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The Paulsen Problem, Continuous Operator Scaling,

and Smoothed Analysis

Tsz Chiu Kwok∗, Lap Chi Lau†, Yin Tat Lee‡, Akshay Ramachandran§

Abstract

The Paulsen problem is a basic open problem in operator theory: Given vectors u1, . . . , un ∈
R

d that are ǫ-nearly satisfying the Parseval’s condition and the equal norm condition, is it close
to a set of vectors v1, . . . , vn ∈ R

d that exactly satisfy the Parseval’s condition and the equal
norm condition? Given u1, . . . , un, the squared distance (to the set of exact solutions) is defined

as infv
∑n

i=1
‖ui − vi‖22 where the infimum is over the set of exact solutions. Previous results

show that the squared distance of any ǫ-nearly solution is at most O(poly(d, n, ǫ)) and there
are ǫ-nearly solutions with squared distance at least Ω(dǫ). The fundamental open question is
whether the squared distance can be independent of the number of vectors n.

We answer this question affirmatively by proving that the squared distance of any ǫ-nearly
solution is O(d13/2ǫ). Our approach is based on a continuous version of the operator scaling
algorithm and consists of two parts. First, we define a dynamical system based on operator
scaling and use it to prove that the squared distance of any ǫ-nearly solution is O(d2nǫ). Then,
we show that by randomly perturbing the input vectors, the dynamical system will converge
faster and the squared distance of an ǫ-nearly solution is O(d5/2ǫ) when n is large enough and
ǫ is small enough. To analyze the convergence of the dynamical system, we develop some new
techniques in lower bounding the operator capacity, a concept introduced by Gurvits to analyze
the operator scaling algorithm.
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1 Introduction

A set of n vectors v1, . . . , vn ∈ R
d is called an equal norm Parseval frame if it satisfies the Parseval’s

condition and the equal norm condition:

n∑

i=1

viv
T
i = Id and ‖vi‖22 =

d

n
for 1 ≤ i ≤ n, (1.1)

where Id is the d× d identity matrix. A set of n vectors u1, . . . , un ∈ R
d is an ǫ-nearly equal norm

Parseval frame if

(1− ǫ)Id �
n∑

i=1

uiu
T
i � (1 + ǫ)Id and (1− ǫ)

d

n
≤ ‖ui‖22 ≤ (1 + ǫ)

d

n
. (1.2)

Given two sets of vectors U = {ui}ni=1 and V = {vi}ni=1, the squared distance between them is
defined as

dist2(U, V ) =

n∑

i=1

‖ui − vi‖22 . (1.3)

Let F be the set of equal norm Parseval frames. Given a set of vectors U = {ui}ni=1, the squared
distance to the set of equal norm Parseval frame is defined as

dist2(U,F) = inf
V ∈F

dist2(U, V ). (1.4)

The Paulsen problem asks how close is an ǫ-nearly equal norm Parseval frame to an equal norm
Parseval frame.

Definition 1.0.1 (the Paulsen problem). The Paulsen problem asks what is the best function
f(d, n, ǫ) so that

dist2(U,F) ≤ f(d, n, ǫ)

for any set of d-dimensional vectors U = {u1, . . . , un} that forms an ǫ-nearly equal norm Parseval
frame.

The fundamental open question of the Paulsen problem is whether f(d, n, ǫ) can be independent of
the number of vectors n and only dependent on the dimension d and the error ǫ [12, 10].

1.1 History and Motivations

The Paulsen problem has been open for over fifteen years despite receiving quite a bit of atten-
tion [12, 6, 11, 10]. It has been listed as a major open problem in frame theory in the literature
(see e.g. [12, 36, 15]).

An equal norm Parseval frame (also known as an unit-norm tight frame) is a natural generaliza-
tion of an orthonormal basis. It is used as an overcomplete basis (see the introductions in the
books [16, 14, 38]) and has various applications in signal processing and communication theory,
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including noise and erasure reduction [29, 13, 7, 46], quantization robustness [24, 4, 8], and digital
fingerprinting [37]. For some applications in signal processing [43, 29] and quantum information
theory [39, 44], equal norm Parseval frames with additional properties such as Grassmannian frames
(which minimize the maximal inner product) and equiangular frames (in which the inner products
are the same) are needed to provide optimal performance.

These applications motivate the “frame design” questions of constructing equal norm Parseval
frames. It is known that equal norm Parseval frames exist for any d ≤ n. However, it is difficult
to construct equal norm Parseval frames, with only a few algebraic constructions known (e.g.
truncation of Discrete Fourier transform matrices, vertices of the Platonic solids, constructions
from groups; see the survey [48]). On the other hand, it is known that the set of equal norm
Parseval frames contains manifold of nontrivial dimensions [19], and so the algebraic methods only
produce a few examples from the continuum of the set of all equal norm Parseval frames [11].

Besides algebraic constructions, researchers have also used numerical methods to construct equal
norm Parseval frames. It is much easier to construct “nearly” equal norm Parseval frames as a
set of random equal-norm vectors is nearly Parseval with high probability. Tropp et al. [45] pro-
posed alternating projection algorithms to construct equal norm Parseval frames and equiangular
frames from these nearly equal norm Parseval frames. They show positive experimental results
and some partial convergence analysis. Holmes and Paulsen [29] studied the optimal parameters
for Grassmannian frames which are even harder to construct. They construct some nearly equal
norm Parseval frames with small maximal inner product, and ask the question whether these are
good estimates of the optimal parameters for Grassmannian frames. This work led Paulsen to ask
a number of people whether a nearly equal norm Parseval frame is always close to an equal norm
Parseval frame (if so then their estimates are accurate), and eventually it is known as the Paulsen
problem first formally stated in [6].

Proving a good upper bound for the Paulsen problem would give us a firm foundation to work with
nearly equal norm Parseval frames, both in theory and in applications. Indeed, our method can be
seen as a continuous version of the alternating projection algorithm of Tropp et al. [45], and our
results can be viewed as a rigorous justification of the numerical approach for constructing equal
norm Parseval frames. We hope that our techniques will be useful to the difficult open question
of constructing equiangular equal norm Parseval frames, as Tropp et al. [45] also proposed an
alternating projection algorithm for constructing these frames.

1.2 Previous Work on the Paulsen Problem

A compactness argument shows that the function f in the Paulsen problem must exist [12]. There
are simple examples showing that f(d, n, ǫ) ≥ dǫ [10].

Bodmann and Casazza [6] proved that f(d, n, ǫ) ≤ O(d18n4ǫ2) when d and n are relatively prime.
Their approach is to analyze a dynamical system that improves the closeness to the equal norm
condition while ensuring that the Parseval’s condition is satisfied. Casazza, Fickus, and Mixon [11]
proved that f(d, n, ǫ) ≤ O(d42n14ǫ2) when d and n are relatively prime, and they extended this
result to the general case and proved that f(d, n, ǫ) ≤ O(d13/7nǫ2/7). Their approach is to analyze
a gradient descent algorithm that improves the closeness to the Parseval’s condition while ensuring
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that the equal norm condition is satisfied.

Cahill and Casazza [10] showed that the Paulsen problem is equivalent to another fundamental and
deep problem in operator theory called the projection problem: Find the best function g(d, n, ǫ)
such that the following holds. Given an n-dimensional orthonormal basis e1, . . . , en ∈ R

n and a
projection P of rank d that satisfies

(1− ǫ)
d

n
≤ ‖Pei‖22 ≤ (1 + ǫ)

d

n
for 1 ≤ i ≤ n,

there is a projection Q with ‖Qei‖22 = d
n for 1 ≤ i ≤ n and

n∑

i=1

‖Pei −Qei‖22 ≤ g(d, n, ǫ).

Cahill and Casazza [10] proved that f(d, n, ǫ) and g(d, n, ǫ) are within a factor 2 of each other.

1.3 Results and Techniques

Our main result is a proof that the function is independent of the number of vectors.

Theorem 1.3.1. For any set U of d-dimensional vectors that is an ǫ-nearly equal norm Parseval
frame,

dist2(U,F) ≤ O(d13/2ǫ).

There is a very natural approach towards solving the Paulsen problem. Given an ǫ-nearly equal
norm Parseval frame u1, . . . , un ∈ R

d, we alternately fix the Parseval condition (by setting ui ←
(
∑n

i=1 uiu
T
i )

− 1

2ui) and the equal norm condition (by scaling ui so that ‖ui‖22 = d
n), until both

conditions are satisfied exactly and we keep track of the sum of the movement of these operations.
We observe that this natural alternating algorithm is a special case of the operator scaling algorithm
studied in [25, 22]; see Section 2. So, this alternating algorithm will converge under some mild
condition [25, 22], and also there are closed-form formulas for the movement of each operation [12].
But the problem of this approach is that the sum of the movement could be very large, as the path
to an exact solution could zig-zag between the alternating operations; see Subsection 3.1.

Our approach is based on a continuous version of the operator scaling algorithm [25, 22]. There
are two main parts. To avoid the zig-zag movement, we define a dynamical system based on the
(discrete) operator scaling algorithm, so that the two alternating operations are combined into
one and the movement is continuous. The dynamical system satisfies some very nice identities.
Using these identities and the concept of operator capacity defined by Gurvits [25] in analyzing the
convergence of the operator scaling algorithm, we can bound the total movement of our dynamical
system given a nearly equal norm Parseval frame.

Theorem 1.3.2 (informal). Given a set of d-dimensional vectors U = {u1, . . . , un} that forms an
ǫ-nearly equal norm Parseval frame, there is a dynamical system that transforms U into a set of
d-dimensional vectors V = {v1, . . . , vn} that forms an equal-norm Parseval frame and dist2(U, V ) ≤
O(d2nǫ).
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We prove Theorem 1.3.2 in the more general operator setting instead of just the frame setting as
in the Paulsen problem; see the introduction in Section 3. We believe that the operator setting
is of independent interest, e.g. it is closely related to the Brascamp-Lieb constants that will be
discussed in Subsection 1.4.

Using the dynamical system for an arbitrary ǫ-nearly equal norm Parseval frame, the analysis in
Theorem 1.3.2 is tight and the dependency on n is unavoidable. Our intuition is that the set of
ǫ-nearly equal norm Parseval frames with large total movement in our dynamical system is small.
The second part in our approach is a smoothed analysis [42] of continuous operator scaling. We
prove that if we randomly perturb an arbitrary ǫ-nearly equal norm Parseval frame appropriately
(in a dependent manner), then the perturbed frame is simultaneously close to the original frame
and an equal norm Parseval frame with high probability, by showing that its total movement in
our dynamical system is independent of n.

Theorem 1.3.3 (informal). Given a set of d-dimensional vectors U = {u1, . . . , un} that forms an
ǫ-nearly equal norm Parseval frame with n ≫ d4 and ǫ ≪ 1/d11/2, we can perturb U to obtain Ũ
such that dist2(U, Ũ) ≤ O(d5/2ǫ) and furthermore dist2(Ũ ,F) ≤ O(

√
dǫ) by using the dynamical

system in Theorem 1.3.2.

This solves the problem when n is large enough. Together with Theorem 1.3.2, we obtain Threom 1.3.1
by using Theorem 1.3.2 when n is small; see Subsection 4.8.

To prove Theorem 1.3.3, we develop some new techniques to analyze the convergence of the dynam-
ical system in the perturbed frame. Gurvits [25] defined a notion called the operator capacity to
analyze the operator scaling algorithm. Recently, the operator scaling algorithm is used to design a
polynomial time algorithm to solve the non-commutative rank problem [21], while the key is a new
lower bound on the operator capacity. We find an interesting connection between our dynamical
system and the operator capacity. We use it to prove a better lower bound on the operator capac-
ity in the perturbed instance, which implies a faster convergence rate in the perturbed instance.
We discuss some implications of our results to related work on operator scaling in the following
subsection, including bounds on the optimal constants in Brascamp-Lieb inequalities and on the
running time of fast algorithms for matrix scaling.

1.4 Related Work on Frame Scaling, Operator Scaling, and Matrix Scaling

Scaling a frame into an equal norm Parseval frame, and more generally, scaling an operator into
a doubly stochastic operator (see Subsection 2.2) has various applications in theoretical computer
science. Sometimes they go under different names such as radial isotropic positions in machine
learning [28], and geometric conditions in Brascamp-Lieb inequalities [2, 3, 23].

An early application of frame scaling is discovered by Forster [20], who showed that a set of n
vectors v1, . . . , vn ∈ R

d can always be scaled (see Definition 3.0.5) to an equal norm Parseval frame
if every subset of d vectors is linearly independent, and he used this result to derive a lower bound
on the sign rank of the Hadamard matrix with applications in proving communication complexity
lower bounds. We note that Forster’s scaling result was proved earlier in a more general setting by
Gurvits and Samorodnitsky [26] in their work of approximating mixed discriminants, and is also
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implicit in the work of Barthe [3] in proving Brascamp-Lieb inequalities. A recent application of
frame scaling is found by Hardt and Moitra [28] in robust subspace discovery.

Operator scaling was introduced by Gurvits [25] in an attempt to design a deterministic polynomial
time algorithm for polynomial identity testing, and he used it to solve the special case when the
commutative rank of a symbolic matrix is equal to its non-commutative rank (e.g. this includes
the linear matroid intersection problem over reals). Recently, Garg, Gurvits, Oliveira, and Wigder-
son [22] improved Gurvits’ analysis to prove that the alternating algorithm for operator scaling can
be used to compute the non-commutative rank of a symbolic matrix in polynomial time. Subse-
quently, the alternating algorithm for operator scaling is used by the same group [23] to obtain a
polynomial time algorithm to compute the optimal constants in Brascamp-Lieb inequalities, which
we will elaborate more below as it is related to our work.

