

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2013 Society for Industrial and Applied Mathematics
Vol. 42, No. 3, pp. 733–751

GRAPH CONNECTIVITIES, NETWORK CODING, AND
EXPANDER GRAPHS∗

HO YEE CHEUNG† , LAP CHI LAU† , AND KAI MAN LEUNG†

Abstract. We present a new algebraic formulation for computing edge connectivities in a
directed graph, using ideas developed in network coding. This reduces the problem of computing
edge connectivities to solving systems of linear equations, thus allowing us to use tools in linear
algebra to design new algorithms. Using the algebraic formulation, we obtain faster algorithms for
computing single source edge connectivities and all pairs edge connectivities. In some settings, the
amortized time to compute the edge connectivity for one pair is sublinear. Through this connection,
we have also found an interesting use of expanders and superconcentrators to design fast algorithms
for some graph connectivity problems.

Key words. graph connectivities, network coding, expander graphs, linear equations, random-
ized algorithms

AMS subject classifications. 05C40, 05C50, 05C85, 68Q25, 68W20

DOI. 10.1137/110844970

1. Introduction. Graph connectivity is a basic concept that measures the reli-
ability and efficiency of a graph. The edge connectivity from vertex s to vertex t is
defined as the size of a minimum s-t cut or, equivalently, the maximum number of
edge disjoint paths from s to t. Computing edge connectivities is a classical and well-
studied problem in combinatorial optimization. Most known algorithms for solving
this problem are based on network flow techniques (see, e.g., [34]).

Even and Tarjan [12] introduced the fastest algorithm to compute s-t edge con-
nectivity in a simple directed graph and running in O(min{m1/2, n2/3} · m) time,
where m is the number of edges and n is the number of vertices. To compute the
edge connectivities for many pairs, however, it is not known how to do it faster than
computing edge connectivity for each pair separately, even when the pairs share the
source or the sink. For instance, it is not known how to compute all pairs edge con-
nectivities faster than computing s-t edge connectivity for Θ(n2) pairs. This is in
contrast to the problem in undirected graphs, where all pairs edge connectivities can
be computed in Õ(mn) time by constructing a Gomory–Hu tree [6].

Network coding is an innovative method for transmitting information in a com-
puter network. The fundamental result is a max-information-flow min-cut theorem
for multicasting [1]: if the edge connectivity from the source vertex s to each sink
vertex ti is at least k, then one can transmit k units of information to all sink vertices
simultaneously by performing encoding and decoding at the vertices. An elegant alge-
braic framework has been developed for constructing efficient network coding schemes
for multicasting [29, 26].

In this paper, we use the techniques developed in network coding to obtain a new
algebraic formulation for computing edge connectivities. This reduces the problem

∗Received by the editors August 19, 2011; accepted for publication (in revised form) December
26, 2012; published electronically May 2, 2013. A preliminary version of this paper appeared in
Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, 2011.

http://www.siam.org/journals/sicomp/42-3/84497.html
†The Chinese University of Hong Kong, Shatin, N.7., Hong Kong (hoyeeche@usc.edu,

chi@cse.cuhk.edu.hk, kmleung@cse.cuhk.edu.hk). The second author’s research was supported by
HK RGC grants 413609 and 413411.

733

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

734 HO YEE CHEUNG, LAP CHI LAU, AND KAI MAN LEUNG

of computing edge connectivities to solving systems of linear equations and opens up
new directions in the design of algorithms for the problem. One advantage of the
technique is that the edge connectivities from a source vertex to all other vertices
can be computed simultaneously (as in the max-information-flow min-cut theorem).
This leads to faster algorithms for computing single source edge connectivities and
all pairs edge connectivities, and in some settings the amortized time to compute
the edge connectivity for one pair is sublinear. In the process, we have also found
an interesting use of expanders and superconcentrators to design fast algorithms for
graph connectivity problems.

1.1. Our results. Our new algebraic formulation for computing edge connectiv-
ities is inspired by the random linear coding algorithm [18] for constructing network
codes. Let G = (V,E) be a directed graph. Let s be the source vertex with out
degree d, with outgoing edges e1, . . . , ed. To each edge e ∈ E we associate a vector
fe of dimension d, where each entry in fe is an element from a large enough finite
field F. The vectors fe are required to satisfy the following properties: (1) the vectors
on e1, . . . , ed are linearly independent, and (2) the vector on an edge e = (v, w) is a
random linear combination of the incoming vectors of v. Once we obtain the vectors,
we can compute the edge connectivities from the source vertex as follows.

Theorem 1.1 (informal statement). With high probability there is a unique
solution to the vectors, and the edge connectivity from s to t is equal to the rank of
the incoming vectors of t for any t ∈ V − s.

See Figure 1.1 for an example and Theorem 2.1 for the formal statement. This
formulation was previously known for only directed acyclic graphs [22, 36]. For general

Fig. 1.1. In this example, three independent vectors f1, f2 and f3 are sent from the source s.
Other vectors are a linear combination of the incoming vectors, according to the random coefficients
on the dotted lines. All operations are done in the field of size 11. To compute the edge connectivity
from s to v2, for instance, we compute the rank of (f2, f4, f5) which is 3 in this example.

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH CONNECTIVITIES, NETWORK CODING, EXPANDERS 735

directed graphs, network coding schemes require convolution codes [11, 28], and it is
not known how to use these to compute edge connectivities. Our contribution is a
simple formulation that can be used to compute edge connectivities.

The algebraic formulation reduces the problem of computing edge connectivities
to solving systems of linear equations. We call the step to compute the vectors fe
the encoding step and call the step to compute the ranks the decoding step. The
formulation has the advantage that after the encoding step has been done, the edge
connectivities from the source vertex s to all other vertices can be computed readily.

We first present algorithmic results on single source edge connectivities and then
algorithmic results on all pairs edge connectivities.

1.1.1. Single source edge connectivities. In directed acyclic graphs, the en-
coding step can be implemented directly without solving linear equations, but the
resulting algorithm is not competitive with the existing algorithms. By a simple
transformation using superconcentrators [37, 19], we show how to implement the en-
coding step optimally by this direct approach. This can be used to improve the
random linear coding algorithm [18] for network coding. Also we obtain a faster algo-
rithm for computing single source edge connectivities in directed acyclic graphs. The
algorithm runs in linear time when d is a constant, and by a simple reduction this
can be used to return all vertices with edge connectivity at most d from the source s
in linear time.

Theorem 1.2. Given a simple directed acyclic graph and a source vertex s with
out-degree d, the encoding step can be done in O(dm) time, and the edge connectivities
from s to all vertices can be computed in O(dω−1m) time with high probability, where
ω ≈ 2.38 is the matrix multiplication exponent.

In some graphs, the system of linear equations can be solved more efficiently. For
instance, we can use a recent result of Alon and Yuster [3] to perform the encod-
ing step faster in directed planar graphs with constant maximum degree. The best
known algorithm for computing single source edge connectivities in directed planar
graphs requires O(n2) time by using an O(n) time algorithm to compute s-t edge
connectivity [8].

Theorem 1.3. Given a simple directed planar graph with constant maximum de-
gree and a source vertex s, the edge connectivity from s to all vertices can be computed
in O(nω/2) time with high probability.

1.1.2. All pairs edge connectivities. For general directed graphs, we show
that all pairs edge connectivities can be computed in one matrix inversion time, in-
stead of solving the linear equations for each source vertex separately. The algorithm
is faster when the graph has O(n1.93) edges. For example, when m = O(n), it takes
O(nω) time, while the best known algorithm takes O(n3.5) time.

Theorem 1.4. Given a simple directed graph, the edge connectivities between all
pairs of vertices can be computed in O(mω) time with high probability, where m is the
number of edges in the graph.

We show that the matrix inversion can be computed more efficiently for graphs
that are “well-separable” (which will be defined in section 4.2), which includes planar
graphs, bounded genus graphs, fixed minor free graphs, etc. The resulting algorithm
is faster than that for general graphs when the maximum degree is O(

√
n).

