥ · · · ≥ p(n). The extreme points of the curve
C(p) is

∑i
j=1 deg(j) for j = 0, . . . n.

Bar chart: We sort the vertices so that dS(i)/deg(i) is decreasing. We should view the bar chart
so that each bar has width deg(i) and height dS(i)/deg(i). So the total width is vol(V ). Same
as before, we put a threshold 1/2 (or choosing another threshold t ∈ [0, 1] in the proof for vertex
expansion) and consider the upper area x and lower area y, and show that

(Ap)(S) 6
1

2
(C(p, 2x) +C(p, 2y)).

With this figure in mind, the proofs for the extended results are essentially the same as the original
proofs.

Vertex expansion: The robust vertex expansion is defined as follows. Let q(i) = dS(i)/deg(i),
and

N1/2(S) := min{x | C(q, vol(S) + x)− C(q, vol(S)) ≥ w(S, S̄)

2
}.

Then φV (S) := min{N1/2(S)/ vol(S), 1}, and φV (G) := minS:vol(S)6vol(V )/2 φ
V (S).

Restating the Theorems for General Graphs

In the following, we restate our results on general graphs without proofs. Lemma 1 becomes

Lemma 8. For any extreme point x 6 vol(V )/2,

C(Ap, x) 6
1

2
(C(p, x(1− ϕ(G))) +C(p, x(1 + ϕ(G)))).

Lemma 2 becomes

Lemma 9. For any subset S ⊆ V with vol(S) 6 vol(V )/2, let

x =
∑

i∈V

deg(i) ·max{ dS(i)
deg(i)

− 1

2
, 0},

then

(Ap)(S) 6
1

2
(C(p, 2x), C(p, 2(vol(V )− x))),

for any random walk matrix A and any vector p ∈ R
n.

Lemma 3 becomes

Lemma 10. For any subset S ⊆ V with vol(S) 6 vol(V )/2, let x =
∑

i∈V deg(i)max{dS(i)/deg(i)−
1/2, 0}, then

x 6
1

2
(1− ϕ(G)) vol(S).

Lemma 6 becomes
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Lemma 11. Let q(i) := dS(i)/deg(i). Assume C(q, a vol(S)) 6 b vol(S) for any S with vol(S) 6
vol(V )/2 for some a > 1 and b < 1, then for any p ∈ R

n, we have

C(p, vol(S)) 6 (
a− b

a− b2
) · C(p, b vol(S)) + (

b− b2

a− b2
) · C(p,

a vol(S)

b
).

With these definitions and lemmas in place, Theorem 2 and Theorem 3 hold as stated in the
introduction.

3 Limitations

We prove Theorem 4 that provides a hard small-set expansion instance for the evolving set process
studied in [AP09, OT12]. As mentioned in the introduction, it will be a noisy hypercube H over
alphabet size k = 1/δ. Formally, H is a graph on kd vertices, representing all strings of length d
over alphabet [k]. For two vertices x, y, the edge weight w(x, y) is set to be the probability to go
from vertex x to vertex y in one step of a random walk, where each symbol of x is independently
rerandomized with probability ǫ: For each i ∈ [d], with probability 1− ǫ, set yi = xi, otherwise yi
is sampled uniformly at random from [k]. Note that H is 1-regular. It is easy to see that H has a
small sparse cut.

Claim 2. There is a set S with expansion at most ǫ and |S| = δn where δ = 1/k.

Proof. Indeed, the coordinate cut S = {x ∈ [k]d | x1 = 0} has size δn and expansion at most ǫ.

We will show that all the sets explored by the evolving set process have expansion close to one.
First, we argue that the evolving set process will only explore the Hamming balls of the noisy
hypercube in Lemma 12. Then, we will show that the expansion of all Hamming balls of size O(δn)
is close to one in Lemma 13.

The evolving set process starts from a singleton set on H. By symmetry, we may assume this set is
{0d}. We now show that the evolving set process only explores sets that are Hamming balls B(r)
(around 0d), where B(r) denotes all strings of Hamming weight at most r:

B(r) := {x ∈ [k]d | |x| 6 r} where |x| := |{i ∈ [d] | xi 6= 0}|.

Indeed, the initial set {0d} is the Hamming ball B(0). The following lemma implies that, if the
current set is a Hamming ball B(r), then so is the next set, and thus by induction the evolving set
process will only explore Hamming balls.

Lemma 12. Suppose ǫ 6 1/2. For any r > 0, any x, y ∈ [k]d, if |x| 6 |y|, then

w(x,B(r)) > w(y,B(r)).

(It follows that if S is a Hamming ball, then y ∈ S̃ implies that x ∈ S̃, and thus S̃ is also a
Hamming ball.)
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Proof. Note that w(x, z) depends only on the Hamming distance |x−z| (coordinate-wise subtraction
modulo k). We first show via a symmetry argument that

w(x,B(r)) = w(y,B(r)) whenever |x| = |y|. (3.1)

To this end, we will construct a permutation π on [k]d that (i) preserves Hamming distances:
|π(a)−π(b)| = |a−b| for all a, b ∈ [k]d, (ii) π(x) = y, and (iii) π(0d) = 0d. Assuming this permutation
exists, we get that z ∈ B(r) if and only if π(z) ∈ B(r), since |π(z) − 0| = |π(z) − π(0)| = |z − 0|.
Also, |x− z| = |π(x) − π(z)| = |y − π(z)|, thus

w(x, z) = w(y, π(z)).