The Brascamp-Lieb inequalities [9] and their reversed form established by Barthe [3] are general
classes of inequalities with important applications in functional analysis and convex geometry (e.g.
including Nelson’s hypercontractivity inequality and the Brunn-Minkowski inequality as special
cases). The optimal constants for thses inequalities are determined by Ball [2] assuming the geo-
metric condition (which is a condition similar to that in John’s ellipsoid theorem). Garg, Gurvits,
Oliveira and Wigderson [23] show that the Brascamp-Lieb constants are equivalent to the capacity
of an operator by a simple transformation, in which the geometric condition corresponds exactly to
the doubly stochastic condition. Therefore, the algorithm in [22] can be employed to scale the input
to satisfying the geometric condition so as to compute the optimal constant. For our smoothed
analysis in Section 4, we develop a new technique to proving a lower bound on the operator capac-
ity and thus an upper bound on the Brascamp-Lieb constant. In particular, this implies improved
bounds on the Brascamp-Lieb constants for perturbed instances in the rank-one case (which is the
case that Brascamp and Lieb proved in [9]). See [23] and the references therein for applications of
these bounds to non-linear Brascamp-Lieb inequalities.

Matrix scaling [40] is a well-studied special case of operator scaling. It has applications in numerical
analysis, in approximating permanents [34] and in combinatorial geometry [18]. Very recently, much
faster algorithms are developed for matrix scaling by two independent research groups [17, 1].
Cohen, Madry, Tsipras and Vladu [17] obtain an algorithm for matrix scaling with running time
Õ(m log κ log2(1/ǫ)), where m is the number of nonzeros in the input matrix, κ is the ratio between
the largest and the smallest entries in the optimal scaling solution, and ǫ is the error parameter
of the output. Note that the algorithm is near linear time when κ is bounded by a polynomial
in m, but in general it could be exponentially large. Not much is known about upper bounding
κ for specific instances, except when the input matrix is strictly positive [32]. Our techniques for
smoothed analysis in Section 4 provides a new way to bound κ; see Remark 4.3.6. In particular,
this implies that the algorithm in [17] is near linear time in a pseudorandom instance as defined in
Definition 4.3.2 (not necessarily strictly positive).

To summarize, our techniques developed in solving the Paulsen problem provides new tools in
bounding the mathematical quantities involved in scaling problems such as the operator capacity
and κ about optimal scaling solutions. See the second half of Subsection 4.1 for an overview of
these techniques. These provide a new perspective to look at those quantities using the parameters
in our dynamical system. Currently, our smoothed analysis is tailored for the Paulsen problem, but
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we believe that it can be extended to the more general operator setting and also to more natural
conditions (rather than just the psuedorandom condition in Definition 4.3.2) to prove useful results
about other problems solved by scaling techniques.

1.5 Organization and Overview

We first review the background of operator scaling and see that the Paulsen problem is a special
case in the operator framework in Section 2. We will also introduce the matrix scaling problem
in Section 2 as this is a key intermediate problem in our proof of the second part. We would like
to mention that many results in this paper are first proved in the simpler matrix setting and then
generalized to the operator setting.

We divide the proof of Theorem 1.3.1 into two sections. In Section 3, we define our dynamical
system based on operator scaling and prove Theorem 1.3.2. The results in this section works in
the more general operator setting. We discover some nice formulas for the dynamical system to
analyze its convergence. And we establish a close connection between the operator capacity lower
bound and the squared distance bound for the Paulsen problem.

In Section 4, we analyze the perturbation step to prove Theorem 1.3.3. Using a known reduction
that we will discuss in Section 2 and see the proof in Subsection 3.5, we reduce the operator
capacity lower bound to a matrix capacity lower bound. Using some probabilistic arguments, we
will show that by perturbing the vectors, the corresponding matrix will have some pseudorandom
property. Then we use a combinatorial argument to show that the pseudorandom property will
imply a fast convergence of our dynamical system for matrix scaling. Interestingly, we show that
the fast convergence of our dynamical system will imply a stronger matrix capacity lower bound,
and this leads to a bound on Paulsen problem without any dependency on the number of vectors.
We remark that the perturbation step only applies in the frame setting (rather than the general
operator setting).

The proof ideas described so far are of high level. We will give a more concrete technical overview
in each section after the appropriate background is covered; see Subsection 3.3 and Subsection 4.1.

2 The Paulsen Problem, Operator Scaling, and Matrix Scaling

In this section, we first describe a natural alternating algorithm to solve the Paulsen problem in
Subsection 2.1. Then, we describe the operator scaling problem and the operator scaling algorithm
in Subsection 2.2, and then see that it captures the natural alternating algorithm for the Paulsen
problem as a special case in Subsection 2.3. The operator scaling algorithm is analyzed in [25, 22]
and we will use their tools in solving the Paulsen problem. In Subsection 2.4, we describe the
notion of operator capacity introduced by Gurvits [25] and explain how it is used in analyzing the
convergence of the operator scaling algorithm. The operator capacity will be important in analyzing
our continuous operator scaling algorithm. Finally, in Subsection 2.5, we describe the matrix
scaling problem and the notion of matrix capacity and explain how it is used as an intermediate
step in proving lower bounds for the operator capacity. We will also use the matrix capacity as
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an intermediate step to prove a stronger lower bound for the operator capacity for a perturbed
instance.

We remark that the definitions and the results in this section will not be directly used in later
proofs. We will define formally what we need in Section 3 and in Section 4, which will be slightly
different from previous work.

2.1 Alternating Algorithm for the Paulsen Problem

There is a natural algorithm towards solving the Paulsen problem. Let U (0) = {u(0)1 , . . . , u
(0)
n } be

the initial ǫ-nearly equal norm Parseval frame, with

(1− ǫ)Id �
n∑

i=1

u
(0)
i u

(0)
i

T
� (1 + ǫ)Id and (1− ǫ)

d

n
≤
∥∥∥u(0)i

∥∥∥
2

2
≤ (1 + ǫ)

d

n
.

Given U (t) = {u(t)1 , . . . , u
(t)
n } for some non-negative integer t, we define S(t) =

∑n
i=1 u

(t)
i u

(t)
i

T
. If

S(0) is singular, then there is a zero eigenvalue and thus ǫ = 1. Similarly, if
∥∥∥u(0)i

∥∥∥ = 0 for some i,

then we also have ǫ = 1. In these cases, the Paulsen problem is trivial as we can just output an
arbitrary equal norm Parseval frame V = {v1, . . . , vn} and

dist2(U,F) ≤ dist2(U, V ) =
n∑

i=1

∥∥∥u(0)i − vi

∥∥∥
2

2
≤

n∑

i=1

(2
∥∥∥u(0)i

∥∥∥
2

2
+2 ‖vi‖22) =

n∑

i=1

O(
d

n
) = O(d) = O(dǫ).

Henceforth, we assume that S(0) is non-singular and
∥∥∥u(0)i

∥∥∥ 6= 0 for 1 ≤ i ≤ n. Then, we define

u
(t+1)
i = (S(t))−

1

2u
(t)
i and u

(t+2)
i = u

(t+1)
i /

∥∥∥u(t+1)
i

∥∥∥ .

Note that S(t) remains to be non-singular and
∥∥∥u(t)i

∥∥∥ 6= 0 for 1 ≤ i ≤ n, and so these vectors are

well-defined. By construction, it is easy to check that U (t+1) satisfies the Parseval condition and

U (t+2) satisfies the equal norm condition (although
∥∥∥u(t+2)

i

∥∥∥
2

2
= 1 instead of

∥∥∥u(t+2)
i

∥∥∥
2

2
= d

n) for

every even number t. We would like to show that U (t+1) will converge to an equal norm Parseval
frame for some even number t. We observe that this alternating algorithm is a special case of the
operator scaling algorithm in the next subsection.

2.2 Operator Scaling

The operator scaling problem is defined by Gurvits [25]. Given m × n matrices U1, . . . , Uk, the
operator scaling problem is to find an m×m matrix L and an n× n matrix R such that if we set
Vi = LUiR for 1 ≤ i ≤ k then

k∑

i=1

ViVi
T = Im and

k∑

i=1

Vi
TVi =

m

n
In. (2.1)
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The operator scaling algorithm studied in [25, 22] is the natural alternating algorithm. Let U (0) =

{U (0)
1 , . . . , U

(0)
k } be the initial m× n matrices. Given U (t) = {U (t)

1 , . . . , U
(t)
k } for an even number t,

we define

L(t) =
k∑

i=1

U
(t)
i (U

(t)
i )T and U

(t+1)
i =

(
L(t)

)− 1

2U
(t)
i ,

and

R(t+1) =

k∑

i=1

(U
(t+1)
i )TU

(t+1)
i and U

(t+2)
i = U

(t+1)
i

(
R(t+1)

)− 1

2 .

We assume that L(0) is non-singular and R(1) is non-singular. Then L(t) and R(t+1) remain to be
non-singular and so these matrices are well-defined. By construction, it is easy to check that U (t+1)

satisfies the first condition in (2.1) that

k∑

i=1

U
(t+1)
i (U

(t+1)
i )T =

k∑

i=1

(
L(t)

)− 1

2U
(t)
i (U

(t)
i )T

(
L(t)

)− 1

2 =
(
L(t)

)− 1

2L(t)
(
L(t)

)− 1

2 = Im,

and U (t+2) satisfies the (scaled) second condition in (2.1) that

k∑

i=1

U
(t+2)
i

T
U

(t+2)
i =

k∑

i=1

(
R(t+1)

)− 1

2 (U
(t+1)
i )TU

(t+1)
i

(
R(t+1)

)− 1

2 =
(
R(t+1)

)− 1

2R(t+1)
(
R(t+1)

)− 1

2 = In,

for every even number t. When the two matrices

L :=
∏

t even

(
L(t)

)− 1

2 and R :=
∏

t odd

(
R(t)

)− 1

2

converge, they are the required scaling matrices.

2.3 Reducing The Paulsen Problem to Operator Scaling

We observe that the natural alternating algorithm for the Paulsen problem is a special case of the

operator scaling algorithm. For each vector u
(0)
i ∈ R

d, we associate an d× n matrix U
(0)
i in which

the i-th column is u
(0)
i and all other columns are zero. Given U (0) = {u(0)1 , . . . , u

(0)
n }, we apply the

operator scaling algorithm to these matrices U (0) = (U
(0)
1 , . . . , U

(0)
n ). In this reduction to operator

scaling, we have k := n and m := d.

By the definition of U
(0)
i , it is easy to check that

L(0) =

n∑

i=1

U
(0)
i (U

(0)
i )T =

n∑

i=1

u
(0)
i (u

(0)
i )T = S(0),

and

R(1) is the n× n diagonal matrix with R
(1)
i,i =

∥∥∥u(1)i

∥∥∥
2

2
,

10



and thus the operator scaling algorithm applies to U (0) corresponds exactly to the alternating
algorithm applies to U (0). Inductively, we see that U (t) corresponds exactly to U (t), and so the
alternating algorithm for the Paulsen problem is a special case of the operator scaling algorithm.

Suppose the operator scaling algorithm converges to a solution V = {V1, . . . , Vn} that satisfies the
two conditions in (2.1). Each Vi has nonzero entries only in the i-th column, and we let vi be the
i-th column of Vi. The first condition implies the Parseval condition

k∑

i=1

ViVi
T = Im =⇒

n∑

i=1

vivi
T = Id,

and the second condition implies the equal norm condition

k∑

i=1

Vi
TVi =

m

n
In =⇒ ‖vi‖22 =

d

n
for 1 ≤ i ≤ n.

Therefore, the solution that the operator scaling algorithm converges to corresponds to a solution to
the Paulsen problem. This is the general approach that we will take to study the Paulsen problem.

We remark that this reduction can be used to derive Forster’s theorem [20], which has an inter-
esting application in proving communication complexity lower bound, from the results in operator
scaling [26] that we will describe in the next subsection.

2.4 Operator Capacity and Convergence of Operator Scaling

To analyze the convergence of the operator scaling algorithm, Gurvits [25] defined the following
important notion of operator capacity. Note that this definition is for square matrices in [25] and
is extended to rectangular matrices in [23]. We will define a rectangular version for our purpose
in Section 3. Given U = {U1, . . . , Uk} where each Ui ∈ R

n×n, the operator TU : Rn×n → R
n×n is

defined as TU (X) =
∑k

i=1 UiXUT
i . The capacity of the operator TU is defined as

cap(U) := inf
X
{det(TU (X)) | X � 0 and det(X) = 1}.

The capacity is used as a potential function to analyze the convergence of the operator scaling
algorithm. The following arguments in this subsection are from [25, 22].

Firstly, we establish an upper bound on the capacity. When tr(
∑k

i=1 UiU
T
i ) = n (for instance when

one of the two conditions in (2.1) is satisfied), then cap(U) is always upper bounded by one because
(from Proposition 2.8 of [22])

cap(U) ≤ det(TU (I)) ≤ (tr(TU (I))/n)
n ≤ 1, (2.2)

where the second inequality follows from the AM-GM inequality.

Secondly, we can keep track of the change of the capacity during the operator scaling algorithm.
It is clear from the definition that capacity is multiplicative. Given U (t), Proposition 2.7 from [22]
shows that

cap(U (t+2)) =
cap(U (t))

det(L(t)) · det(R(t+1))
. (2.3)

11



To measure how close U = {U1, . . . , Uk} is to satisfying the two conditions in (2.1), it is defined

∆(U) = tr[(

k∑

i=1

UiU
T
i − In)

2] + tr[(

k∑

i=1

UT
i Ui − In)

2],

so that ∆(U) = 0 if and only if U satisfies the two conditions in (2.1). Using the formula of the
change of the capacity, it is shown in Lemma 5.2 of [22] that the capacity is increased by a constant
factor when ∆(U) ≥ 1 and

cap(U (t+2)) ≥ cap(U (t)) · exp(∆(U (t))) when ∆(U) ≤ 1.