Theorem 1.5. Given a simple well-separable directed graph with maximum degree
d, the edge connectivities between all pairs of vertices can be computed in O(dω−2nω/2+1)
time with high probability.

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

736 HO YEE CHEUNG, LAP CHI LAU, AND KAI MAN LEUNG

1.1.3. Edge splitting-off. The idea of transforming the graph using supercon-
centrators can also be used in other graph connectivity problems. In section 5 we
show how to use expanders and superconcentrators to speed up the algorithms for
edge splitting-off operations preserving edge connectivities in undirected and directed
graphs.

1.2. Related work. The standard way to solve the s-t edge connectivity prob-
lem in directed graphs is by network flow techniques. For simple directed graphs, the
best known algorithm is an O(min{n2/3,m1/2} ·m) time algorithm [12] by the block-
ing flow method. As mentioned previously, in directed graphs it is not known how
to compute all pairs edge connectivities faster than s-t edge connectivity for Ω(n2)
pairs separately. This is in contrast to the problem in undirected graphs, where all
pairs edge connectivities can be computed in Õ(mn) time by constructing a Gomory–
Hu tree [6], which is much faster than computing edge connectivities for Ω(n2) pairs.

There are many improvements in special cases of the s-t edge connectivity problem
in directed graphs. For bipartite matching, the best known algorithms are an O(m

√
n)

time algorithm [20] by the blocking flow method and an O(nω) time algorithm [33, 17]
by algebraic techniques. It is known that the bipartite matching problem is equivalent
to the s-t vertex connectivity problem in directed graphs, and so the above results
hold for the latter problem as well [9]. For simple undirected graphs, there is an
O(n3/2√m) time algorithm [16] by a combination of the blocking flow method and
a graph sparsification technique, and the best known algorithm is an Õ(n2.2) time
algorithm [24] by extending [16] with random sampling. In directed planar graphs,
there is an optimal O(n) time algorithm for computing s-t edge connectivity [8].

For network coding, the max-information-flow min-cut theorem for multicasting
was first proved by an information theoretic argument [1]. Later, it was shown that lin-
ear network coding was enough to achieve the max-flow min-cut theorem for multicas-
ting [29], and an algebraic framework was developed [26]. Then a polynomial time de-
terministic algorithm was obtained to construct optimal linear coding schemes [23] for
multicasting in directed acyclic graphs. Convolution codes were used [11, 28] to extend
the algorithm in [23] for multicasting in general directed graphs. Subsequently, a sim-
ple polynomial time randomized algorithm was obtained for constructing optimal lin-
ear coding schemes for multicasting [18], and our algorithm is based on this approach.

Subsequent to the conference version of this paper, the connection between net-
work coding, matrix rank, and superconcentrators was used to obtain a faster al-
gorithm [10] for computing matrix rank; a superconcentrator was used to efficiently
compress the input matrix into a smaller one by doing random linear coding.

1.3. Techniques. The starting observation is that the random linear coding
algorithm [18] for network coding does not require knowledge of the graph topol-
ogy, and it could be used to compute the edge connectivities from the source to the
sinks. Actually, this observation was already made for directed acyclic graphs in
earlier work [22, 36]. For general directed graphs, however, network coding schemes
are more complicated (even for random linear coding), as convolution codes are re-
quired [11, 28], and it is not known how to use these to compute edge connectivities.
Our contribution is to come up with a simple formulation that can be used to compute
edge connectivities. The simple coding scheme (without using convolution codes) also
allows us to design more efficient algorithms. The proof extends the ideas developed
in the random linear coding algorithm.

We show a simple transformation using expanders and superconcentrators [37, 19]
to design fast algorithms for some graph connectivity problems. In directed graphs,

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH CONNECTIVITIES, NETWORK CODING, EXPANDERS 737

the idea is to replace a vertex of indegree d and outdegree d by a superconcentrator
with d inputs and d outputs. This reduces the maximum degree of the graph signifi-
cantly, while preserving the edge connectivities and increasing the number of vertices
only moderately. For random linear coding, using the direct algorithm in the resulting
graph gives an optimal algorithm in the original graph. For edge splitting-off, using
the straightforward algorithm in the resulting graph gives considerable improvement
over the same algorithm in the original graph. In undirected graphs, we can use
constant degree expander graphs for the same purpose.

For all pairs edge connectivities, we observe that if we change the source vertex,
the system of linear equations is similar, and so we could compute the n single source
edge connectivities in one matrix inverse time. For graphs with good separators, we
show how to compute the inverse faster by a divide and conquer algorithm, using
Schur’s formula [39] and the Sherman–Morrison–Woodbury [38] formula, which may
be of independent interest. We note that the algorithmic results on all pairs edge
connectivities can also be derived from the matrix formulation given by Ingleton and
Piff [9, 21] for vertex connectivities.

1.4. Organization. We present the algebraic formulation in section 2 and prove
a formal statement of Theorem 1.1. In section 3, we present algorithms for single
source edge connectivities and prove Theorems 1.2 and 1.3. In section 4, we present
algorithms for all pairs edge connectivities and prove Theorems 1.4 and 1.5. Finally,
we show the use of expanders and superconcentrators in the edge splitting-off problem
in section 5.

2. Algebraic formulation for graph connectivities. Throughout the paper
we consider uncapacitated directed graphs, i.e., where each edge is of the same ca-
pacity. We begin with some notation and definitions for graphs and matrices. In
a directed graph G = (V,E), an edge e = (u, v) is directed from u to v, and we
say that u is the tail of e and v is the head of e. For any vertex v ∈ V , we define
δin(v) = {uv | uv ∈ E} as the set of incoming edges of v and din(v) = |δin(v)|;
similarly we define δout(v) = {vw | vw ∈ E} as the set of outgoing edges of v and
dout(v) = |δout(v)|. For a subset S ⊆ V , we define δin(S) = {uv | u /∈ S, v ∈ S, uv ∈
E} and din(S) = |δin(S)|. Given a matrix M , the submatrix containing rows S and
columns T is denoted by MS,T . A submatrix containing all rows (or columns) is
denoted by M∗,T (or MS,∗), and an entry of M is denoted by Mi,j .

We formally define the algebraic formulation for computing graph connectivities.
Given a directed graph G = (V,E) and a specified source vertex s, we are interested
in computing the edge connectivities from s to other vertices. Let m = |E| and
E = {e1, e2, . . . , em}. Let d = dout(s) and δout(s) = {e1, . . . , ed}. Let F be a finite
field. For each edge e ∈ E, we associate a global encoding vector fe ∈ F

d of dimension
d where each entry is in F. We say a pair of edges e′ and e is adjacent if the head
of e′ is the same as the tail of e, i.e., e′ = (u, v) and e = (v, w) for some v ∈ V . For
each pair of adjacent edges e′ and e, we associate a local encoding coefficient ke′,e ∈ F.
Given the local encoding coefficients for all pairs of adjacent edges in G, we say that
the global encoding vectors are a network coding solution if the following two sets of
equations are satisfied:

1. For each edge ei ∈ δout(s), we have fei =
∑

e′∈δin(s) ke′,ei · fe′ + �ei, where �ei
is the ith vector in the standard basis.

2. For each edge e = (v, w) with v �= s, we have fe =
∑

e′∈δin(v) ke′,e · fe′ .
The main theorem in this section is the following formal statement of Theorem 1.1.

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

738 HO YEE CHEUNG, LAP CHI LAU, AND KAI MAN LEUNG

Theorem 2.1. Let F be a finite field with |F| = Ω(mc+2) for some integer c. If
we choose each local encoding coefficient independently and uniformly at random from
F, then with probability at least 1−O(1/mc), the following hold:

1. There is a unique network coding solution for the global encoding vectors fe.
2. For t ∈ V − s, let δin(t) = {a1, . . . , al}; the edge connectivity from s to t is

equal to the rank of the matrix (fa1 , fa2 , . . . , fal
).