Summing this equality over all z ∈ B(r), we get (3.1).

We now construct such a permutation π. Take any bijection σ on [d] that maps I := {i | xi 6= 0}
onto {i | yi 6= 0}. For i ∈ I, let τi be the permutation on [k] that simply swaps xi and yσ(i). Then
we define π(a) = b where bi = ai if i /∈ I, and bi = τi(aσ(i)) otherwise. It is easy to verify that π
has all the required properties.

We now deal with the general case |x| < |y|. It suffices to prove the lemma assuming |y| = |x|+ 1.
By (3.1), we may assume that x is the indicator vector on a subset S = [c] for some c, and y is the
indicator vector on [c + 1], so that y differs from x only at position c. Picking a random neighbor
Z of x is equivalent to picking W = x− z and setting Z = x+W , so the lemma is equivalent to
PW [x +W ∈ B(r)] > PW [y +W ∈ B(r)]. In fact, we will show this inequality conditioned on all
values of Wi except i = c. Let w−c ∈ [k][d]\{c} be a fixing of all those values. We will show

PWc
[x+W ∈ B(r) |W−c = w−c] > PWc

[y +W ∈ B(r) | W−c = w−c]. (3.2)

There are two cases. If |x−c + w−c| 6= r, then x+W and y +W are both in B(r) or both outside
of B(r), and therefore (3.2) holds as an equality. In the remaining case, the left hand side of (3.2)
is at least P[Wc = 0] > 1− ǫ, while the right hand side is at most P[Wc 6= 0] 6 ǫ, so the inequality
follows by our assumption that ǫ 6 1/2.

We now show that any small Hamming ball has large expansion. The same result appears earlier
in [CMN14]. We give a proof below, filling in some missing details. The main idea is to show
that the Gaussian noise graph is a small-set expander using a hypercontractiviy inequality, and to
use the central limit theorems to translate this result to reason about the Hamming balls in the
noisy hypercube graph. This connection between Gaussian noise graphs and noisy hypercubes was
used commonly in showing integrality gap examples for convex relaxations, and here it is used in
showing limitations for random walks based algorithms.

Lemma 13. For any ǫ, η > 0, there exists δ = δǫ,η (independent of k) such that for any sufficiently
large d > dǫ,δ,η, all Hamming balls of size 6 δn has expansion 1−O(η).

Proof. We will analyze the expansion of a Hamming ball B(r) by relating B(r) to halfspaces
Ar′ := {x ∈ R | x 6 r′} in Gaussian probability space.
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Consider drawing a random edge (x, y) from H according to its weight, and we would like to
analyze the probability that both vertices are in B(r). The event x ∈ B(r) is the same as |x| =
∑

i∈[d] 1(xi 6= 0) 6 r. Since |x| is a sum of independent random variables and each summand
has bounded third moment, by Berry–Esseen central limit theorem, for large d, the sum is closely
approximated by a Gaussian random variable g with the same mean and variance as |x|. That is,
for all large enough d > dǫ,δ,η,

P[|x| 6 r] ≈δ′ P[g 6 r] for all r ∈ R (3.3)

for some δ′ depending on ǫ, δ, η to be specified later. Here we write C ≈δ′ D to mean |C −D| 6 δ′.

Moreover, multivariate central limit theorem (e.g. [Saz68]) implies that the event (|x| 6 r)∧(|y| 6 r)
has roughly the same probability as the event (g 6 r)∧ (h 6 r), where the bivariate Gaussian (g, h)
has the same mean and covariance as (|x|, |y|). That is, for large enough d,

Pr[(|x| 6 r) ∧ (|y| 6 r)] ≈δ′ Pr[(g 6 r) ∧ (h 6 r)] for all r ∈ R. (3.4)

We note that the following calculations do not depend on the dimension d other than the CLT
approximation errors (as we are not concerned about the graph size n = kd), so we can choose a
very large d at the end to make the CLT approximation errors δ′ to be arbitrarily small for the
proof to go through.

Shift g and h to have zero mean and renormalize them to have unit variance. We get g′ =
(g − E[g])/

√

Var[g] from g and similarly h′ from h. Then g′ and h′ have covariance

Cov(g′, h′) =
Cov(|x|, |y|)

√

Var[|x|] Var[|y|]
=

Cov(1(x1 6= 0),1(y1 6= 0))
√

Var[1(x1 6= 0)]Var[1(y1 6= 0)]
.

We have Cov(1(x1 6= 0),1(y1 6= 0)) = (1− ǫ)Var[1(x1 6= 0)], so Cov(g′, h′) = 1− ǫ. Therefore,

P[(g 6 r) ∧ (h 6 r)] = P[(g′ 6 r′) ∧ (h′ 6 r′)],

where r′ is chosen so that P[g′ 6 r′] = P[g 6 r].