Finally, to show that the operator scaling algorithm converges in polynomial time, we need to
establish a good lower bound on the initial operator capacity, and this is the key step in analyzing
the operator scaling algorithm. It is shown in Lemma 3.4 of [22] that if the second condition∑k

i=1 U
T
i Ui = In is satisfied then

cap(U) ≥ (1−
√
n ·∆(U))n. (2.4)

Now, with the upper bound, the lower bound and the change of the capacity, we can analyze the
number of iterations for ∆(U (t)) ≤ δ for any 0 < δ ≤ 1. Suppose ∆(U (t)) > δ for 0 ≤ t ≤ 2T , then

cap(U (2T )) ≥ cap(U (0)) · exp(δ · T ) ≥ (1−
√

n ·∆(U (0)))n · exp(δ · T ),

and this would imply that

cap(U (2T )) > 1 for T = Ω(n3/2
√

∆(U (0))/δ) and ∆(U (0)) ≤ 1

2n
,

contradicting that cap(U (2T )) ≤ 1. To summarize, the operator capacity provides an indirect way
to argue that ∆(U (t)) would converge to zero as long as the initial capacity is positive.

It is then an important question to characterize when the operator capacity is positive. Gurvits [25]
proved that cap(U) > 0 if and only if the operator TU is rank non-decreasing, i.e. rank(TU (P )) ≥
rank(P ) for any P � 0. Recently, Garg, Gurvits, Oliveria and Wigderson [22] proved that when TU

is rank non-decreasing, then cap(U) ≥ exp(− poly(n, k)) assuming the bit complexity of the input
is bounded. This implies that the operator scaling algorithm gives a polynomial time algorithm to
determine whether TU is rank non-decreasing, and this implies the first polynomial time algorithm
for computing the non-commutative rank of a symbolic matrix. For the Paulsen problem, we can
assume that ∆(U (0)) is small enough and thus the initial capacity is positive in Section 3, and we
will perturb the input so that the intial capacity is positive in Section 4.

We will discuss the proof of the operator capacity lower bound (2.4) in the next subsection, which
is based on a connection to matrix scaling and matrix capacity that we will define. We will need
to extend and improve this lower bound for the proof of Theorem 1.3.3.

12



2.5 Matrix Scaling and Matrix Capacity

The operator scaling algorithm and the operator capacity are motivated by the corresponding
definitions in a simpler matrix setting.

We call a non-negative matrix A ∈ R
m×n doubly balanced if all the row sums are equal and all the

column sums are equal. Given a non-negative matrix A, the matrix scaling problem is to find an
m×m diagonal matrix L and an n×n diagonal matrix R such that LAR is doubly balanced. The
matrix scaling algorithm by Sinkhorn [40] is the natural algorithm that alternatively scales the rows
to have the same sum and then scales the columns to have the same sum until the resulting matrix
becomes (close enough to) doubly balanced. In the square case, it is known that (see e.g. [34]) the
permanent of A is positive if and only if there exist two sequences of positive diagonal matrices Li

and Ri such that limi→∞LiARi is doubly stochastic.

There are many different analyses of the convergence of the matrix scaling algorithm. There is
an analysis [34] which is the same as the analysis of the operator scaling algorithm outlined in
the previous subsection, using the permanent (which is the same as the capacity up to a simple
transformation) as a potential function. The capacity of a matrix is first explicitly stated in [22],
although Gurvits and Yianilos [27] considered an equivalent notion in measuring progress. Note
that the definition is for square matrices, and we will define a rectangular version for our purpose
in Section 3. Given a non-negative matrix A ∈ R

n×n, its capacity is defined as

cap(A) = inf
x
{

n∏

i=1

(Ax)i |
n∏

i=1

xi = 1 and x > 0}.

A matrix is called row-balanced if its row sums are the same. Given a row-balanced matrix A with
average column sum one, we let cj be the sum of the j-th column and define

∆(A) =

n∑

j=1

(cj − 1)2.

It is proved in Lemma 3.2 of [22] that for a row-balanced matrix A with average column sum one,

cap(A) ≥ (1−
√
n ·∆(A))n. (2.5)

The proof of the operator capacity lower bound (2.4) in Lemma 3.4 of [22] is through a reduction
to this matrix capacity lower bound, which we will extend to our setting in Proposition 3.5.8.

In the (discrete) operator scaling algorithm described in Subsection 2.2, we can assume that one
of the two conditions in (2.1) is satisfied and this simplifies the proofs. In the continuous opera-
tor scaling algorithm that we will define in Section 3, typically both conditions are not satisfied
and so we will need to slightly generalize the proof of (2.5) and the reduction from the operator
capacity to the matrix capacity to prove an analogous statement of (2.4). This will be done in the
Subsection 3.5. We will also define a matrix version of the Paulsen problem in Section 4.2. This
will provide a new way to prove stronger matrix capacity lower bound in a perturbed instance.

13



3 The Operator Paulsen Problem and Continuous Operator Scal-

ing

We consider the following generalization of the Paulsen problem to the operator setting. We refer
to a set of of matrices U = {U1, . . . , Uk} as an operator.

Definition 3.0.1 (doubly balanced and doubly stochastic operator). An operator V = {V1, . . . , Vk}
where Vi ∈ R

m×n for 1 ≤ i ≤ k is called doubly balanced if

k∑

i=1

ViV
T
i = cnIm and

k∑

i=1

V T
i Vi = cmIn

for some scalar c ≥ 0, and it is called doubly stochastic in the case when c = 1/n, i.e.

k∑

i=1

ViV
T
i = Im and

k∑

i=1

V T
i Vi =

m

n
In.

Definition 3.0.2 (ǫ-nearly doubly stochastic operator). An operator U = {U1, . . . , Uk} where
Ui ∈ R

m×n for 1 ≤ i ≤ k is called ǫ-nearly doubly stochastic if

(1− ǫ)Im �
k∑

i=1

UiU
T
i � (1 + ǫ)Im and (1− ǫ)

m

n
In �

k∑

i=1

UT
i Ui � (1 + ǫ)

m

n
In.

Definition 3.0.3 (distance and squared distance). Given U = {U1, . . . , Uk} and V = {V1, . . . , Vk}
where Ui, Vi ∈ R

m×n for 1 ≤ i ≤ k, the squared distance between U and V is defined as

dist2(U ,V) :=
k∑

i=1

‖Ui − Vi‖2F ,

where ‖.‖F is the Frobenius norm of the matrix. The distance between U and V is defined as

dist(U ,V) :=
√
dist2(U ,V) =

√√√√
k∑

i=1

‖Ui − Vi‖2F .

Definition 3.0.4 (the operator Paulsen problem). Given U = {U1, . . . , Uk} where Ui ∈ R
m×n for

1 ≤ i ≤ k that is ǫ-nearly doubly stochastic, the operator Paulsen problem asks what is the best
function h(k, n,m, ǫ) so that

inf
V

dist2(U ,V) ≤ h(k, n,m, ǫ),

where the infimum V is over the sets of matrices which are doubly stochastic.

The main theorem in this section is that h(k, n,m, ǫ) ≤ O(m2nǫ) which we will prove in Theo-
rem 3.6.4 in Subsection 3.6. Our approach is to define a dynamical system and use it to find a
scaling solution defined as follows.
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Definition 3.0.5 (operator scaling). Given an operator U = {U1, . . . , Uk} where Ui ∈ R
m×n for

1 ≤ i ≤ k, we say V = {V1, . . . , Vk} is a scaling of U if there exist

L ∈ R
m×m and R ∈ R

n×n such that Vi = L · Ui ·R for 1 ≤ i ≤ k.

This will imply Theorem 1.3.2, using a similar reduction as described in Subsection 2.3.

Organization and Overview

We first see in Subsection 3.1 that the natural attempt to use the (discrete) operator scaling
algorithm described in Subsection 2.2 to solve the Paulsen problem would not work directly. This
motivates us to define a dynamical system based on the operator scaling algorithm in Subsection 3.2.
In Subsection 3.3, we prove our main technical result that given U (0) that is ǫ-nearly doubly
stochastic, the dynamical system will produce U (∞) that is doubly balanced with dist2(U (0),U (∞)) ≤
O(m2nǫ), assuming some formulas for the dynamical system and a lower bound on the operator
capacity. Then, we derive the formulas in Subsection 3.4, and we prove the operator capacity
lower bound in Subsection 3.5. Finally, we do some preprocessing and postprocessing to obtain a
bound on the operator Paulsen problem in Subsection 3.6, and use a reduction similar to that in
Subsection 2.3 to obtain a bound on the Paulsen problem and prove Theorem 1.3.2 in Subsection 3.7.

3.1 Discrete Operator Scaling

The natural first attempt to the Paulsen problem is to use the analysis in Subsection 2.4 to bound
the distance by the “total movement” in the operator scaling algorithm. In this subsection, we
restrict to the original frame setting of the Paulsen problem, and argue that this natural attempt
of using discrete operator scaling would not work directly.

Given a set of d-dimensional vectors U (0) = {u(0)1 , . . . , u
(0)
n } that forms an ǫ-nearly equal norm

Parseval frame, we apply the operator scaling algorithm (which is the natural alternating algo-

rithm in Subsection 2.1) to obtain U (2T ) = {u(2T )
1 , . . . , u

(2T )
n }. As proved in Lemma 3.3.1 in the

Subsection 3.3, we can bound

dist(U (0), U (2T )) =

√√√√
n∑

i=1

∥∥u(2T ) − u(0)
∥∥2
2
≤

2T∑

t=1

√√√√
n∑

i=1

∥∥u(t) − u(t−1)
∥∥2
2
=

2T∑

t=1

dist(U (t), U (t−1)).

It is shown in Proposition 5 of [12] that dist2(U (t), U (t−1))) ≤ dǫ2 if U (t−1) is an ǫ-nearly equal norm
Parseval frame, and so we can bound dist(U (0), U (2T )) by O(ǫT

√
d). It remains to bound T for

∆(U (2T )) ≤ ∆(U (0))/2. Using the analysis in Subsection 2.4, we need to set T = Θ(poly(n, d)/
√

∆(U (0))).
It follows from the definition that ∆(U (0)) = Θ(poly(n, d) · ǫ2), and thus we can bound

dist(U (0), U (2T )) = O(ǫT
√
d) = O(ǫ poly(n, d)/

√
∆(U (0))) = O(poly(n, d)),

but the ǫ got cancelled. Note that this bound is worse than the trivial bound that dist2(U,F) = O(d)
as shown in Subsection 2.1. We remark that the analysis as stated in Subsection 2.4 only holds
when m = n, but it can be extended to the case when m 6= n as we assumed here.
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3.2 Continuous Operator Scaling

The problem of the analysis in the previous subsection is that there are examples in which the
alternating steps zigzag (i.e. dist(U (t+2), U (t)) is small but dist(U (t+2), U (t+1)) and dist(U (t+1), U (t))
are large), and so bounding dist(U (0), U (2T )) by

∑2T
t=1 dist(U

(t), U (t−1)) gives a poor bound, but we
do not know how to bound dist(U (t+2), U (t)) directly.

Our idea is to define a continuous version of the operator scaling algorithm so that the two alter-
nating steps are combined into one step and the movement is continuous, so that we can still bound

the distance dist(U (0), U (T )) by the total movement
∫ T
0

√
∑n

i=1

∥∥∥ d
dtu

(t)
i

∥∥∥
2

2
dt. We note that the idea

of combining two steps into one is also used in previous work (e.g. in Forster’s work [20]), but we
are not aware of previous work that considers a dynamical system for operator scaling.

We define our dynamical system in the more general operator setting. There is a time t in the
evolution of the matrices, but we will drop the superscript to ease our notation whenever it is clear
from the context.

Definition 3.2.1 (size of an operator). Given U = (U1, . . . , Un), let

s(U) :=
k∑

i=1

‖Ui‖2F = tr(

k∑

i=1

UiU
T
i ) = tr(

k∑

i=1

UT
i Ui)

be the size of the operator. We use the shorthand s when the system U is clear from the context.

Our dynamical system is defined by the following differential equation.

Definition 3.2.2 (dynamical system from operator scaling). The following differential equation

describes how U (t) = {U (t)
1 , . . . , U

(t)
k } changes over time:

d

dt
Ui := (sIm −m

k∑

j=1

UjUj
T )Ui + Ui(sIn − n

k∑

j=1

Uj
TUj) for 1 ≤ i ≤ k.

Let us informally see that the dynamical system is a continuous version of the operator scaling
algorithm. Consider one step Ui ← (

∑k
j=1UjU

T
j )

− 1

2Ui in the operator scaling algorithm. If we

move continuously, since m
s

∑k
j=1 UjU

T
j ≈ I, the dynamical system should update

Ui ← (
m

s

k∑

j=1

UjU
T
j )

− 1

2
dtUi ≈ (Im+

1

2
(Im−

m

s

k∑

j=1

UjU
T
j )dt)Ui =⇒ d

dt
Ui ≈

1

2
(Im−

m

s

k∑

j=1

UjU
T
j )Ui,

and similarly for another step

Ui ← Ui(
n

s

k∑

j=1

UT
j Uj)

− 1

2
dt ≈ Ui(In +

1

2
(In −

n

s

k∑

j=1

UjU
T
j )) =⇒ d

dt
Ui ≈

1

2
Ui(In −

n

s

k∑

j=1

UT
j Uj).
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We arrive at Definition 3.2.2 by combining the two steps and scaling appropriately. An important
property in the definition is that

tr(sIm −m
k∑

j=1

UjU
T
j ) = tr(sIn − n

k∑

j=1

UT
j Uj) = 0,

which leads to some nice formulas for the dynamical system as described in Subsection 3.3 and
Subsection 3.4 for the analysis to go through.