We will prove Theorem 2.1 in the remainder of this section. First, we rewrite the
requirements of a network coding solution in matrix form:

⎛
⎜⎜⎜⎜⎝

|
· · · fej · · ·

|

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

|
· · · fej · · ·

|

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ke1,ej
...

· · · kei,ej · · ·
...

kem,ej

⎞
⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎝

| | | |
�e1 · · · �ed �0 · · · �0
| | | |

⎞
⎟⎟⎟⎟⎠ .

Let F be the d×m matrix (fe1 , . . . , fem). Let K be the m×m matrix where Ki,j =
kei,ej when ei and ej are adjacent edges, and 0 otherwise. Let Hs be the d×m matrix

(�e1, . . . , �ed,�0,�0, . . . ,�0) where �0 denotes the all zero vector of dimension d. Then the
network coding equations are equal to the following matrix equation:

F = FK +Hs.(2.1)

To prove the first part of Theorem 2.1, we will prove in the following lemma
that (I −K) is nonsingular with high probability. Then the above equation can be
rewritten as F = Hs(I − K)−1, which implies that the global encoding vectors are
uniquely determined.

Lemma 2.2. Given the conditions in Theorem 2.1, the matrix (I − K) is
nonsingular with probability at least 1−O(1/mc+1).

Proof. Since the diagonal entries of K are zero, the diagonal entries of I−K are all
one. By treating each entry ofK as an indeterminantKi,j, it follows that det(I−K) =
1 + p(. . . ,Ki,j , . . .) where p(. . . ,Ki,j , . . .) is a polynomial of the indeterminates with
total degree at most m. Note that det(I − K) is not a zero polynomial since there
is a constant term. Hence, by the Schwartz–Zippel lemma [35], if |F| = Ω(mc+2) and
each Ki,j is a random element in F, then det(I − K) = 0 with probability at most
O(1/mc+1), proving the lemma.

After we obtain the global encoding vectors, we would like to show that the edge
connectivities can be determined from the ranks of these vectors. Consider a vertex
t ∈ V − s. Let δin(t) = {a1, . . . , al} and let Mt be the d× l matrix (fa1 , fa2 , . . . , fal

).
Let the edge connectivity from s to t be λs,t. We prove in the following lemma that
rank(Mt) = λs,t with high probability.

Lemma 2.3. Given the conditions of Theorem 2.1, we have rank(Mt) = λs,t with
probability at least 1−O(1/mc+1).

Proof. First, we prove that rank(Mt) ≤ λs,t with high probability. The plan
is to show that the global encoding vector on each incoming edge of t is a linear
combination of the global encoding vectors in an s-t cut with high probability. In
particular this holds for a minimum s-t cut and implies that rank(Mt) ≤ λs,t. The
proof idea is to contract the source side of the cut and then apply the argument
in Lemma 2.2. Consider a minimum s-t cut δin(T) where T ⊂ V with s /∈ T and
t ∈ T and din(T) = λs,t. Let E′ = {e′1, . . . , e′m′} be the set of edges in E with
their heads in T . Let λ = λs,t and assume δin(T) = {e′1, . . . , e′λ}. See Figure 2.1(a)

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH CONNECTIVITIES, NETWORK CODING, EXPANDERS 739

Fig. 2.1.

for an illustration. Let F ′ be the d × m′ matrix (fe′1 , . . . , fe′m′). Let K ′ be the

m′ ×m′ submatrix of K restricted to the edges in E′. Let H ′ be the d ×m′ matrix
(fe′1 , . . . , fe′λ ,

�0, . . . ,�0). Then, by the network coding requirements, the matrices satisfy
the equation

F ′ = F ′K ′ +H ′.

By the same argument as in Lemma 2.2, the matrix (I − K ′) is nonsingular with
probability at least 1−O(1/mc+1). So the above matrix equation can be rewritten as
F ′ = H ′(I −K ′)−1. This implies that every global encoding vector in F ′ is a linear
combination of the global encoding vectors in H ′, which are the global encoding
vectors in the cut δin(T). Therefore, the rank(Mt) ≤ din(T) = λs,t.

Next, we prove that rank(Mt) ≥ λs,t with high probability. The proof idea is
that the rank does not increase if we restrict our attention to a subgraph, and we
will use the edge disjoint paths as the subgraph to establish the rank. The plan is
to show that there is a λ × λ submatrix M ′

t of Mt such that det(M ′
t) is a nonzero

polynomial of the local encoding coefficients with small total degree. We use the edge
disjoint paths from s to t to define M ′

t . Let λ = λs,t and P1, . . . , Pλ be a set of λ edge
disjoint paths from s to t. Set ke′,e = 1 for every pair of adjacent edges e′, e ∈ Pi

for every i, and set all other local encoding coefficients to be zero. See Figure 2.1(b)
for an illustration. Then each path sends a distinct unit vector of the standard basis
to t, and thus Mt contains a λ × λ identity matrix as a submatrix. Call this λ × λ
submatrix M ′

t . Next we show that the det(M ′
t) is a nonzero polynomial of the local

encoding coefficients with small total degree. Recall that F = H(I − K)−1. By
considering the adjoint matrix of I −K, each entry of (I −K)−1 is a polynomial of
the local encoding coefficients with total degree m divided by det(I − K), and thus
the same is true for each entry of F . Hence, det(M ′

t) is a degree λm polynomial of the
local encoding coefficients divided by (det(I −K))λ. By using the edge disjoint paths
P1, . . . , Pλ, we have shown that there is a choice of the local encoding coefficients
so that rank(M ′

t) = λ. Thus det(M ′
t) is a nonzero polynomial of the local encoding

coefficients. Conditioned on the event that det(I−K) is nonzero, the probability that
det(M ′

t) is zero is at most O(λ/mc+2) ≤ O(1/mc+1) by the Schwartz–Zippel lemma.
By bounding the probability that det(I −K) = 0 using Lemma 2.2, we obtain that
the probability that det(M ′

t) = 0 is at most O(1/mc+1). This implies that M ′
t is a

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

740 HO YEE CHEUNG, LAP CHI LAU, AND KAI MAN LEUNG

full rank submatrix with high probability, and thus rank(Mt) ≥ rank(M ′
t) = λ. We

conclude that rank(Mt) = λs,t with probability at least 1−O(1/mc+1) by the union
bound.

Thus the probability that rank(Mt) �= λs,t for some t ∈ V − s is at most
n · O(1/mc+1) ≤ O(1/mc) by the union bound, and this proves the second part
of Theorem 2.1. Therefore, we need only to set c to be a constant to guarantee a high
probability result, while each field operation can be done in O(logm) time.

3. Single source edge connectivities. The algebraic formulation can be used
to compute the edge connectivities from one source vertex to all other vertices. In
general, the encoding step requires solving systems of linear equations withm variables
and m equations. In this section, we will show how to obtain faster algorithms for
directed acyclic graphs and directed planar graphs.

3.1. Directed acyclic graphs. In directed acyclic graphs, one can compute the
global encoding vectors directly by following the topological ordering of the graph.
We can first preprocess the graph by a breadth first search to remove all vertices that
are not connected from the source vertex. Then the source vertex s is the only vertex
with indegree zero, and we set the global encoding vectors of its outgoing edges to be
the vectors in the standard basis, as required by the first condition for the network
coding solution. We assign random local encoding coefficients to each pair of adjacent
edges. Then we process the remaining vertices following the topological ordering of
the graph, so that when each vertex v is processed all the vectors of its incoming
edges are already computed. For each outgoing edge of v, we compute its vector by
taking a linear combination of the vectors of the incoming edges of v, according to
the local encoding coefficients. It is easy to see that the global encoding vectors of all
edges will be computed, and the resulting vectors satisfy the second requirement of
the network coding solution.