For standard Gaussians g′ and h′ with covariance 1− ǫ, we claim that

P[h′ 6 r′ | g′ 6 r′] 6 P[g′ 6 r′]ǫ/2. (3.5)

This inequality follows from Gaussian hypercontractive inequality (e.g. [ODo14, Section 11.1])

E
(1− ǫ) correlated g′, h′

[16r′(g
′)16r′(h

′)] 6 ‖16r′‖22−ǫ,

where 16r′(g
′) := 1(g′ 6 r′) is the indicator function for the halfspace Ar′ , and the fact that

‖16r′‖2−ǫ = E[16r′(g
′)2−ǫ]1/(2−ǫ) = E[16r′(g

′)]1/(2−ǫ) = P[g′ 6 r′]1/(2−ǫ).

Set δ := η2/ǫ. Note that for r′ small enough so that P[g′ 6 r′] 6 δ, then (3.5) implies that the
halfspace Ar′ has expansion

P[h′ > r | g′ 6 r′] = 1− P[h′ 6 r′ | g′ 6 r′] > 1− P[g′ 6 r′]ǫ/2 > 1− δǫ/2 = 1− η.

22



We use (3.3) and (3.4) to translate this expansion result from Gaussian space to the noisy hypercube.
Let δ′′ 6 δ be a constant depending on ǫ, δ, η to be specified later. Any Hamming ball of H of size
at least δ′′n corresponds to a halfspace of roughly the same Gaussian measure via (3.3), and has
roughly the same noise stability via (3.4). Choosing the CLT approximation error δ′ := δ′′η, we can
ensure that all Hamming balls B(r) of size between δ′′n and δn have expansion > 1− η. Indeed,

P[x and y ∈ B(r)] 6 P[g′ and h′ ∈ Ar′ ] + δ′

by (3.4) and
δ > P[x ∈ B(r)] > P[g′ ∈ Ar′ ]/2

by (3.3) and our assumption that P[x ∈ B(r)] > δ′′, so

1− φ(B(r)) =
P[x and y ∈ B(r)]

P[x ∈ B(r)]
6 2

P[g′ and h′ ∈ Ar′ ] + δ′

P[g′ ∈ Ar′ ]
.

We now analyze the right hand side. We have

P[g′ and h′ ∈ Ar′ ]

P[g′ ∈ Ar′ ]
6 P[g′ ∈ Ar′ ]

ǫ/2
6 O(η)

by (3.5) and the fact that P[g′ ∈ Ar′ ] 6 2P[x ∈ B(r)] 6 2δ. Also δ′/P[g′ ∈ Ar′ ] 6 2δ′/P[x ∈ B(r)] 6
2δ′/δ′′ = 2η. Therefore φ(B(r)) > 1−O(η), for those B(r) of size between δ′′n and δn, as required.

To deal with Hamming balls of size smaller than δ′′n, we simply apply the hypercontractive in-
equality on H directly. For any subset B on H (not necessarily a Hamming ball), we have

P[y ∈ B | x ∈ B] 6 P[x 6 B]cǫ/ log(1/δ)

for some c > 0. The exponent cǫ/ log(1/δ) is from [Wol07]. Taking δ′′ := ηlog(1/δ)/cǫ, we see that
φ(B) > 1− η whenever |B| 6 δ′′n.

The key point of Lemma 13 is that everything is independent of k. Therefore, given any ǫ, we
just need to set k > 1/δ so that H has a set of expansion ǫ and size 6 δn (by Claim 2), while
the evolving set process only explores Hamming balls (by Lemma 12) and all Hamming balls of
size 6 δǫ,ηn have expansion > 1− ǫ (by Lemma 13). This proves Theorem 4 that the evolving set
process fails on the k-ary ǫ-noisy hypercube with probability one.

Random Walks, Personal Pagerank, and Heat Kernels

The random walk local graph partitioning algorithm [ST13, ABS10, KL12] works by computing
the vector pt := Atχv for every vertex v for 1 6 t 6 O(log n), sorting the vertices so that pt(1) >
pt(2) > . . . > pt(n), and trying all the level sets {1, . . . , j} for 1 6 j 6 n. Using the same k-
ary noisy hypercube example, it is not difficult to see from Lemma 12 that all the level sets that
the algorithm explored are Hamming balls, and thus the random walk algorithm will also fail to
disprove the small-set expanson hypothesis.
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The same argument also applies to the personal pagerank algorithm [ACL06, ZLM13] and the heat
kernel algorithm, which work by computing some related vectors and trying all the level sets. We
note that the vectors used by these algorithms are just convex combinations of the random walk
vectors Atχv for different t, and therefore all the level sets are Hamming balls, and hence these
algorithms also fail for the same reason.

We believe that this example exposes the limitations of all known local graph partitioning algo-
rithms, and can be used as a basis to prove further lower bounds. An interesting question is to
study whether the analysis of the O(

√

φ(S) log(|S|))-approximation of the evolving set algorithm
in Theorem 1 is tight when ǫ = 1/ log(|S|).
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