The following definition is the key parameter in our analysis. We can think of ǫ as an ℓ∞-error
bound of the input, and the following ∆ as an ℓ2-error bound. Indeed, we will work with ∆ as the
error measure in all our proofs, and only use the relation that ∆ ≤ 2m2ǫ2 as shown in Lemma 3.6.1
to draw the conclusion. We note that previous work in operator scaling [25, 22] also uses a very
similar quantity as the error measure, but in our definition the size is involved and the normalization
is slightly different.

Definition 3.2.3 (∆ of an operator). We measure the progress of our dynamical system by the
following quantity:

∆(U) = 1

m
tr[(sIm −m

k∑

i=1

UiU
T
i )

2] +
1

n
tr[(sIn − n

k∑

i=1

UT
i Ui)

2],

which is zero if and only if U is doubly balanced. The two conditions in (2.1) are scaled appropriately
so that m and n are symmetric. We use the shorthand ∆(t) for ∆(U (t)) when U is clear from the
context.

Another motivation for our dynamical system is that it moves in the direction that minimizes ∆(U).
We do not include a proof of this claim as it will not be used elsewhere.

3.3 Total Movement of Dynamical System

We prove our main technical result of this section in this subsection. Assuming some formulas for the
dynamical system in Subsection 3.4 and a lower bound on the operator capacity in Subsection 3.5,
we will prove that given U (0) that is ǫ-nearly stochastic, the dynamical system will produce U (∞)

that is doubly balanced with dist2(U (0),U (∞)) ≤ O(m2nǫ).

First, as stated in Subsection 3.1, we will bound the squared distance of U to the set of doubly
balanced operators by the total movement in our dynamical system.

Lemma 3.3.1. Let U (0) be the input operator to the dynamical system and U (T ) be the operator in
the dynamical system at time T , we have

dist(U (T ),U (0)) ≤
∫ T

0

√√√√
k∑

i=1

∥∥∥∥
d

dt
U

(t)
i

∥∥∥∥
2

F

dt.
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Proof. The proof follows from the triangle inequality of the Frobenius norm. Given U = {U1, . . . , Uk},
let U = [U1|U2| . . . |Uk] be the m× nk matrix which is the concatenation of the k matrices. Then,

dist(U (T ),U (0)) =

√√√√
k∑

i=1

∥∥∥U (T )
i − U

(0)
i

∥∥∥
2

F
=
∥∥∥U (T ) − U (0)

∥∥∥
F
=

∥∥∥∥
∫ T

0

d

dt
U (t)dt

∥∥∥∥
F

≤
∫ T

0

∥∥∥∥
d

dt
U (t)

∥∥∥∥
F

dt =

∫ T

0

√√√√
k∑

i=1

∥∥∥∥
d

dt
U

(t)
i

∥∥∥∥
2

F

dt.

To analyze the convergence of the dynamical system, the operator capacity will play an important
role. The capacity of a square operator is defined in [25] and the capacity of a rectangular operator
is defined in [23]. Our definition of operator capacity is basically the same. It is normalized in such
a way that the capacity is upper bounded by one when the size of the operator is equal to one.

Definition 3.3.2 (operator capacity). Given an operator U = {U1, . . . , Uk} where each Ui ∈ R
m×n,

we define the capacity of U as

cap(U) = inf
X�0

m det(
∑k

i=1 UiXUT
i )

1/m

det(X)1/n
.

As in Subsection 2.4, we will show an upper bound and a lower bound on operator capacity, and
also keep track of the change of capacity in order to argue about the decrease of ∆ over time. First,
we see that the capacity is always upper bounded by the size, whose proof is basically the same to
that of (2.2).

Lemma 3.3.3. Given an operator U = {U1, . . . , Uk} where each Ui ∈ R
m×n, we have

cap(U) ≤ s(U).

Proof. The proof follows from the AM-GM inequality:

cap(U) = inf
X�0

m det(
∑k

i=1 UiXUT
i )

1/m

det(X)1/n
≤ m det(

k∑

i=1

UiU
T
i )

1

m ≤ m
(
tr(

k∑

i=1

UiU
T
i )/m

)m× 1

m
= s(U).

One can show that cap(U) = s(U) when U is doubly balanced, but we do not need this fact in our
proof. In the following, we state the facts that we need for our proof.

Proof Steps: It turns out that there are very nice formulas of our dynamical system which can
be used to bound the right hand side of Lemma 3.3.1. We will prove
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(i) in Lemma 3.4.2 that
d

dt
s(t) = −2∆(t),

which in particular implies that the size of the operator is decreasing over time;

(ii) in Lemma 3.4.3 that

d

dt
∆(t) = −4(

k∑

i=1

∥∥∥∥
d

dt
Ui

∥∥∥∥
2

F

),

which in particular implies that ∆(t) is decreasing over time;

(iii) in Lemma 3.4.7 that cap(U (t)) is unchanged over time;

(iv) and in Theorem 3.5.16 that cap(U) ≥ s(U)−mn
√
∆(U), which implies that

s(T ) ≥ cap(U (T )) = cap(U (t)) ≥ s(t) −mn
√
∆(t) for any T ≥ t ≥ 0,

where the first inequality is by Lemma 3.3.3.

Using these lemmas, we can analyze the total movement of the dynamical system before ∆(T ) ≤
∆(0)/2. As in Subsection 2.4, we will show that the operator capacity provides an indirect way
to argue that ∆(t) converges to zero in the following proposition. One can view the following
proposition as reducing the total movement bound to the capacity lower bound, and we will make
this more explicit in Section 4 (see Proposition 4.8.10).

Proposition 3.3.4. For t ≥ 0 with ∆(t) > 0, let T be the first time that ∆(T ) = ∆(t)/2. Then

T ≤ t+
mn√
∆(t)

and dist2(U (T ),U (t)) ≤ 2mn
√
∆(t).

Proof. The assumption implies that ∆(τ) > ∆(t)/2 for t ≤ τ < T , and thus it follows from point (i)
that

d

dτ
s(τ) = −2∆(τ) < −∆(t) for t ≤ τ < T.

The capacity lower bound thus allows us to conclude that

T ≤ t+
mn√
∆(t)

,

as otherwise

s(T ) = s(t) +

∫ T

t

d

dτ
s(τ)dτ < s(t) − (T − t)∆(t) < s(t) −mn

√
∆(t),
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contradicting point (iv). Therefore,

dist(U (T ),U (t)) ≤
∫ T

t

√√√√
k∑

i=1

∥∥∥∥
d

dτ
U

(τ)
i

∥∥∥∥
2

F

dτ

= 2

∫ T

t

√
− d

dτ
∆(τ)dτ

≤ 2

√∫ T

t
(− d

dτ
∆(τ))dτ ·

∫ T

t
1dτ

= 2
√
−(∆(T ) −∆(t))(T − t)

≤
√

2mn
√
∆(t),

where the first inequality is by Lemma 3.3.1, the first equality is by point (ii), the second inequality
is by Cauchy-Schwarz, and the last inequality is by the bound on T above and the assumption that
∆(T ) = ∆(t)/2. Squaring both sides proves the lemma.

Using this argument repeatedly will give us a decreasing geometric sequence and we can prove the
main technical result in this section.

Theorem 3.3.5. Given any operator U (0) = {U (0)
1 , . . . , U

(0)
k } where Ui ∈ R

m×n for 1 ≤ i ≤ k, the
dynamical system in Definition 3.2.2 will move U (0) to U (∞) such that

∆(U (∞)) = 0 and dist2(U (∞),U (0)) ≤ O(mn
√
∆(0)).

Proof. If ∆(0) = 0, then U (0) is already doubly balanced and we are done. Otherwise, for j ≥ 0, let
Tj be the first time when ∆(U (Tj)) = 2−j∆(U (0)). By Proposition 3.3.4,

Tj ≤
j∑

l=1

mn√
∆(Tl−1)

=

j∑

l=1

mn√
2−l∆(0)

= O(
2j/2mn√

∆(0)
),

and so ∆(U (t))→ 0 as t→∞ as ∆(t) is decreasing over time. Furthermore, by Proposition 3.3.4,

dist(U (Tj),U (0)) ≤
j∑

l=1

dist(U (Tl),U (Tl−1)) ≤
j∑

l=1

√
2mn

√
∆(Tl−1) ≤ O(

√
mn
√

∆(0)),

where the last inequality follows as it is a sum of a decreasing geometric sequence. Squaring both
sides gives that

dist2(U (∞),U (0)) ≤ O(mn
√
∆(0)).

In Subsection 3.4, we will prove the first three items in the proof steps. In Subsection 3.5, we will
prove the operator capacity lower bound, which is similar to the proof of (2.4) in [22], by reducing
to the corresponding matrix capacity lower bound.

20



3.4 Formulas for the Dynamical System

In this subsection, we will prove the first three items in the proof steps in Subsection 3.3. Recall
from Definition 3.2.2 that the dynamical system is

d

dt
Ui := (sIm −m

k∑

j=1

UjUj
T )Ui + Ui(sIn − n

k∑

j=1

Uj
TUj) for 1 ≤ i ≤ k,

from Definition 3.2.1 that the size is

s := tr(

k∑

i=1

UiU
T
i ) = tr(

k∑

i=1

UT
i Ui),

and from Definition 3.2.3 that

∆ =
1

m
tr[(sIm −m

k∑

i=1

UiU
T
i )

2] +
1

n
tr[(sIn − n

k∑

i=1

UiU
T
i )

2].

All the quantities change over time t, but we drop the superscript for ease of notation. We will
define some shorthands for the following proofs.

Definition 3.4.1 (operator shorthand). Define

Bm =

k∑

i=1

UiU
T
i , Cm = sIm −mBm, and Bn =

k∑

i=1

UT
i Ui, Cn = sIn − nBn..

Note that tr(Bm) = tr(Bn) = s and tr(Cm) = tr(Cn) = 0, and Bm, Cm ∈ R
m×m and Bn, Cn ∈ R

n×n

are symmetric. Also,

d

dt
Ui = CmUi + UiCn and ∆ =

1

m
tr(C2

m) +
1

n
tr(C2

n).

Formula for the change of s

We are ready to prove point (i) in Subsection 3.3.

Lemma 3.4.2.
d

dt
s = −2∆.

Proof. From the definition of the size and the shorthands,

d

dt
s =

d

dt
tr(Bm) = tr(

d

dt
Bm).
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We compute

d

dt
Bm =

k∑

i=1

(
Ui(

d

dt
UT
i ) + (

d

dt
Ui)U

T
i

)

=

k∑

i=1

(
Ui(CmUi + UiCn)

T + (CmUi + UiCn)U
T
i

)

=

k∑

i=1

(
UiU

T
i Cm + UiCnU

T
i + CmUiU

T
i + UiCnU

T
i

)

= BmCm + CmBm + 2

k∑

i=1

UiCnU
T
i .

Therefore,

d

dt
s = tr(

d

dt
Bm) = tr(BmCm + CmBm + 2

k∑

i=1

UiCnU
T
i )

= 2 tr(CmBm) + 2
k∑

i=1

tr(CnU
T
i Ui)

= 2 tr(CmBm) + 2 tr(CnBn).

On the other hand,

∆ =
1

m
tr(C2

m) +
1

n
tr(C2

n)

=
1

m
tr(Cm(sIm −mBm)) +

1

n
tr(Cn(sIn − nBn))

= − tr(CmBm)− tr(CnBn),

where the last equality holds because tr(Cm) = tr(Cn) = 0.

Formula for the change of ∆

We proceed to point (ii) in Subsection 3.3.

Lemma 3.4.3.

d

dt
∆ = −4(

k∑

i=1

∥∥∥∥
d

dt
Ui

∥∥∥∥
2

F

).
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Proof. From the definition of ∆ and the shorthands,

d

dt
∆ =

1

m
tr[Cm(

d

dt
Cm) + (

d

dt
Cm)Cm] +

1

n
tr[Cn(

d

dt
Cn) + (

d

dt
Cn)Cn]

=
2

m
tr[(

d

dt
Cm)Cm] +

2

n
tr[(

d

dt
Cn)Cn]

=
2

m
tr[

d

dt
(sIm −mBm) · Cm] +

2

n
tr[

d

dt
(sIn − nBn) · Cn]

= −2 tr[( d
dt
Bm)Cm]− 2 tr[(

d

dt
Bn)Cn],

where the last equality uses that tr(Cm) = tr(Cn) = 0. Using the calculation of d
dtBm (and similarly

d
dtBn) in Lemma 3.4.2, we continue and use the cyclic property of trace to get

d

dt
∆ = −2 tr[Cm(BmCm + CmBm + 2

k∑

i=1

UiCnU
T
i )]− 2 tr[Cn(BnCn +CnBn + 2

k∑

i=1

UT
i CmUi)]

= −4
(
tr[C2

mBm] + tr[C2
nBn] + 2 tr[

k∑

i=1

CmUiCnU
T
i ]
)
.

On the other hand,

k∑

i=1

∥∥∥∥
d

dt
Ui

∥∥∥∥
2

F

=
k∑

i=1

tr[(
d

dt
UT
i )(

d

dt
Ui)] =

k∑

i=1

tr[(CmUi + UiCn)
T (CmUi + UiCn)]

=

k∑

i=1

(
tr[UT

i C
2
mUi] + tr[CnU

T
i CmUi] + tr[UT

i CmUiCn] + tr[CnU
T
i UiCn]

)

=

k∑

i=1

tr[C2
mUiU

T
i ] + 2

k∑

i=1

tr[CmUiCnU
T
i ] +

k∑

i=1

tr[C2
nU

T
i Ui]

= tr[C2
mBm] + tr[C2

nBn] + 2 tr[

k∑

i=1

CmUiCnU
T
i ].