We consider efficient implementations of this algorithm. Let d be the outdegree
of the source vertex s. So each global encoding vector is of dimension d. For a vertex
v with indegree din(v), it requires d · din(v) arithmetic operations to compute the
vector of one outgoing edge of v, and thus it requires d · din(v) · dout(v) operations to
compute the vectors of all outgoing edges of v. Therefore the total encoding time of
this straightforward implementation is

∑
v∈V −s d · din(v) · dout(v), and in the worst

case it requires Θ(dnm) steps. An improvement is to use a fast rectangular matrix
multiplication algorithm to compute all the outgoing vectors of a vertex, but we will
show how to do even better. Observe that the encoding operation is much faster if
the indegree of a vertex is a constant. So the idea is to transform the graph into a
bounded degree graph, and it turns out that superconcentrators give us an optimal
transformation for this purpose. In the following, we will have a short introduction on
expanders and superconcentrators, and then come back to the algorithm for directed
acyclic graphs.

3.1.1. Expander graphs and superconcentrators. An expander graph G =
(V,E) is a sparse graph that exhibits strong connectivity properties. Given a subset
S ⊆ V , we define N(S) as the set of vertices in V − S with a neighbor in S.

Definition 3.1. A graph G = (V,E) is called an (n, d, c)-expander if it has n
vertices, the maximum degree is d, and for all S ⊂ V with |S| ≤ |V |/2, we have
|N(S)| ≥ c|S|. Then c is called the expansion of G.

There are several explicit constructions for expander graphs with d and c constants
(see [19]). Superconcentrators were first defined by Valiant [37] for studying the
complexity of linear transformations.

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH CONNECTIVITIES, NETWORK CODING, EXPANDERS 741

Fig. 3.1. Replace vertex v by a superconcentrator Γv and “rewire” the edges.

Definition 3.2 (see, [19]). Let G = (V,E) be a directed graph and let I and O
be two disjoint subsets of V with |I| = |O| = n. We say that G is a superconcentrator
with respect to I and O if for every k and every S ⊆ I and T ⊆ O with |S| = |T | = k,
there exist k vertex disjoint paths from S to T .

Valiant proved that there exist superconcentrators with O(n) edges; see [19] for
a simple recursive construction using bipartite expander graphs. There exist explicit
constructions [13] of superconcentrators with the following properties: (1) there are
O(n) vertices and O(n) edges, (2) the maximum indegree and the maximum outdegree
are constants, and (3) the graphs are directed acyclic. The construction in [13] can
be implemented in O(n) time for a superconcentrator with n inputs and n outputs.

3.1.2. Proof of Theorem 1.2. To improve the encoding time, we first trans-
form the graph G = (V,E) by replacing each vertex in V − s by a superconcentrator.
For each vertex v, let dv = max{din(v), dout(v)}, replace v by a superconcentrator Γv

with |I| = |O| = dv, and “rewire” each incoming edge of v to a distinct vertex in I and
each outgoing edge of v from a distinct vertex in O. See Figure 3.1 for an illustration.
The total transformation time is

∑
v∈V O(dv) =

∑
v∈V O((din(v) + dout(v))) = O(m)

where n = |V | and m = |E|.
Call the graph after the transformation G′. A key point is that the edge con-

nectivity from the source s to a vertex t in G is equal to the edge connectivity from
the source s to Γt in G′ by thinking of Γt as a node. To see this, any set of edge
disjoint paths from s to t in G corresponds to a set of edge disjoint paths from s to Γt

in G′, because paths sharing a vertex v in G can be routed using the disjoint paths
guaranteed by the superconcentrator Γv in G′.

By the properties described in section 3.1.1, G′ is a directed acyclic graph with
constant maximum indegree. Thus the global encoding vector of an edge in G′ can be
computed in O(d) time, where d is the outdegree of the source vertex s. Since Γv has
O(dv) edges, the global encoding vectors of the outgoing edges of Γv can be computed
in O(d · dv) time. Therefore, all the global encoding vectors can be computed in∑

v∈V O(d · dv) =
∑

v∈V O(d · (din(v)+ dout(v))) = O(dm) time. This proves the first
part of Theorem 1.2.

The encoding time is optimal since writing down all the global encoding vectors
would already take O(dm) time. It is surprising that the vectors of all the outgoing
edges of Γv in G′ can be computed in O(d · dv) time, the same time complexity
as computing the vector of just one outgoing edge of v in G. This can be used to
improve the random linear coding algorithm [18] for network coding. Let v be a vertex
with d incoming edges and d outgoing edges. In random linear network coding, each
incoming edge carries a message (an element in a large enough finite field), and each

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

742 HO YEE CHEUNG, LAP CHI LAU, AND KAI MAN LEUNG

Fig. 3.2. Figure (a) shows an undirected planar graph, and figure (b) shows its separator Z
and its two separated components X and Y .

outgoing edge carries a random linear combination of the incoming messages. The
straightforward algorithm for computing the d outgoing messages requires Θ(d2) field
operations. By the above reduction using superconcentrators, this can be reduced to
O(d) field operations.

To compute the edge connectivity from s to Γt in G′, by Theorem 2.1 we can
compute the rank of the incoming vectors of Γt in G′. For a rectangular matrix of size
a× b, its rank can be computed in O(abω−1) time [17]. So the total decoding time is∑

v O(din(v) · dω−1) = O(m · dω−1). This proves the second part of Theorem 1.2.
Our algorithm is faster than running the Even–Tarjan algorithm [12] Ω(n) times

for all n and m. When d is small we can compute single source edge connectivities
in linear time. Let λs,t be the edge connectivity from s to t. When the outdegree of
s is unbounded, this can be used to obtain an algorithm to compute min{λs,t, d} for
all t in linear time for constant d, by adding a new source s′ with d outgoing edges to
s and computing the edge connectivities from s′. So, for constant d, we can compute
min{λs,t, d} for all t in O(m) field operations where each field operation can be done
in O(log n) time.

3.2. Directed planar graphs. One way to compute the global encoding vec-
tors is to solve the system of linear equations F (I −K) = Hs. For some graphs with
constant maximum degree this system of linear equations can be solved more effi-
ciently. The result in this section can be applied to more general classes of bounded
degree graphs than the class of bounded degree directed planar graphs, e.g., bounded
genus graph and fixed minor free graphs.

We say an undirected graph G = (V,E) has an (f(n), α)-separation if V can
be partitioned into three parts X,Y, Z such that |X ∪ Z| ≤ α|V |, |Y ∪ Z| ≤ α|V |,
|Z| ≤ f(n), and no edges have endpoints in both X and Y . An example is illustrated
in Figure 3.2. A class of graphs is hereditary if it is closed under taking subgraphs
(e.g., planar graphs).

For a hereditary class of graphs, if there is always an (f(n), α)-separation for any
n-vertex graph in this class, then one can recursively separate the separated parts
X and Y until the separated pieces are small enough. This yields an (f(n), α)-weak
separator tree (see [3] for a formal definition). It is known that planar graphs, bounded
genus graphs, and fixed minor free graphs have a (

√
n, 2/3)-separation [31, 15, 2], and

thus a (
√
n, 2/3)-weak separator tree.

Given Ax = b where A is an n × n matrix, the underlying graph of A is an
undirected graph with n vertices where there is an edge ij if Ai,j �= 0 or Aj,i �= 0.

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH CONNECTIVITIES, NETWORK CODING, EXPANDERS 743

The nested dissection method of Lipton, Rose, and Tarjan [30] shows that if A is
a symmetric positive definite matrix and the underlying graph has an (O(nβ), 2/3)-
weak separator tree, then Ax = b can be solved in O(nωβ) time. In our setting,
however, the matrix (I − K) is not symmetric and its elements are from a finite
field. Interestingly, Alon and Yuster [3] extended the nested dissection method very
recently to solve a system of linear equations Ax = b over any finite field and for any
matrix (not necessarily symmetric) whose underlying graph has an (O(nβ), α)-weak
separator tree, and this is exactly what we need. In the following, a family of graphs
is δ-sparse if any n-vertex graph in this family has at most δn edges.

Theorem 3.3 (Alon and Yuster [3]). Let F be a δ-sparse family of graphs with an
O(nγ) time algorithm to find an (O(nβ), α)-weak separator tree where α is a constant
smaller than one. Given a system of linear equations Ax = b where A ∈ F

n×n is
nonsingular, b ∈ F

n, and the underlying graph of A is in F , there is a randomized
algorithm that finds the unique solution of the system in O(nωβ + nγ + n logn) time
with high probability.

We are interested in computing the network coding solution for a directed planar
graph G = (V,E) with constant maximum degree. If the source vertex has outdegree
d, then the global encoding vectors are of dimension d, and the equation F (I −K) =
Hs can be solved by d systems of linear equations of the form (I −K)Tx = h where
h is the transpose of a row of Hs. The underlying graph of (I −K) is not a planar
graph but is the line graph of a planar graph. Nevertheless, if the maximum degree
of G is a constant, then we can argue that its line graph also has a good separator.

Lemma 3.4. Given a simple directed planar graph G with constant maximum
degree d, its line graph has an (O(

√
n), α)-weak separator tree where α < 1.

Proof. We use the separator theorem by Lipton and Tarjan [31] which states
that any planar graph has an (O(

√
n), 2/3)-separator, and it can be found in O(n)

time. Let Z be an (O(
√
n), 2/3)-separator in G and X,Y be the two separated parts.

We consider all the directed edges that have at least one endpoint in Z. Denote the
set of these edges as Z ′. Since the maximum degree of G is d, which is a constant,
|Z ′| = O(

√
n). We will take Z ′ as the separator of the line graph of G and argue

that the two separated parts X ′ and Y ′ are of size at most αn, where α is a constant
smaller than one. We assume without loss of generality that the graph has no isolated
vertices. Since |X ∪Z| ≤ 2n/3 and |Y ∪Z| ≤ 2n/3, both X and Y are of size at least
n/3, and thus there are Ω(n) edges with an endpoint in X and similarly for Y . Since
Z ′ has at most O(

√
n) edges, the number of directed edges with both endpoints in X

is at least Ω(n) and similarly for Y . Since these edges correspond to the vertices in X ′

and Y ′, we can conclude that both |X ′∪Z ′| and |Y ′∪Z ′| are at most αn where α is a
constant less than one. This implies that the line graph of G has an (O(

√
n), α)-weak

separator tree, where α < 1, by repeating this argument recursively in the subgraphs
of G containing the edges in X ′ and Y ′.

Since a separator can be found in linear time in planar graphs [31], by applying
Theorem 3.3 with γ = 1, β = 1/2, and δ a constant (since the maximum degree is a
constant), we obtain an O(nω/2) time randomized algorithm for solving one system
of linear equations (I − K)Tx = h. The total encoding time is also O(nω/2) as d is
a constant. To compute the edge connectivity from s to a vertex t, by Theorem 2.1
we can just compute the rank of a d× l matrix where l ≤ d, and this can be done in
constant time. Therefore the total decoding time is O(n). This proves Theorem 1.3.

The same result holds for bounded genus graphs with constant maximum degree,
since an (O(

√
n), 2/3) separator can be found in linear time [15]. For fixed minor

free graphs with constant maximum degree, there is an O(n1.5) time algorithm [2]

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

744 HO YEE CHEUNG, LAP CHI LAU, AND KAI MAN LEUNG

for finding an (O(
√
n), 2/3) separator, and this gives an O(n1.5) time algorithm for

computing single source edge connectivities in this class of graphs. Alon and Yuster [3]
showed how to improve the time complexity to O(n3ω/(3+ω)) = O(n1.33) by using a
faster algorithm to find a larger separator (so γ is smaller but β is bigger), and this
improved algorithm can be used for computing single source edge connectivities as
well. Very recently, Kawarabayashi and Reed [25] proposed anO(n1+ε) time algorithm
for finding a separator in fixed minor-free graphs for any ε > 0, and this can be used
to improve the running time.

4. All pairs edge connectivities. In this section we first show how to compute
all pairs edge connectivities in general directed graphs, and then show how to improve
the running time for graphs with good separators.

4.1. General directed graphs. To solve F = FK +Hs, one can compute the
inverse of (I − K)−1 and get F = Hs(I − K)−1. It takes O(mω) time to compute
(I − K)−1 since the matrix (I −K) is of size m × m, but we observe that all pairs
edge connectivities can be computed readily once we have (I −K)−1. In our setup,
Hs is a dout(s) × m matrix with a dout(s) × dout(s) identity matrix in the columns
corresponding to δout(s). So F is just equal to ((I −K)−1)δout(s),∗ up to permuting
rows. Therefore (I − K)−1 contains all the global encoding vectors for all source
vertices, and thus the total encoding time for all pairs is O(mω).

To compute the edge connectivity from s to t, by Theorem 2.1 we compute the
rank of F∗,δin(t) and this is just equal to the rank of ((I−K)−1)δout(s),δin(t). As shown
in section 3.1, given a vertex s; computing the ranks of ((I −K)−1)δout(s),δin(t) for all
t can be done in O(m · (dout(s))ω−1) time. So the total decoding time is

∑
s∈V O(m ·

(dout(s))ω−1). Since dout(s) ≤ n in a simple graph,
∑

s∈V O((dout(s))ω−1) is at most
O(mn ·nω−1). This implies that the total decoding time is at most O(m2nω−2), which
is O(mω) since m ≥ n. This proves Theorem 1.4.

Our algorithm is faster than running the Even–Tarjan algorithm for Ω(n2) pairs
as long as m = O(n1.93). For m = O(n) our algorithm runs in O(nω) time, while
running, the Even–Tarjan algorithm for Ω(n2) pairs takes O(n3.5) time. We note that
Theorems 1.4 and 1.5 can also be derived from the matrix formulation of Ingleton
and Piff [21, 9] for vertex connectivities. By transforming to line graphs, the resulting
matrix is similar to (I −K)−1.

4.2. Directed graphs with good separators. We show a faster method for
computing (I −K)−1 when its underlying graph has a weak separator tree (see sec-
tion 3.2). This would imply faster algorithms for computing all pairs edge connectiv-
ities in directed fixed minor free graphs when the maximum degree is small. Let

M =

(
A B
C D

)
,

where A and D are square matrices. If A is nonsingular, then S = D − CA−1B is
called the Schur complement of A.

Lemma 4.1 (Schur’s formula [39]). Let M and A,B,C,D be matrices as defined
above. Then det(M) = det(A)× det(S). If A and S are nonsingular, then

M−1 =

(
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
.

Our observation is that for graphs with good separators, we can find a partition
of (I − K) such that B and C are of low rank, so that we can compute (I − K)−1

faster by a divide and conquer algorithm.

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH CONNECTIVITIES, NETWORK CODING, EXPANDERS 745

The rest of this section is organized as follows. In section 4.2.1, we will show that
if a matrix is “well-separable” (to be defined in the next section), then its inverse
can be computed more efficiently. Then, in section 4.2.2, we show that the matrix
I −K for graphs with good separators is well-separable and conclude that the edge
connectivities in such graphs can be computed efficiently.

4.2.1. Inverse of well-separable matrix. We say an n×n matrix M is (r, α)-
well-separable (α is a constant smaller than one) ifM is invertible and can be written as

M =

(
A B
C D

)

so that both A and D are (r, α)-well-separable square matrices with dimension no
more than αn, and also both B and C are of rank no more than r. In this section,
we are going to show that the inverse of a well-separable matrix can be computed in
O(rω−2n2) time.

To compute M−1, we first compute the inverses of A and D recursively. We will
compute M−1 using Schur’s formula. A key step is to use the Sherman–Morrison–
Woodbury formula to compute S−1 efficiently, instead of computing D−CA−1B and
then (D − CA−1B)−1. The Sherman–Morrison–Woodbury formula tells us how to
compute the (D+UV T)−1 efficiently if D−1 is known and U, V are low rank matrices.