Capacity Unchanged

We prove point (iii) in Subsection 3.3 that the capacity is unchanged over time. We will show that
U (t) is a scaling of U (0) at each time t ≥ 0 as defined in Definition 3.0.5, and we will argue that
the scaling matrices have determinant one and thus the operator capacity is unchanged. There
are different ways to prove this. One nice way is to use product integration [41]. We will prove it
directly using elementary calculus starting with the following lemma.
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Lemma 3.4.4. Suppose C(t) ∈ R
m×m is Lipschitz continuous over t. Then the unique solution to

the differential equation d
dtX

(t) = C(t)X(t) with initial condition X(0) = Im satisfies for any t ≥ 0,

det(X(t)) = exp
( ∫ t

0
tr(C(τ))dτ

)
.

Similarly, suppose C(t) ∈ R
n×n is Lipschitz continuous over t. Then the unique solution to the

differential equation d
dtY

(t) = Y (t)C(t) with initial condition Y (0) = In satisfies for any t ≥ 0,

det(Y (t)) = exp
( ∫ t

0
tr(C(τ))dτ

)
.

Proof. By the Jacobi’s formula, we have

d

dt
det(X(t)) = tr[(

d

dt
X(t)) adj(X(t))] = tr[C(t)X(t) adj(X(t))] = tr[C(t)] det(X(t)).

Hence z(t) = det(X(t)) satisfies d
dtz

(t) = tr(C(t))z(t) and z(0) = 1. Since tr(C(t)) is Lipschitz contin-

uous over t, there is a unique solution to the differential equation d
dtz

(t) = tr(C(t))z(t) and z(0) = 1

by standard theory (e.g. see Theorem 2.1 of [5]). On the other hand, z(t) = exp(
∫ t
0 tr(C

(τ))dτ) also
satisfies the differential equation as

d

dt
exp(

∫ t

0
tr(C(τ))dτ) =

( d

dt

∫ t

0
tr(C(τ))dτ

)(
exp(

∫ t

0
tr(C(τ))dτ)

)
= tr(C(t)) · exp(

∫ t

0
tr(C(τ))dτ).

Therefore,

det(X(t)) = z(t) = exp(

∫ t

0
tr(C(τ))dτ).

The proof of the statement for Y is analogous.

We use the above lemma to prove that U
(t)
i in our dynamical system in Definition 3.2.2 is always

an operator scaling as defined in Definition 3.0.5.

Lemma 3.4.5. Let U
(t)
i ∈ R

m×n be the solution to our dynamical system in Definition 3.2.2:

d

dt
U

(t)
i = C(t)

m U
(t)
i + U

(t)
i C(t)

n .

Then we can write U
(t)
i = X(t)U

(0)
i Y (t) for 1 ≤ i ≤ k where X(t) ∈ R

m×m and Y (t) ∈ R
n×n are

independent of i and furthermore det(X(t)) = det(Y (t)) = 1 for all t ≥ 0.

Proof. Since U (0) = {U (0)
1 , . . . , U

(0)
k } is ǫ-nearly doubly balanced as stated in Definition 3.0.2, each

entry of U
(0)
i is bounded. Since d

dtU
(t)
i is a polynomial in the entries of U (t), each entry of d

dtU
(t)
i

is also bounded. By standard theory of differential equations (e.g. see Theorem 2.1 of [5]), our
dynamical system has a unique solution given the initial value U (0).
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We now construct a solution that satisfies the dynamical system. As C
(t)
m and C

(t)
n are Lipschitz

continuous over t, we can apply Lemma 3.4.4 to get the unique solution X(t) to the differential

equation d
dtX

(t) = C
(t)
m X(t) with initial value X(0) = Im satisfying

det(X(t)) = exp(

∫ t

0
tr(C(τ)

m )dτ),

and the unique solution Y (t) to the differential equation d
dtY

(t) = Y (t)C
(t)
n with initial value Y (0) =

In satisfying

det(Y (t)) = exp(

∫ t

0
tr(C(τ)

n )dτ).

Recall from Definition 3.4.1 that our dynamical system is defined in such a way that tr(C
(τ)
m ) =

tr(C
(τ)
n ) = 0 for every τ ≥ 0, we have the important property that det(X(t)) = det(Y (t)) = 1 for all

t ≥ 0. Consider U
(t)
i = X(t)U

(0)
i Y (t). It is clear that the differential equation

d

dt
U

(t)
i = (

d

dt
X(t))U

(0)
i Y (t)+X(t)U

(0)
i (

d

dt
Y (t)) = C(t)

m X(t)U
(0)
i Y (t)+X(t)U

(0)
i Y (t)C(t)

n = C(t)
m U

(t)
i +U

(t)
i C(t)

n

is satisfied with initial value U
(0)
i . The lemma thus follows from the uniqueness of the solution of

our dynamical system.

We can conclude that the operator capacity is unchanged over time. First, we prove an identity
of the change of the capacity analogous to (2.3). The proof of the following lemma is basically the
same as the proof of Proposition 2.7 in [22, 25], adapted to our definition of capacity.

Lemma 3.4.6. Let U = {U1, . . . , Uk} and V = {V1, . . . , Vk} where Ui, Vi ∈ R
m×n for 1 ≤ i ≤ k

and Vi = XUiY for 1 ≤ i ≤ k for some X ∈ R
m×m and Y ∈ R

n×n. Then

cap(V) = det(X)2/m det(Y )2/ncap(U).
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Proof. By the definition of operator capacity in Definition 3.3.2,

cap(V) = inf
Z�0

det
(∑k

i=1(XUiY )Z(XUiY )T
)1/m

det(Z)1/n

= inf
Z�0

det
(∑k

i=1 XUiY ZY TUi
TXT

)1/m

det(Z)1/n

= det(X)2/m inf
Z�0

det
(∑k

i=1 UiY ZY TUi
T
)1/m

det(Z)1/n

= det(X)2/m inf
Z�0

det
(∑k

i=1 UiZUi
T
)1/m

det((Y )−1Z(Y T )−1)1/n

= det(X)2/m det(Y )2/n inf
Z�0

det
(∑k

i=1 UiZUi
T
)1/m

det(Z)1/n

= det(X)2/m det(Y )2/ncap(U).

It follows easily from Lemma 3.4.6 that the capacity is unchanged over time as det(X) = det(Y ) = 1
from Lemma 3.4.5.

Lemma 3.4.7. For any t ≥ 0, we have

cap(U (t)) = cap(U (0)).

Proof. By Lemma 3.4.5, there exist X(t) ∈ R
m×m and Y (t) ∈ R

n×n such that U
(t)
i = X(t)U

(0)
i Y (t).

Therefore, by Lemma 3.4.6, we have cap(U (t)) = det(X(t))2/m det(Y (t))2/ncap(U (0)). The lemma
follows from Lemma 3.4.5 that det(X(t)) = det(Y (t)) = 1.

3.5 Lower Bound on Operator Capacity

In this subsection, we prove a lower bound on cap(U) based on ∆(U) in a similar form to (2.4).
As in [22], we do this by reducing the problem to proving a lower bound on matrix capacity as
discussed in Subsection 2.4 and Subsection 2.5.

Remark 3.5.1 (comparsion with previous work). We remark that all the results in this subsection
can be seen as simple variants of the results about capacity in [25, 22, 23]. The following are some
technical differences that do not allow us to use their results directly. In the (discrete) operator
scaling algorithm described in Subsection 2.2, we can assume that one of the two conditions in Def-
inition 3.0.1 is satisfied and this simplifies the proofs. In the continuous operator scaling algorithm
that we defined in Definition 3.2.2, typically both conditions are not satisfied and so we will need
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to slightly generalize the proof of (2.5) and the reduction from the operator capacity to the matrix
capacity to prove an analogous statement of (2.4). Also our normalizations are slightly different and
so their proofs needed to be adapted. And some definitions (such as size of a matrix, rectangular
matrix capacity) are not defined in previous work. We will explain before each statement what are
the differences with previous work.

The new ideas about lower bounding operator capacity are in Section 4, in which we have developed
a technique to analyze capacity using our dynamical system.

Since the capacity of an operator will be reduced to the capacity of a matrix, let us begin with the
corresponding definitions of a matrix.

Definition 3.5.2 (row sum and column sum). Given a non-negative matrix A ∈ R
m×n, we define

ri(A) :=

n∑

j=1

Aij

to be the i-th row sum of A for 1 ≤ i ≤ m and

cj(A) :=

m∑

i=1

Aij

to be the j-th column sum of A for 1 ≤ j ≤ n. We use the shorthands ri and cj when A is clear
from the context.

Definition 3.5.3 (doubly balanced and doubly stochastic matrix). A matrix A ∈ R
m×n is doubly

balanced if the row sums are the same and the column sums are the same, i.e. ri1(A) = ri2(A) for
all 1 ≤ i1, i2 ≤ m and cj1(A) = cj2(A) for all 1 ≤ j1, j2 ≤ n.

A matrix A ∈ R
m×n is doubly stochastic if it is doubly balanced and all the row sums are one.

Definition 3.5.4 (size of a matrix). Given a non-negative matrix A ∈ R
m×n, we define

s(A) :=
m∑

i=1

n∑

j=1

Aij

to be the size of the matrix. We use the shorthand s when A is clear from the context.

The following is our definition of the capacity of a rectangular matrix. It is normalized in such a
way that the capacity is at most one when the size is equal to one.

Definition 3.5.5 (matrix capacity). Given a non-negative matrix A ∈ R
m×n, we define the capacity

of A as

cap(A) = inf
x>0

m(
∏m

i=1(Ax)i)
1/m

(
∏n

i=1 xi)
1/n

.

We also define a measure of how close a matrix is to doubly balanced, which is similar to that
in [22] but with the size involved and a different normalization.
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Definition 3.5.6 (∆ of a matrix). Given a non-negative matrix A ∈ R
m×n, we define

∆(A) =
1

m

m∑

i=1

(s−mri)
2 +

1

n

n∑

j=1

(s− ncj)
2,

where s is the size of A and ri, cj are row and column sums of A. Note that ∆(A) = 0 if and only
if A is doubly balanced. We use the shorthand ∆ when A is clear from the context.

The following lemma shows an upper bound on cap(A) using s(A) and characterizes when it is
tight. In the square case, the lower bound cap(A) ≥ s(A) when A is doubly balanced is known in
Lemma 3.2 in [22]. We use the same idea to prove the result for general rectangular matrices and
the proof is basically the same.

Lemma 3.5.7. For any matrix A ∈ R
m×n, we have

cap(A) ≤ s(A),

and when A is doubly balanced then cap(A) = s(A).

Proof. We first prove the upper bound by using the all-one vector 1n as a test vector so that

cap(A) ≤ m
( m∏

i=1

(A1n)i

)1/m
≤

m∑

i=1

(A1n)i =

m∑

i=1

n∑

j=1

Aij = s(A),

where the second inequality is by the AM-GM inequality.

Next we consider a doubly balanced matrix A. By scaling, we assume that s(A) = 1, so that∑n
j=1Aij = 1/m and

∑m
i=1 Aij = 1/n. We consider the logarithm of the capacity

log cap(A) = inf
x>0,x∈Rn

(
logm+

1

m

m∑

i=1

log
( n∑

j=1

Aijxj
)
− 1

n

n∑

j=1

log xj

)

= inf
x>0,x∈Rn

( 1

m

m∑

i=1

log
( n∑

j=1

mAijxj
)
− 1

n

n∑

j=1

log xj

)

≥ inf
x>0,x∈Rn

( 1

m

m∑

i=1

n∑

j=1

mAij log xj −
1

n

n∑

j=1

log xj

)

= inf
x>0,x∈Rn

( n∑

j=1

m∑

i=1

Aij log xj −
1

n

n∑

j=1

log xj

)

= 0,

where the inequality is by the concavity of log and the assumption that
∑n

j=1mAij = 1, and the
last equality is by the assumption that

∑m
i=1Aij = 1/n. This implies that cap(A) = 1 when A is

doubly balanced then s(A) = 1, and the lemma follows by reducing to the case when s(A) = 1 by
scaling.
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To prove a capacity lower bound on an operator, we will reduce it to proving a lower bound on a
rectangular matrix, which will be further reduced to proving a lower bound on a square matrix,
which can be done by modifying previous techniques in [34, 25, 22].

Reducing Operator Capacity to Matrix Capacity

We show a reduction from the operator capacity to the matrix capacity. This is similar to the
proof of Lemma 3.4 in [22] but there are some differences that do not allow us to use their result
directly. One difference is that it is assumed in [22] that the second condition in Definition 3.0.1
is satisfied, which holds during the execution of the discrete operator scaling algorithm. In our
dynamical system, however, typically both conditions in Definition 3.0.1 are not satisfied and so
we need to prove the reduction without this assumption. Also, we consider rectangular matrices
with slightly different definitions for ∆ and capacity.

Proposition 3.5.8. Given an operator U = {U1, . . . , Uk} with Ui ∈ R
m×n, there is a non-negative

matrix A ∈ R
m×n with

cap(A) ≤ cap(U), ∆(A) ≤ ∆(U), and s(A) = s(U).
Furthermore, if

∑k
l=1 UlU

T
l = pIm for some p ≥ 0, then ri(A) = p for 1 ≤ i ≤ m, and similarly if∑k

l=1 U
T
l Ul = qIn for some q ≥ 0, then cj(A) = q for 1 ≤ j ≤ n.

Proof. Recall that

cap(U) = inf
X�0

m det(
∑k

l=1 UlXUT
l )

1/m

det(X)1/n
.

Let X ∈ R
n×n be an approximate minimizer to this optimization problem such that

X ≻ 0 and
m det(

∑k
l=1 UlXUT

l )
1

m

det(X)1/n
≤ cap(U) + δ for some δ > 0.