Lemma 4.2 (Sherman–Morrison–Woodbury [38]). Let M be an n× n matrix, U
be an n× k matrix, and V be an n× k matrix. Suppose that M is nonsingular. Then

• M + UV T is nonsingular if and only if I + V TM−1U is nonsingular.
• if M + UV T is nonsingular, then

(M + UV T)−1 = M−1 −M−1U(I + V TM−1U)−1V TM−1.

First, since rank(B), rank(C) ≤ r, we can write B = BuB
T
v , and C = CuC

T
v

where Bu, Bv, Cu, and Cv are size O(n)× r matrices. This can be done in O(rω−2n2)
time.

Lemma 4.3. If we have A−1 and D−1, then we can compute S−1 = (D −
CA−1B)−1 in O(rω−2n2) time.

Proof. By Schur’s formula, S = D−CA−1B is nonsingular if M−1 and A−1 exist.
The proof consists of two steps. We will first write CA−1B as a product of two low
rank matrices. Then we use the Sherman–Morrison–Woodbury formula to compute
S−1 efficiently. In the following, rectangular matrix multiplications will be done by
dividing each matrix into submatrices of size r × r. Multiplications between these
submatrices can be done in O(rω) time.

First, we consider CA−1B, which is equal to (CA−1Bu)B
T
v . C(A−1Bu) is of size

O(n)×r and can be computed using O(n2/r2) submatrix multiplications of size r×r.
By putting U = CA−1Bu and V = Bv, we have CA−1B = UV T where U and V are
of size O(n)× r.

Now, we can use the Sherman–Morrison–Woodbury formula to compute (D +
UV T)−1 efficiently since D−1 is known and U , V are low rank matrices. By the
formula,

S−1 = D−1 −D−1U(I + V TD−1U)−1V TD−1.

Similar to the above, V TD−1U can be computed using O(n2/r2) submatrix multi-
plications. Since S is nonsingular, (I + V TD−1U)−1 exists by Lemma 4.2, and it
can be computed in one submatrix multiplication time, as I + V TD−1U is of size

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

746 HO YEE CHEUNG, LAP CHI LAU, AND KAI MAN LEUNG

r × r. Finally, since (D−1U)T and (V TD−1) are r × O(n) matrices, we can compute
(D−1U)(I +V TD−1U)−1(V TD−1) using O(n2/r2) submatrix multiplications. Hence
the overall time complexity is O(rω · n2/r2) = O(rω−2n2).

Using Lemma 4.3, we can now compute M−1 using Schur’s formula efficiently.
Lemma 4.4. If we have A−1, D−1, and S−1, then we can compute M−1 in

O(rω−2n2) time.
Proof. By Schur’s formula, to computeM−1 we need to compute A−1BS−1CA−1,

A−1BS−1, and S−1CA−1. These multiplications all involve some O(n) × r matrices
Bu, Bv, Cu, and Cv as follows:

• A−1BS−1CA−1 = (A−1Bu)(B
T
v S

−1CA−1),
• A−1BS−1 = (A−1Bu)(B

T
v S

−1),
• S−1CA−1 = (S−1Cu)(C

T
v A

−1).
All steps during computation of these products involve only O(n) × r (or r × O(n))
matrices. Thus we can avoid computing the product of two n × n matrices. Hence
they all only take O(n2/r2) submatrix multiplications to compute. Therefore the
total time complexity is O(rω · n2/r2) = O(rω−2n2).

By Lemmas 4.3 and 4.4, we can compute M−1 in O(rω−2n2) time if we are given
A−1, D−1, and also rank factorization of B and C. We can then use a recursive
algorithm to compute M−1.

Theorem 4.5. If an n× n matrix M is (r, α)-well-separable, and the separation
can be found in O(nγ) time, then M−1 can be computed in O(nγ + rω−2n2) time.

Proof. First, we analyze the time to compute M−1. We use an O(nγ) time
algorithm to find an (r, α)-well-separable partition of M . By the property of the
partition, both B and C are matrices of rank at most r. Then we can write B = BuB

T
v

and C = CuC
T
v in O(rω−2n2) time where Bu, Bv, Cu, and Cv are all O(n)×r matrices.

We then compute A−1 and D−1 recursively, as A and D by definition are also (r, α)-
separable. Using these inverses we can apply Lemma 4.3 to compute S−1, and then
apply Lemma 4.4 to compute M−1 using A−1, D−1, and S−1. Thus, given A−1 and
D−1, we can compute M−1 in O(rω−2n2) time. Let f(n) be the time to compute
M−1 of size n× n. Then

f(n) = f(αn) + f((1 − α)n) +O(nγ) +O(rω−2n2),

and it can be shown by induction that f(n) = O(nγ + rω−2n2).

4.2.2. Directed graphs with good separators. In this section, we show that
all pairs edge connectivities in planar graphs, bounded genus graphs, and fixed minor
free graphs can be computed in O(dω−2nω/2+1) time.

We will first see that the underlining matrix I −K for these graphs is well sep-
arable. Thus we can apply Theorem 4.5, together with the fact the these graphs
have O(n) edges, to obtain an O(dω−2nω/2+1) time algorithm to compute (I −K)−1.
Finally, we show that the time to compute the required ranks of all submatrices in
(I −K)−1 is O(dω−2nω/2+1).

Lemma 4.6. Given a fixed minor free graph G, the matrix I − K of G is
(O(d

√
n, α)-well-separable for some constant α < 1.

Proof. First recall that an n× n matrix is (f(n), α)-well-separable if we can par-
tition the matrix so that submatrices A and D are square matrices having dimension
≤ αn and are also (f(n), α)-well-separable, while submatrices B and C are of rank
at most f(n). We will use the fact that a fixed minor free graph G (and its sub-
graphs) has O(n) edges and an (O(

√
n), 2/3)-separation (recall the definition from

section 3.2).

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH CONNECTIVITIES, NETWORK CODING, EXPANDERS 747

To show that I − K is well-separable, we use induction on the number of edges
of the graph. We will first show the inductive step and then the base case. For the
inductive step, we can use a separator to divide the graph into three parts X,Y, Z
such that |X ∪Z| ≤ 2n/3, |Y ∪ Z| ≤ 2n/3, and |Z| = O(

√
n), and there are no edges

between X and Y . Let E1 be the set of edges with at least one endpoint in X and
let E2 be E − E1. We partition I −K as follows:

(E1 E2

E1 A B
E2 C D

)
.

Since |Y | = Ω(n) and each vertex in Y is of degree at least 1, we have |E1| = Ω(n) and
|E2| = Ω(n), and thus |E1|, |E2| ≤ αn for some constant α < 1. Let F1 be the subset
of E1 with one endpoint in Z; define F2 similarly for E2. Then any edge in E1 − F1

does not share an endpoint with any edge in E2 − F2. Since |Z| = O(
√
n) and each

vertex is of degree at most d, there are at most O(d
√
n) edges with one endpoint in Z,

and thus |F1| = O(d
√
n) and |F2| = O(d

√
n). Therefore, submatrices B and C have

O(d
√
n) nonzero rows and columns, and thus are of rank at most O(d

√
n). Also I−K

must be invertible because I −K has ones on its diagonal, and thus det(I −K) is a
nonzero polynomial. Matrices A and D correspond to matrices I−K for subgraphs of
G, and by the inductive hypothesis A and D are (O(d

√
n), α)-well-separable. Hence

we can conclude that I −K is (O(d
√
n), α)-well-separable.

For the base case of the induction, observe that any small enough graph must be
separable. For any graph with the number of edges less than a small constant c, we
can safely assume that its matrix I − K is (O(d

√
n), α)-well-separable because any

way to partition the edge set into halves gives B and C of rank less than c.

Lemma 4.7. With probability at least 1−O(m logm)/|F|, the matrix I −K of a
fixed minor free graph G remains well-separable after substituting random values
in ki,j.

Proof. It suffices to analyze the probability that all of I −K, A, and D remain
invertible after substituting random values to ki,j . Note that det(I −K) is a degree
m polynomial not identically equal to zero, because I −K has ones on its diagonal.
Thus, by the Schwartz–Zippel lemma, I − K is invertible with probability at least
1 − m/|F|. Since A and D correspond to matrices I − K for subgraphs of G, we
can apply the same argument to A and D recursively. There are O(logm) levels of
recursions, and in each level the sum of the polynomial degrees in all the subproblems
is m. Therefore, all the required matrices are invertible with probability at least
1−O(m logm)/|F|.

By Lemma 4.7 we conclude that I − K is (O(d
√
n), α)-well-separable. We can

now apply Theorem 4.5 with γ = 1.5 [2]. So (I −K)−1 can be computed in O(n1.5 +
(d
√
n)ω−2n2) = O(dω−2nω/2+1) time. For the decoding time, by an argument similar

to that in section 4.1, the total decoding time is
∑

s∈V O(m · (dout(s))ω−1). Since
m = O(n) and dout(s) ≤ d, this is at most O(n · n

d · dω−1) = O(n2dω−2), which is
dominated by the encoding time. Thus we obtain the following corollary. This is
faster than Theorem 1.4 when d = O(

√
n).

Corollary 4.8. All pairs edge connectivities can be computed in O(dω−2nω/2+1)
time for any directed fixed minor free graph with maximum degree d.

5. Edge splitting-off. In this section, we show that expanders and supercon-
centrators can be applied to design fast algorithms for another well-studied graph
connectivity problem.

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

748 HO YEE CHEUNG, LAP CHI LAU, AND KAI MAN LEUNG

Splitting-off a pair of edges (ux, xv) means deleting these two edges and adding
a new edge uv if u �= v. Note that the above definition works for both undirected
and directed graphs. Edge splitting-off theorems show the existence of one pair of
edges (ux, xv) so that its splitting-off preserves the edge connectivities for all pairs of
vertices not involving x. These results are a powerful tool for proving theorems and
developing algorithms for many graph connectivity problems, including connectivity
augmentation problems, network design problems, tree packing problems, and graph
orientation problems (see the references in [27]).

Faster algorithms for the splitting-off operation can be used to obtain faster algo-
rithms for many graph connectivity problems. There are several existing algorithms
for this task (e.g., [14, 5, 7]) in undirected and directed graphs, but most algorithms
only preserve global edge connectivity (i.e., the value of the global min-cut). Our
results in this section apply to the general setting where all pairs edge connectivities
are preserved.

In undirected graphs, Mader proved that there is a pair of edges that can be split
off in almost all situations.

Theorem 5.1 (Mader [32]). Let G = (V,E) be an undirected graph and x ∈ V .
If there is no cut edge incident to x and d(x) �= 3, then there exists an edge pair
(yx, xz) so that its splitting-off preserves the edge connectivity for every pair of vertices
a, b ∈ V − x.

There is a similar theorem for Eulerian directed graphs where for every vertex its
indegree is equal to its outdegree.

Theorem 5.2 (Bang-Jensen, Frank, and Jackson [4]). Let G = (V,E) be an
Eulerian directed graph and x ∈ V . Then there exists an edge pair (yx, xz) so that
its splitting-off preserves the edge connectivity for every ordered pair of vertices a, b ∈
V − x.

In undirected graphs, when d(x) is even, Mader’s theorem can be repeatedly
applied until x is of degree zero. In Eulerian directed graphs, Theorem 5.2 can also
be repeatedly applied until x is of degree zero. We call this a complete splitting-off
at x (also known as vertex splitting-off). Our goal is to design a fast algorithm to
completely split-off x. A straightforward algorithm is to try every pair of edges on x
and check whether the edge connectivities decrease for some pairs after its splitting-
off. In the worst case, this requires O((d(x))2) attempts to completely split-off x.
We show how to use expanders and superconcentrators to completely split-off x in
O(d(x)) attempts in both undirected graphs and directed Eulerian graphs.

In undirected graphs, it was proved by Lau and Yung [27] that O(d(x)) attempts
are enough to completely split-off x, using a structural theorem of min-cuts. Here we
show how to get the same result immediately using expanders. We replace x by a
constant degree expander graph Hx with O(d(x)) vertices and “rewire” each edge of
x to a distinct vertex in Hx. See Figure 5.1 for an illustration.

The graph Hx is required to satisfy the following property: for every subset
S ⊆ V (Hx) with |S| ≤ |V (Hx)|/2, it holds that d(S) ≥ |S| where d(S) is the number
of edges with exactly one endpoint in S. By Menger’s theorem, it follows that for every
S, T ⊆ V (Hx) with |S| = |T |, there are |S| edge disjoint paths between S and T in Hx.
Hence, the edge connectivity between every pair of vertices a, b ∈ V −x in the resulting
graph is the same as in the original graph. We can add extra edges to make sure that
every vertex in Hx is of even degree. Then every vertex in Hx can be completely
split-off by Mader’s theorem. Since every vertex in Hx is of constant degree, we
can completely split-off one vertex in Hx in O(1) attempts by the straightforward

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH CONNECTIVITIES, NETWORK CODING, EXPANDERS 749

Fig. 5.1. Replace vertex x by a 3-regular expander Hx and “rewire” the edges.

algorithm, and thus we can completely split-off all vertices in Hx in O(d(x)) attempts
sinceHx has onlyO(d(x)) vertices. After we completely split-off all vertices inHx, this
is the same as completely split-off x in the original graph, and the edge connectivity
between every pair is preserved, and we are done.

For the algorithm to be efficient, we need to show that the expander graph Hx

can be constructed efficiently, and here we give an example of one such construction.
For a d-regular graph G = (V,E), the edge expansion of a set S ⊆ |V |/2 is defined as
h(S) = d(S)/(d·|S|). The requirement that d(S) ≥ |S| for every set S with |S| ≤ |V |/2
is equivalent to the requirement that h(S) ≥ 1/d for every set S with |S| ≤ |V |/2.
Let h(G) = minS:|S|≤|V |/2 h(S). By Cheeger’s inequality, h(G) ≥ (1 − λ2)/2 where
λ2 is the second largest eigenvalue in the normalized adjacency matrix A(G)/d. So it
suffices to construct a graph with λ2 ≤ 1 − 2/d. Consider the graph Gp = (Vp, Ep)
in which Vp = {0, . . . , p− 1}. For a ∈ Vp − {0}, the vertex a is connected to (a + 1)
mod p, to (a− 1) mod p, and to its multiplicative inverse a−1 mod p. The vertex 0
is connected to 1 and to p − 1 and has a self-loop. This graph Gp is 3-regular, and
it is known that λ2 < 0.9999 (see [19, section 11.1.2]). By taking the 8th power of
Gp, denoted by G8

p, one can verify that λ8
2 ≤ 1 − 2/d8. So G8

p satisfies the property
that d(S) ≥ |S| for every S with |S| ≤ |V |/2 and is of constant degree. Since Gp

can be constructed in O(p log p) time, G8
p can also be constructed in O(p log p) time.

Therefore, for a vertex x with degree d(x), we can set Hx to be G8
p for p = O(d(x)).

In directed graphs, it is not known how to completely split-off a vertex faster
than O((din(x))2) attempts, and we show how to do it in O(din(x)) attempts using
superconcentrators. The argument is very similar to the undirected case. Replace
vertex x by a superconcentrator Γx with O(din(x)) inputs and O(din(x)) outputs
as in Figure 3.1. The edge connectivity between every pair of vertices in V − x
in the resulting graph is the same as in the original graph by the property of the
superconcentrator. We can add extra edges within Γx to make sure that every vertex
has the same indegree and outdegree. Then, by Theorem 5.2, we can completely
split-off every vertex in Γx. This can be done in O(din(x)) attempts, since one vertex
in Γx can be completely split-off in O(1) attempts, as it has constant degree, and
there are O(din(x)) vertices in Γx. After we completely split-off all vertices in Γx, this
is the same as completely split-off x in the original graph, and the edge connectivity
between every pair is preserved. Recall from section 3.1.1 that a superconcentrator
with d inputs and d outputs can be constructed in O(d) time, and so the above
reduction is efficient.