We consider the eigen-decomposition of the positive semidefinite matrices:

X =

n∑

j=1

λjfjf
T
j and

k∑

l=1

UlXUT
l =

m∑

i=1

σigig
T
i ,

where λ1, . . . , λn > 0 are the eigenvalues of X with f1, . . . , fn ∈ R
n an orthonormal set of eigenvec-

tors, and similarly σ1, . . . , σm ≥ 0 are the eigenvalues of X with g1, . . . , gm ∈ R
m an orthonormal

set of eigenvectors. Since the determinant of a matrix is equal to the product of its eigenvalues, we
have

m(
∏m

i=1 σi)
1/m

(
∏n

j=1 λj)1/n
=

m det(
∑k

l=1 UlXUT
l )

1

m

det(X)1/n
≤ cap(U) + δ.

To reduce to matrix capacity, we write down the linear transformation A from {λj}nj=1 to {σi}mi=1.
It follows from the eigen-decompositions that

m∑

i=1

σigig
T
i =

k∑

l=1

Ul(

n∑

j=1

λjfjf
T
j )U

T
l =

n∑

j=1

λj

k∑

l=1

Ulfjf
T
j U

T
l .
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As {gi}mi=1 is an orthonormal basis, by multiplying both sides by gTi on the left and gi on the right,
we see that

σi =
n∑

j=1

λj

(
gTi (

k∑

l=1

Ulfjf
T
j U

T
l )gi

)
for 1 ≤ i ≤ m.

Let A ∈ R
m×n be the matrix with

Aij := gTi (

k∑

l=1

Ulfjf
T
j U

T
l )gi for 1 ≤ i ≤ m, 1 ≤ j ≤ n. (3.1)

Note that A is non-negative as
∑k

l=1 Ulfjf
T
j U

T
l � 0. Let σ ∈ R

m be a vector with the i-th entry
being σi and λ ∈ R

n be a vector with the j-th entry being λj. It follows from the definition of A
that

σ = Aλ.

By the definition of matrix capacity in Definition 3.5.5 and using λ as a test vector, we get

cap(A) = inf
x>0

m(
∏m

i=1(Ax)i)
1/m

(
∏n

i=1 xi)
1/n

≤ m(
∏m

i=1(Aλ)i)
1/m

(
∏n

j=1 λj)1/n
=

m(
∏m

i=1 σi)
1/m

(
∏n

j=1 λj)1/n
≤ cap(U) + δ.

Next we check the second claim that ∆(A) ≤ ∆(U). The i-th row sum of A is

ri =
n∑

j=1

Aij =
n∑

j=1

gTi

( k∑

l=1

Ulfjf
T
j U

T
l

)
gi = gTi

( k∑

l=1

Ul

( n∑

j=1

fjf
T
j

)
UT
l

)
gi = gTi

( k∑

l=1

UlU
T
l

)
gi,

where the last equality is because {fj}nj=1 is an orthonormal basis. In particular, if
∑k

l=1 UlU
T
l =

pIm, then ri = p ‖gi‖2 = p. The j-th column sum of A is

cj =

m∑

i=1

Aij =

m∑

i=1

gTi

( k∑

l=1

Ulfjf
T
j U

T
l

)
gi =

m∑

i=1

tr[
( k∑

l=1

Ulfjf
T
j U

T
l

)
gig

T
i ]

= tr[
( k∑

l=1

Ulfjf
T
j U

T
l

)( m∑

i=1

gig
T
i

)
] = tr[

( k∑

l=1

Ulfjf
T
j U

T
l

)
] = fT

j

( k∑

l=1

UT
l Ul

)
fj,

where the second last equality is because {g1}mi=1 is an orthonormal basis and the last equality is

by the cyclic property of trace. In particular, if
∑k

l=1 U
T
l Ul = qIn, then cj = q ‖fj‖2 = q. The size

of the matrix A is

s(A) =
m∑

i=1

ri =
m∑

i=1

gTi

( k∑

l=1

UlU
T
l

)
gi =

m∑

i=1

tr[
( k∑

l=1

UlU
T
l

)
gig

T
i ] = tr[

( k∑

l=1

UlU
T
l

)
] = s(U),
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equal to the size of the operator U in Definition 3.2.1. Since s(A) = s(U), we will just use s :=
s(A) = s(U) in the following. By Definition 3.5.6 and the above identities,

∆(A) =
1

m

m∑

i=1

(s−mri)
2 +

1

n

n∑

j=1

(s− ncj)
2

=
1

m

m∑

i=1

(
s−mgTi

( k∑

l=1

UlUl

)
gi

)2
+

1

n

n∑

j=1

(
s− nfT

j

( k∑

l=1

UlUl

)
fi

)2

=
1

m

m∑

i=1

(
gTi

(
sIm −m

k∑

l=1

UlUl

)
gi

)2
+

1

n

n∑

j=1

(
fT
j

(
sIn − n

k∑

l=1

UlUl

)
fi

)2

≤ 1

m

m∑

i=1

(
gTi

(
sIm −m

k∑

l=1

UlUl

)2
gi

)
+

1

n

n∑

j=1

(
fT
j

(
sIn − n

k∑

l=1

UlUl

)2
fi

)

=
1

m
tr[
(
sIm −m

k∑

l=1

UlUl

)2
] +

1

n
tr[
(
sIn − n

k∑

l=1

UlUl

)2
]

= ∆(U),
where the inequality follows from gig

T
i � Im as ‖gi‖22 ≤ 1, the second last equality follows from∑m

i=1 gig
T
i = Im as {gi}mi=1 is an orthonormal basis and the cyclic property of trace, and the last

equality is by the definition of ∆(U) in Definition 3.2.3.

For each l ∈ N, let Al be the above constructed matrix when δ = 1/l, so that cap(Al) ≤ cap(U)+1/l,
∆(Al) ≤ ∆(U), and s(Al) = s(U). Since s(Al) = s(U) for all i, Al is uniformly bounded, and
hence by the Bolzano-Weierstrass Theorem we can obtain a convergent subsequence Ali . Let
A = limi→∞Ali . As cap(B), ∆(B) and s(B) are all continuous functions on B, we have

cap(A) = lim
i→∞

cap(Ali) ≤ cap(U), and ∆(A) ≤ ∆(U) and s(A) = s(U).

Proposition 3.5.8 allows us to establish operator capacity lower bound by proving matrix capacity
lower bound, which is usually a relatively simpler problem. For example, suppose we have a matrix
capacity lower bound cap(A) ≥ s−mn

√
∆(A)/2 as we will prove in Proposition 3.5.14, then from

Proposition 3.5.8 we have

cap(U) ≥ cap(A) ≥ s−mn
√

∆(A)/2 ≥ s−mn
√
∆(U)/2.

Hence, we will focus on proving a lower bound on matrix capacity.

Reducing Rectangular Matrices to Square Matrices

To prove a lower bound on the capacity of a rectangular matrix, we will further reduce it to
proving a lower bound on the capacity of a square matrix. Given a rectangular matrix A ∈ R

m×n,
we will construct a square matrix B ∈ R

mn×mn such that cap(A) = cap(B) and ∆(A) = ∆(B) and
s(A) = s(B). Our construction uses the tensor product which is defined as follows.
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Definition 3.5.9 (tensor product). Let X ∈ R
m×n and Y ∈ R

p×q. The tensor product X ⊗ Y is
the mp× nq block matrix:

X ⊗ Y =




X11Y · · · X1nY
...

. . .
...

Xm1Y · · · XmnY


 .

We index the rows by pairs of integers (i, j) ∈ [m] × [p] and the columns by pairs of integers
(k, l) ∈ [n]× [q], so that we have (X ⊗Y )(i,k),(j,l) = XijYkl. We usually omit the brackets and write
(X ⊗ Y )ik,jl instead.

Let Jn×m be the all-one n×m matrix. We will consider the mn×mn dimensional matrix B := A⊗
1

mnJn×m. The following lemma implies that cap(A) = cap(B) and ∆(A) = ∆(B) and s(A) = s(B).

We note that a more general result is proved in [23] for rectangular operators. It is possible to
reduce the matrix case to the operator case and use the result in [23] to prove the following lemma.
Instead of presenting the reduction, we present a simpler direct proof for this special case.

Lemma 3.5.10. Let A ∈ R
m×n be a rectangular matrix and Jp×q ∈ R

p×q be the all-one matrix.
Then

cap(A) = cap(A⊗ 1

pq
Jp×q) and ∆(A) = ∆(A⊗ 1

pq
Jp×q) and s(A) = s(A⊗ 1

pq
Jp×q).

Proof. Let B := A⊗ 1
pqJp×q. We will prove that cap(B) ≤ cap(A) and cap(A) ≤ cap(B). The first

part holds for any tensor product, while the second part uses that B is a tensor product of A and
a scaled version of J .

To prove the first part, we will prove that for any two rectangular matrices A ∈ R
m×n and C ∈ R

p×q,
we have that B := A⊗ C satisfies cap(B) ≤ cap(A) × cap(C). Fix δ > 0. Let x ∈ R

n and y ∈ R
q

be approximate minimizers in the capacity of A and C, that is

cap(A) = inf
z>0

m
∏m

i=1(Az)
1/m
i∏n

j=1 z
1/n
j

≤ m
∏m

i=1(Ax)
1/m
i∏n

j=1 x
1/n
j

≤ cap(A) + δ,

and similarly

cap(C) = inf
z>0

p
∏p

k=1(Cz)
1/p
k∏q

l=1 z
1/q
l

≤ p
∏p

k=1(Cy)
1/p
k∏q

l=1 y
1/q
l

≤ cap(B) + δ.

By considering the vector x⊗ y ∈ R
nq, we have

cap(A⊗ C) = inf
z∈Rnq

mp
∏m

i=1

∏p
k=1((A ⊗C)z)

1/mp
ik∏n

j=1

∏q
l=1 z

1/nq
jl

≤ mp
∏m

i=1

∏p
k=1((A ⊗C)(x⊗ y))

1/mp
ik∏n

j=1

∏q
l=1(x⊗ y)

1/nq
jl

=
mp
∏m

i=1

∏p
k=1(Ax⊗ Cy)

1/mp
ik∏n

j=1

∏q
l=1(x⊗ y)

1/nq
jl

=
(m

∏m
i=1(Ax)

1/m
i∏n

j=1 x
1/n
j

)
×
(p
∏p

k=1(Cy)
1/p
k∏q

l=1 y
1/q
l

)

≤ (cap(A) + δ)× (cap(C) + δ).
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Taking δ → 0 proves that cap(B) ≤ cap(A) × cap(C). Since cap( 1
pqJp×q) ≤ s( 1

pqJp×q) = 1 by
Lemma 3.5.7, we have cap(B) ≤ cap(A), proving the first part.

To prove the second part, we show that cap(B) + δ ≥ cap(A) for any δ > 0. Let x ∈ R
n×q be an

approximate minimizer to capacity of B such that

cap(B) = inf
z>0

mp
∏m

i=1

∏p
k=1(Bz)

1/mp
ik∏n

j=1

∏q
l=1 z

1/nq
jl

≤ mp
∏m

i=1

∏p
k=1(Bx)

1/mp
ik∏n

j=1

∏q
l=1 x

1/nq
jl

≤ cap(B) + δ.

We define x̄ ∈ R
n be such that for 1 ≤ j ≤ n,

x̄j =
1

q

q∑

l=1

xjl.

We use the special property of B to show that

(Bx)ik = ((A⊗ 1

pq
Jp×q)x)ik =

n∑

j=1

q∑

l=1

(A⊗ 1

pq
Jp×q)ik,jl · xjl

=

n∑

j=1

q∑

l=1

(Aij)
1

pq
xjl =

1

p

n∑

j=1

Aij

(1
q

q∑

l=1

xjl
)
=

1

p

n∑

j=1

Aijx̄j =
1

p
(Ax̄)i.

Therefore, using x̄ as a test vector for capacity of A, we have

cap(B) + δ ≥ mp

∏m
i=1

∏p
k=1(Bx)

1/mp
ik∏n

j=1

∏q
l=1 x

1/nq
jl

= m

∏m
i=1(Ax̄)

1/m
i∏n

j=1

∏q
l=1 x

1/nq
jl

≥ m

∏m
i=1(Ax̄)

1/m
i∏n

j=1 x̄
1/n
j

≥ cap(A),

where the second last inequality follows from the AM-GM inequality that x̄j = 1
q

∑q
l=1 xjl ≥∏q

l=1 x
1/q
jl for 1 ≤ j ≤ n. Taking δ → 0 proves that cap(A) ≤ cap(B), and thus cap(A) = cap(B).

Next we prove that ∆(A) = ∆(B), where we only need the property that 1
pqJp×q is a doubly

balanced matrix with s( 1
pqJp×q) = 1. Let B := A ⊗ C where C is a doubly balanced matrix with

s(C) = 1. Let 1d be the d-dimensional all-one vector. Note that C1q = 1
p1p and 1Tp C = 1

q1
T
q . For

any 1 ≤ i ≤ m and 1 ≤ k ≤ p, the row sum

rik(B) = (B(1n ⊗ 1q))ik = ((A1n)⊗ (C1q))ik =
1

p
(A1n)i =

1

p
ri(A).

Similarly, for any 1 ≤ j ≤ n and 1 ≤ l ≤ q, the column sum

cjl(B) = ((1m ⊗ 1p)
TB)jl = ((1TmA)⊗ (1Tp C))jl =

1

q
(1TmA)j =

1

q
cj(A).
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Also s(B) =
∑m

i=1

∑p
k=1 rik(B) =

∑m
i=1 ri(A) = s(A). Hence,

∆(B) =
1

mp

m∑

i=1

p∑

k=1

(s(B)−mp · rik(B))2 +
1

nq

n∑

j=1

q∑

l=1

(s(B)− nq · cjl(B))2

=
1

mp

m∑

i=1

p∑

k=1

(s(B)−m · ri(A))2 +
1

nq

n∑

j=1

q∑

l=1

(s(B)− n · cj(A))2

=
1

m

m∑

i=1

(s(A)−mri(A))
2 +

1

n

n∑

j=1

(s(A) − ncj(A))
2

= ∆(A)

Using Lemma 3.5.10, we can reduce the problem of proving a lower bound on cap(A) using ∆(A)
for a rectangular matrix A to proving a lower bound on cap(B) using ∆(B) for a square matrix B,
where B := A ⊗ 1

mnJn×m. Hence we will focus on proving a lower bound on matrix capacity for
square matrices.

Remark 3.5.11. We can also take B to be a smaller matrix when m and n are not relatively
prime. Suppose g = gcd(m,n) is the greatest common divisor of m and n. Then we would set B

to be A⊗ g2

mnJn/g×m/g, which is an (mn/g) × (mn/g) square matrix. This will be a more efficient
reduction which implies stronger bounds in our theorems.

Lower Bound on Matrix Capacity for Square Matrices

The following proofs follow the same approach in [22]. Again we could not directly apply their
proofs, as they assumed that the row sums are equal, which holds in discrete operator scaling but
not in continuous operator scaling.

We will use the following well-known facts from [25, 34].

Fact 3.5.12 ([25, 34]). Given an n× n non-negative matrix B, the permanent of B is defined as

per(B) :=
∑

π∈Sn

n∏

i=1

Bi,π(i),

where π is over all permutations of n elements. It is known that per(B) > 0 if and only if cap(B) >
0.

One can consider the bipartite graph G = (U, V ;E) associated to B, where X = {1, . . . , n} and
Y = {1, . . . , n} and ij ∈ E if and only Bij > 0. Since B is non-negative, it follows from the
definition that per(B) > 0 if and only if G has a perfect matching. By Hall’s theorem for bipartite
matching, per(B) = 0 if and only if there exist subsets X ′ ⊆ X and Y ′ ⊆ Y such that |X ′|+|Y ′| > n
and Bij = 0 for all i ∈ X ′ and j ∈ Y ′.
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We first prove a lower bound on ∆ when the capacity is zero, without the assumption that A
is row-balanced. The constant is slightly better than that in [34] and is tight, and the proof is
somewhat different.

Lemma 3.5.13. Let A ∈ R
n×n be a non-negative matrix with s =

∑
ij Aij = n2. If cap(A) = 0,

then ∆(A) ≥ 2n2.

Proof. By the first part of Fact 3.5.12, we have cap(A) = 0 if and only if per(A) = 0. By the second
part of Fact 3.5.12, per(A) = 0 if and only if there exist

U ⊆ [n] and V ⊆ [n] such that |U |+ |V | > n and AU,V = 0.

Let T := |U | + |V | > n. The claim in this lemma is clearly true when |U | = n or |V | = n, as
this implies that some ri or some cj is equal to zero. So in the following we assume |U | < n and
|V | < n. From Definition 3.5.6 and using our assumption that s = n2,

∆(A) =
1

n

n∑

i=1

(s− nri)
2 +

1

n

n∑

j=1

(s− ncj)
2

= n
n∑

i=1

(n− ri)
2 + n

n∑

j=1

(n− cj)
2

= n
∑

i∈U

(n− ri)
2 + n

∑

i 6∈U

(n− ri)
2 + n

∑

j∈V

(n− cj)
2 + n

∑

j 6∈V

(n− cj)
2

≥ n

|U |
(∑

i∈U

(n− ri)
)2

+
n

n− |U |
(∑

i 6∈U

(n− ri)
)2

+
n

|V |
(∑

j∈V

(n− cj)
)2

+
n

n− |V |
(∑

j 6∈V

(n− cj)
)2

,

where the inequality follows from n
∑n

i=1 x
2
i ≥ (

∑n
i=1 xi)

2 by the Cauchy-Schwarz inequality. To
bound the right hand side of the above inequality, we divide the non-zero entries of A into three
groups. Let

α =
∑

i∈U,j /∈V

Aij, β =
∑

i/∈U,j∈V

Aij , and γ =
∑

i 6∈U,j 6∈V

Aij .

Then α+ β + γ = s = n2 and the right hand side of the above inequality can be written as

n

|U |(n|U | − α)2 +
n

n− |U |(n(n− |U |)− (β + γ))2 +
n

|V |(n|V | − β)2 +
n

n− |V |(n(n− |V |)− (α+ γ))2

=
n

|U |(n|U | − α)2 +
n

n− |U |(n|U | − α)2 +
n

|V |(n|V | − β)2 +
n

n− |V |(n|V | − β)2.

Since n( 1x + 1
n−x) = ( 1x + 1

n−x)(x+ (n− x)) ≥ 4 by Cauchy-Schwarz, the above line is at least

4(n|U | − α)2 + 4(n|V | − β)2 ≥ 2(n|U | − α+ n|V | − β)2 ≥ 2(nT − n2)2 ≥ 2n2,

where the first inequality is by 2a2 + 2b2 ≥ (a+ b)2, the second inequality is by the definition that
T = |U |+ |V | and n2 = α+ β + γ ≥ α+ β, and the final inequality is by T > n which follows from
the assumption that cap(A) = 0 as we argued in the beginning of this proof.
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We are ready to derive a lower bound for the matrix capacity. The following proof is similar to the
proof of Lemma 3.2 in [22], which is based on an argument in Claim 3.3 of [34].

Proposition 3.5.14. If A ∈ R
n×n with s =

∑
ij Aij, then

cap(A) ≥ s− n

√
∆(A)

2
.

Proof. We first assume that s = n2 and prove that cap(A) ≥ n2 − n
√
∆(A)/2, and then we derive

the general case by scaling. We write A as a sum of a doubly balanced matrix and a non-balanced
part such that

A = λB+(1−λ)C for λ ∈ [0, 1],
∑

ij

Bij =
∑

ij

Cij = n2, B is doubly balanced and cap(C) = 0.

Such a decomposition exists by repeatedly removing permutations from A as in [34, 22].

Since B is doubly balanced and
∑

ij Bij = n2, we have ri(B) = n for 1 ≤ i ≤ n and cj(B) = n for
1 ≤ j ≤ n. This implies that

∆(A) =
1

n

n∑

i=1

(
n2 − n

(
λri(B) + (1− λ)ri(C)

))2
+

1

n

n∑

j=1

(
n2 − n

(
λcj(B) + (1− λ)cj(C)

))2

=
1

n

n∑

i=1

(
(1 − λ)(n2 − nri(C))

)2
+

1

n

n∑

j=1

(
(1− λ)(n2 − ncj(C))

)2

= (1− λ)2∆(C)

≥ 2(1 − λ)2n2,

where the inequality is from Lemma 3.5.13 as
∑

ij Cij = n2 and cap(C) = 0. This implies that

λ ≥ 1−
√

∆(A)

2n2
.

It follows from Definition 3.5.5 that

cap(A) = cap(λB + (1− λ)C) ≥ cap(λB) = λcap(B) = λn2 ≥ n2(1−
√

∆(A)

2n2
) = n2 − n

√
∆(A)

2
,

as cap(B) = s(B) = n2 by Lemma 3.5.7. This proves the lemma for the case when s = n2. For the
general case, we can reduce to the special case by considering (n2/s)A and get

cap(A) =
s

n2
cap(

n2

s
A) ≥ s

n2

(
n2 − n

√
∆((n2/s)A)

2

)
= s− s

n

n2

s

√
∆(A)

2
= s− n

√
∆(A)

2
.

The matrix capacity lower bound for rectangular matrices follows, which we will use in Section 4.
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Proposition 3.5.15. If A ∈ R
m×n with s =

∑
ij Aij , then

cap(A) ≥ s−mn

√
∆(A)

2
.

Proof. Given a non-negative matrix A ∈ R
m×n, we apply the reduction in Lemma 3.5.10 to con-

struct a non-negative square matrix B ∈ R
mn×mn with cap(B) = cap(A), ∆(B) = ∆(A) and

s(B) = s(A). Applying Proposition 3.5.14 on B, we have

cap(A) = cap(B) ≥ s(B)−mn

√
∆(B)

2
= s(A)−mn

√
∆(A)

2
.

We can finally prove point (iv) in Subsection 3.3.

Theorem 3.5.16. Let U = {U1, . . . , Uk} with Ui ∈ R
m×n for 1 ≤ i ≤ k.

cap(U) ≥ s(U)−mn

√
∆(U)
2

.

Proof. Given U , we apply the reduction in Proposition 3.5.8 to construct a non-negative matrix
A ∈ R

m×n with cap(A) ≤ cap(U) and ∆(A) ≤ ∆(U) and s(A) = s(U). Applying Proposition 3.5.15,
we have

cap(U) ≥ cap(A) ≥ s(A)−mn

√
∆(A)

2
≥ s(U)−mn

√
∆(U)
2

.

Tight Example

We give an example to show that the capacity lower bound cap(A) ≥ s(A)−mn

√
∆(A)
2 is tight.

Lemma 3.5.17. There is an infinite sequence of mk × nk matrices Ak with

cap(Ak) = 0, s(Ak) = 1, and ∆(Ak) = (2 + o(1))
1

m2
kn

2
k

.

Proof. Let Ak be a (2k − 1)× (2k + 1) matrix with block structure:

Ak =

(
0k×k xJk×(k+1)

yJ(k−1)×k 0(k−1)×(k+1),

)

where Jm×n is the m× n all one matrix. It is not difficult to see that Ak has capacity zero using
the results in Subsection 3.5. We will choose x and y so that s(Ak) = 1 and ∆(Ak) is minimized.
See Appendix B for the remaining details.
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3.6 A Bound on the Operator Paulsen Problem

We will give a bound on the operator Paulsen problem by using our dynamical system. First, we
preprocess the input so that we can obtain a bound on ∆(0) based on the error ǫ as defined in
Definition 3.0.2. Then, we apply our dynamical system to obtain a doubly balanced output, and
we postprocess the output to obtain a doubly stochastic solution.

Preprocessing

To apply Theorem 3.3.5 on the Paulsen problem, we need a bound on ∆(0) based on the error
ǫ as defined in Definition 3.0.2. We first bound ∆(0) in the following lemma with the additional
assumption that s(0) = m, and then we show how to do a simple preprocessing to ensure that
s(0) = m in the next lemma.

Lemma 3.6.1. Suppose U (0) is ǫ-nearly doubly stochastic as defined in Definition 3.0.2, and s(0) =
m. Then

∆(0) ≤ 2m2ǫ2.

Proof. The first condition of Definition 3.0.2 implies that

1

m
tr[(mIm −m

k∑

i=1

UiU
T
i )

2] ≤ 1

m
tr[(mǫIm)2] = m tr[(ǫIm)2] = m2ǫ2.

The second condition of Definition 3.0.2 implies that

1

n
tr[(mIn − n

k∑

i=1

UT
i Ui)

2] ≤ 1

n
tr[(mǫIn)

2] =
m2

n
tr[(ǫIn)

2] =
m2

n
nǫ2 = m2ǫ2.

Therefore, using s(0) = m,

∆(0) =
1

m
tr[(mIm −m

k∑

i=1

UiU
T
i )

2] +
1

n
tr[(mIn − n

k∑

i=1

UT
i Ui)

2] ≤ 2m2ǫ2.

We now describe the preprocessing step to satisfy s(0) = m.

Lemma 3.6.2. Given U that is ǫ-nearly doubly stochastic for ǫ ≤ 1/2 as in Definition 3.0.2,
we can scale U to produce U (0) such that U (0) is O(ǫ)-nearly doubly stochastic and s(0) = m and
dist2(U (0),U) = O(ǫ2m).

Proof. Let s := s(U) be the size of U as in Definition 3.2.1. We simply scale each entry in U by a
factor of

√
m/s to produce U (0). By construction,

s(0) =

k∑

i=1

∥∥∥∥
√

m

s
Ui

∥∥∥∥
2

F

=
m

s

k∑

i=1

‖Ui‖2F = m.
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Since U is ǫ-nearly doubly stochastic as stated in Definition 3.0.2, we have (1− ǫ)m ≤ s ≤ (1+ ǫ)m.
This implies that 1−O(ǫ) ≤ m/s ≤ 1 +O(ǫ) when ǫ ≤ 1/2 and thus

dist2(U ,U (0)) =
k∑

i=1

∥∥∥∥Ui −
√

m

s
Ui

∥∥∥∥
2

F

=
k∑

i=1

O(‖ǫUi‖2F ) = O(ǫ2m).

Finally, it is clear that U (0) is still O(ǫ)-nearly doubly stochastic as for instance

k∑

i=1

U
(0)
i U

(0)
i

T
=

m

s

k∑

i=1

UiU
T
i � (1 +O(ǫ))Im

and similarly for the other condition in Definition 3.0.2.

Applying the Dynamical System and Postprocessing

We will apply Theorem 3.3.5 to the preprocessed input U (0) to obtain an doubly balanced output
U (∞) with ∆(U (∞)) = 0. We do a simple postprocessing on U (∞) to obtain a doubly stochastic
solution V, and then we bound the squared distance of the input U and the final output V.

Lemma 3.6.3. Let U (0) be ǫ-nearly doubly stochastic with s(0) = m. Let U (∞) be the output of
the dynamical system when given U (0) as the input. Then, we can move U (∞) to V such that V is
doubly stochastic as in Definition 3.0.1 and dist2(U (∞),V) ≤ O(mn

√
∆(0)).

Proof. Denote s := s(∞). We consider two cases. The first case is when s = 0. We will argue that in
this case the bound O(mn

√
∆(0)) is trivial that setting V to be any doubly stochastic operator will

do. First, we argue that s = 0 implies that cap(U (0)) = 0. By Lemma 3.3.3 and Theorem 3.5.16,
we have for any t ≥ 0,

s(t) ≥ cap(U (t)) ≥ s(t) −mn

√
∆(t)/2.