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

750 HO YEE CHEUNG, LAP CHI LAU, AND KAI MAN LEUNG

In general, expander graphs and superconcentrators can be used to reduce the
maximum degree significantly while preserving the edge connectivities and increasing
the number of vertices only moderately. This may be used to reduce the running
time of an algorithm that has a superlinear dependency on the maximum degree. We
believe that these reductions will find further applications for other graph connectivity
problems.

Acknowledgments. We thank Andrej Bogdanov for his help on expanders and
superconcentrators and Nick Harvey and an anonymous reviewer for useful comments
on the paper.

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, Network information flow, IEEE Trans.
Inform. Theory, 46 (2000), pp. 1204–1216.

[2] N. Alon, P. Seymour, and R. Thomas, A separator theorem for nonplanar graphs, J. Amer.
Math. Soc., 3 (1990), pp. 801–808.

[3] N. Alon and R. Yuster, Solving linear systems through nested dissection, in Proceedings
of the 51st Annual IEEE Symposium on Foundations of Computer Science, IEEE Press,
Piscataway, NJ, 2010, pp. 225–234.

[4] J. Bang-Jensen, A. Frank, and B. Jackson, Preserving and increasing local edge-connectivity
in mixed graphs, SIAM J. Discrete Math., 8 (1995), pp. 155–178.

[5] A. A. Benczúr and D. R. Karger, Augmenting undirected edge connectivity in O(n2) time,
J. Algorithms, 37 (2000), pp. 2–36.

[6] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi, An Õ(mn) Gomory-Hu tree
construction algorithm for unweighted graphs, in Proceedings of the 39th Annual ACM
Symposium on Theory of Computing, ACM, New York, 2007, pp. 605–614.

[7] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi, Fast edge splitting and Ed-
monds’ arborescence construction for unweighted graphs, in Proceedings of the 19th An-
nual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, ACM, New
York, 2008, pp. 455–464.

[8] U. Brandes and D. Wagner, A linear time algorithm for the arc disjoint Menger problem in
planar directed graphs, Algorithmica, 28 (2000), pp. 16–36.

[9] J. Cheriyan, Randomized Õ(M(|V |)) algorithms for problems in matching theory, SIAM J.
Comput., 26 (1997), pp. 1635–1655.

[10] H. Y. Cheung, T. C. Kwok, and L. C. Lau, Fast matrix rank algorithms and applications,
in Proceedings of the 44th Annual ACM Symposium on Theory of Computing, ACM, New
York, 2012, pp. 549–562.

[11] E. Erez and M. Feder, Convolutional network codes, in Proceedings of the IEEE International
Symposium on Information Theory, IEEE Press, Piscataway, NJ, 2004, p. 146.

[12] S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput.,
4 (1975), pp. 507–518.

[13] O. Gabber and Z. Galil, Explicit constructions of linear-sized superconcentrators, J. Comput.
System Sci., 22 (1981), pp. 407–420.

[14] H. N. Gabow, Efficient splitting off algorithms for graphs, in Proceedings of the 26th Annual
ACM Symposium on Theory of Computing, ACM, New York, 1994, pp. 696–705.

[15] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan, A separator theorem for graphs of
bounded genus, J. Algorithms, 5 (1984), pp. 391–407.

[16] A.V. Goldberg and S. Rao, Flows in undirected unit capacity networks, in Proceedings of
the 38th Annual IEEE Symposium on Foundations of Computer Science, IEEE Press,
Piscataway, NJ, 1997, pp. 32–34.

[17] N. J. A. Harvey, Algebraic algorithms for matching and matroid problems, SIAM J. Comput.,
39 (2009), pp. 679–702.

[18] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, A
random linear network coding approach to multicast, IEEE Trans. Inform. Theory, 52
(2006), pp. 4413–4430.

[19] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull. Amer.
Math. Soc. (N.S.), 43 (2006), pp. 439–561.

[20] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite
graphs, SIAM J. Comput., 2 (1973), pp. 225–231.

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

GRAPH CONNECTIVITIES, NETWORK CODING, EXPANDERS 751

[21] A. W. Ingleton and M. J. Piff, Gammoids and transversal matroids, J. Combin. Theory
Ser. B, 15 (1973), pp. 51–68.

[22] S. Jaggi, Design and Analysis of Network Codes, PhD thesis, California Institute of Technol-
ogy, Pasadena, CA, 2006.

[23] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. M. G. M.

Tolhuizen, Polynomial time algorithms for multicast network code construction, IEEE
Trans. Inform. Theory, 51 (2005), pp. 1973–1982.

[24] D. R. Karger and M. S. Levine, Finding maximum flows in undirected graphs seems easier
than bipartite matching, in Proceedings of the 30th Annual ACM Symposium on Theory
of Computing, ACM, New York, 1998, pp. 69–78.

[25] K. Kawarabayashi and B. Reed, A separator theorem in minor-closed classes, in Proceedings
of the 51st Annual IEEE Symposium on Foundations of Computer Science, IEEE Press,
Piscataway, NJ, 2010, pp. 153–162.

[26] R. Koetter and M. Médard, An algebraic approach to network coding, IEEE/ACM Trans.
Networking, 11 (2003). pp. 782–795.

[27] L. C. Lau and C. K. Yung, Efficient edge splitting-off algorithms maintaining all-pairs edge-
connectivities, in Proceedings of the 14th International Conference on Integer Programming
and Combinatorial Optimization, Lecture Notes in Comput. Sci. 6080, Springer, Berlin,
2010, pp. 96–109.

[28] S. R. Li and R. W. Yeung, On convolutional network coding, in Proceeding of the 2006
IEEE International Symposium on Information Theory, IEEE Press, Piscataway, NJ, 2006,
pp. 1743–1747.

[29] S. R. Li, R. W. Yeung, and N. Cai, Linear network coding, IEEE Trans. Inform. Theory, 49
(2003), pp. 371–381.

[30] R. J. Lipton, D. J. Rose, and R. E. Tarjan , Generalized nested dissection, SIAM J. Numer.
Anal., 16 (1979), pp. 346–358.

[31] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math.,
36 (1979), pp. 177–189.

[32] W. Mader, A reduction method for edge-connectivity in graphs, Ann. Discrete Math., 3 (1978),
pp. 145–164.

[33] M. Mucha and P. Sankowski, Maximum matchings via Gaussian elimination, in Proceedings
of the 45th Annual IEEE Symposium on Foundations of Computer Science, IEEE Press,
Piscataway, NJ, 2004, pp. 248–255.

[34] A. Schrijver, Combinatorial Optimization, Springer, New York, 2003.
[35] J. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. ACM,

27 (1980), pp. 701–717.
[36] A. L. Toledo and X. Wang, Efficient multipath in sensor networks using diffusion and net-

work coding, Internat. J. Sensor Networks, 7 (2010), pp. 176–188.
[37] L. Valiant, On non-linear lower bounds in computational complexity, in Proceedings of the

7th Annual ACM Symposium on Theory of Computing ACM, New York, 1975, pp. 45–53.
[38] M. A. Woodbury, Inverting Modified Matrices, Memorandum Report 42, Statistical Research

Group, Princeton University, Princeton, NJ, 1950.
[39] F. Zhang, The Schur Complement and Its Applications, Springer, New York, 2005.

D
ow

nl
oa

de
d

07
/1

8/
13

 to
 1

37
.1

89
.9

0.
24

1.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