Since ∆(∞) = 0 and the capacity is unchanged over time by Lemma 3.4.7, we have

s(∞) = cap(U (∞)) = cap(U (0)), (3.2)

and thus cap(U (0)) = 0 when s = 0. Then it follows from Theorem 3.5.16 that

0 = cap(U (0)) ≥ s(0) −mn

√
∆(0)/2 = m−mn

√
∆(0)/2 =⇒ n

√
∆(0) ≥

√
2.

Let V be any doubly stochastic operator. We still have

dist2(U (∞),V) =
k∑

i=1

∥∥∥U (∞)
i − Vi

∥∥∥
2

F
≤ 2

k∑

i=1

(∥∥∥U (∞)
i

∥∥∥
2

F
+ ‖Vi‖2F

)
= O(m) = O(mn

√
∆(0)).

To summarize, this is the trivial case that moving U (0) to any doubly stochastic operator will do.
Henceforth, we can assume that n

√
∆(0) <

√
2.
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The second case is when s > 0. In this case, we simply scale each entry of U (∞) by a factor of
√

m/s

to produce V, that is, we set Vi =
√
m/s ·U (∞)

i for 1 ≤ i ≤ k. We can check that V = {V1, . . . , Vk}
is doubly stochastic as ∆(U (∞)) = 0 implies

sIm −m
k∑

i=1

U
(∞)
i U

(∞)
i

T
= 0 =⇒ Im −

k∑

i=1

ViV
T
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and similarly ∆(U (∞)) = 0 implies
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i=1

U
(∞)
i

T
U

(∞)
i = 0 =⇒ In −

n

m

k∑

i=1

V T
i Vi = 0.

The squared distance between U (∞) and V is

dist2(U (∞),V) =
k∑

i=1

∥∥∥U (∞)
i − Vi

∥∥∥
2

F
= (

√
m

s
− 1)2

k∑

i=1

∥∥∥U (∞)
i

∥∥∥
2

F
= (
√
m−√s)2.

To bound s, we use Lemma 3.3.3, Lemma 3.4.7 and then Theorem 3.5.16 to get

s = s(∞) ≥ cap(U (∞)) = cap(U (0)) ≥ s(0) −mn

√
∆(0)/2 = m−mn

√
∆(0)/2,

and we can continue the above calculation and get

dist2(U (∞),V) ≤
(√

m−
√

m−mn

√
∆(0)/2

)2
= m

(
1−

√
1− n

√
∆(0)/2

)2
≤ O(mn

√
∆(0)),

where the last inequality follows from the inequality 1 −
√
1− x ≤ x for 0 ≤ x ≤ 1 and the

assumption in the second case that n
√

∆(0)/2 < 1.

We can finally prove a bound on the operator Paulsen problem.

Theorem 3.6.4. Given any operator U that is ǫ-nearly doubly stochastic as in Definition 3.0.2,
we can move U to V such that

V is doubly stochastic and dist2(V,U) ≤ O(m2nǫ).

Proof. Given U that is ǫ-nearly doubly stochastic, we first apply the preprocessing step in Lemma 3.6.2
to produce U (0) such that U (0) is O(ǫ)-nearly doubly stochastic, s(0) = m and dist2(U (0),U) =
O(mǫ2). By Lemma 3.6.1, since s(0) = m and U (0) is O(ǫ)-nearly doubly stochastic, we have
∆(0) = O(m2ǫ2). Then, by Theorem 3.3.5, we can apply our dynamical system on U (0) to produce
U (∞) such that ∆(U (∞)) = 0 and

dist2(U (0),U (∞)) = O(mn
√

∆(0)) = O(m2nǫ).
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Finally, we apply Lemma 3.6.3 to move U (∞) to V such that V is doubly stochastic and

dist2(U (∞),V) ≤ O(mn
√
∆(0)) = O(m2nǫ).

The distance between U and V is

dist(V,U) ≤ dist(U (0),U) + dist(U (∞),U (0)) + dist(U (∞),V)
≤ O(

√
mǫ2) +O(

√
m2nǫ) +O(

√
m2nǫ) = O(

√
m2nǫ),

and this implies that dist2(V,U) = O(m2nǫ).

Remark 3.6.5. As mentioned in Remark 3.5.11, we can obtain better bound when g = gcd(m,n) >
1. In such case, we have

cap(U) ≥ s(U)− mn

g

√
∆(U)
2

.

Therefore both dist2(U (0),U (∞)) and dist2(U (∞),V), and hence dist2(V,U), are at most O(m2nǫ/g).
In particular, when n is a multiple of m, our bound becomes dist2(V,U) = O(mnǫ).

3.7 A Bound on the Paulsen Problem

Recall that in the Paulsen problem, we are given a set of vectors U = {u1, . . . , un} in R
d that forms

an ǫ-nearly equal norm Parseval frame as described in (1.2):

(1− ǫ)Id �
n∑

i=1

uiu
T
i � (1 + ǫ)Id and (1− ǫ)

d

n
≤ ‖ui‖22 ≤ (1 + ǫ)

d

n
,

and the Paulsen problem is to find a function f(d, n, ǫ) such that there exists a set of vectors
V = {v1, . . . , vn} in R

d that forms an equal norm Parseval frame as described in (1.1):

n∑

i=1

viv
T
i = Id and ‖vi‖22 =

d

n
for 1 ≤ i ≤ n,

and

dist2(U, V ) =

k∑

i=1

‖ui − vi‖22 ≤ f(d, n, ǫ).

We will prove that f(d, n, ǫ) = O(d2nǫ), by following the same steps as in Subsection 3.6 and using
a similar reduction to the operator setting as described in Subsection 2.3.

Definition 3.7.1 (reduction from frame to operator). Given U = {u1, . . . , un} where each ui ∈ R
d,

we define U = {U1, . . . , Un} where each Ui is a d × n matrix with the i-th column of Ui being ui
and all other columns of Ui being zero. Note that U is an ǫ-nearly equal norm Parseval frame if
and only if U is ǫ-nearly doubly stochastic.
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With this reduction, we can define the size of a frame, ∆ of a frame and capacity of a frame using
the definitions for operators. We list them below for reference in the next section.

Definition 3.7.2 (size, ∆, capacity of a frame). Given U = {u1, . . . , un} where each ui ∈ Rd, we
define

s(U) =
n∑

i=1

‖ui‖22 = tr(
n∑

i=1

uiu
T
i )

as the size of the frame U ,

cap(U) = inf
X�0

m det(
∑n

i=1 Xiiuiu
T
i )

det(X)1/n
.

as the capacity of the frame U , and

∆(U) =
1

d
tr
(
(sId − d

n∑

i=1

uiu
T
i )

2
)
+

1

n

n∑

i=1

(s − n ‖ui‖22)2.

We follow the proof of Theorem 3.6.4 to obtain the same bound for the Paulsen problem.

Theorem 3.7.3. Given any U = {u1, . . . , un} where each ui ∈ R
d that is an ǫ-nearly equal norm

Parseval frame, we can move U to V = {v1, . . . , vn} where each vi ∈ R
d such that

V is an equal norm Parseval frame and dist2(U, V ) ≤ O(d2nǫ).

Proof. We apply the reduction in Definition 3.7.1 to obtain U = {U1, . . . , Un} from U = {u1, . . . , un},
where U is ǫ-nearly doubly stochastic. Then we follow the same steps as in Subsection 3.6.

In the preprocessing step, we scale U = {U1, . . . , Un} as in Lemma 3.6.2 to obtain U (0) = {U (0)
1 , . . . , U

(0)
n }

such that U (0) is O(ǫ)-nearly doubly stochastic, s(U (0)) = d, and dist2(U ,U (0)) = O(dǫ2). By
Lemma 3.6.1, we have ∆(0) := ∆(U (0)) ≤ O(d2ǫ2). Note that this preprocessing step is simply
entry-wise scaling.

In the main step from the dynamical system, we apply Theorem 3.3.5 on U (0) to produce U (∞) such
that ∆(U (∞)) = 0 and dist2(U (0),U (∞)) = O(dn

√
∆(0)) = O(d2nǫ). By Lemma 3.4.5, we know that

U (∞) is an operator scaling of U (0) as in Definition 3.0.5.

In the postprocessing step, there are two cases to consider as in Lemma 3.6.3. In the first case,
s(U (∞)) = 0. As shown in Lemma 3.6.3, this implies that n

√
∆(0) ≥

√
2, and thus

√
2 ≤ n

√
∆(0) ≤ O(ndǫ) =⇒ ǫ ≥ Ω(1/nd).

This is the trivial case as we can move U to any equal norm Parseval frame V and dist2(U, V ) =
O(d) = O(d2nǫ) as we have shown in Subsection 2.1. In the second case when s(U (∞)) > 0, we can

scale U (∞) to V such that V is doubly stochastic and dist2(U∞,V) ≤ O(dn
√
∆(0)) = O(d2nǫ). Note

that in this case the scaling is simply entry-wise scaling.

Therefore, besides the trivial case, we obtain a scaling V of U such that dist2(V,U) = O(d2nǫ). In
Lemma 3.7.4, we will show that given a doubly stochastic scaling V of U , we can obtain an equal
norm Parseval frame V = {v1, . . . , vn} such that dist2(U, V ) ≤ dist2(U ,V) ≤ O(d2nǫ).
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The following lemma completes the proof of Theorem 3.7.3, and thus Theorem 1.3.2.

Lemma 3.7.4. Let U = {u1, . . . , un} where ui ∈ R
d for 1 ≤ i ≤ n and U = {U1, . . . , Un} where

Ui ∈ R
d×n for 1 ≤ i ≤ n be as defined in Definition 3.7.1. Suppose V = {V1, . . . , Vn} where

Vi ∈ R
d×n is a scaling of U , and V is doubly stochastic. Then there exists an equal norm Parseval

frame V = {v1, . . . , vn} where vi ∈ R
d for 1 ≤ i ≤ n such that dist2(U, V ) ≤ dist2(U ,V).

Proof. Since V is a scaling of U , by Definition 3.0.5, there exist L ∈ R
d×d and R ∈ R

n×n such that
Vi = LUiR for 1 ≤ i ≤ n. As V is doubly stochastic, we have

n∑

i=1

ViV
T
i =

n∑

i=1

LUiRRTAT
i L

T = Id, and
n∑

i=1

V T
i Vi =

n∑

i=1

RTUT
i L

TLUiR =
d

n
In.

We claim that we can replace R by a positive diagonal matrix D so that Ṽi = LUiD is still doubly
stochastic and dist2(U , Ṽ) ≤ dist2(U ,V). Suppose this can be done, then we define vi to be the i-th
column of Ṽi and V = {v1, . . . , vn}. Notice that all other columns in Ṽi are zeros, as all but the
i-th column of Ui are zeros. It is easy to check that

dist2(U, V ) = dist2(U , Ṽ) ≤ dist2(U ,V) and

n∑

i=1

viv
T
i = Id and

n∑

i=1

vTi vi =
d

n
In.

So V is an equal norm Parseval frame with dist2(U, V ) ≤ dist2(U ,V) are we are done.

It remains to prove the claim. Define D = (RRT )1/2 and Ṽi = LUiD, so we have

n∑

i=1

ṼiṼ
T
i =

n∑

i=1

LUiDDTUT
i L

T =
n∑

i=1

LUiRRTUT
i L

T = Id.

It follows from
∑n

i=1 R
TUT

i L
TLUiR = (d/n)In that (d/n)(RRT )−1 =

∑n
i=1 U

T
i L

TLUi. Note that
LUi ∈ R

d×n has at most one non-zero column Lui, and thus
∑n

i=1 U
T
i L

TLUi is a positive diagonal
matrix, which implies that (RRT )−1 and thus D = (RRT )1/2 are also positive diagonal matrices.
Furthermore,

n∑

i=1

Ṽ T
i Ṽi =

∑

i

DTUT
i L

TLUiD =
d

n
DT (RRT )−1D =

d

n
In.

Therefore, we have that D is a diagonal matrix and Ṽ = {Ṽ1, . . . , Ṽn} is doubly stochastic.

Finally, we check that dist2(U , Ṽ) ≤ dist2(U ,V). Note that

dist2(U , Ṽ) =
n∑

i=1

‖Ui − LUiD‖2F =

n∑

i=1

(
tr(UT

i Ui) + tr(LUiDDTUT
i L

T )− 2 tr(UT
i LUiD)

)

and

dist2(U ,V) =
n∑

i=1

‖Ui − LUiR‖2F =

n∑

i=1

(
tr(UT

i Ui) + tr(LUiRRTUT
i L

T )− 2 tr(UT
i LUiR)

)
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Since DDT = RRT by definition, it remains to prove that

tr
( n∑

i=1

UT
i LUiD

)
≥ tr

( n∑

i=1

UT
i LUiR

)
.

We consider the singular value decomposition of R. By the definition that D = (RRT )1/2, we
see that the diagonal entries of D are the singular values of R, and so we can write the singular
value decomposition of R := XDY , where X,Y ∈ R

n×n are orthonormal matrices. Then D2 =
RRT = XD2XT = (XDXT )2. By the uniqueness of PSD square root of PSD matrices (e.g., see
Theorem 7.2.6 of [30]), we have D = XDXT and thus XD = DX. Hence R = XDY = DXY =
DZ for some orthonormal matrix Z. Therefore,

tr(
n∑

i=1

UT
i LUiR) = tr(

n∑

i=1

UT
i LUiDZ) ≤

n∑

j=1

σj(
n∑

i=1

UT
i LUiDZ) =

n∑

j=1

σj(
n∑

i=1

UT
i LUiD),

where σj(A) are the singular values of A and the inequality is by the fact that the trace is at most
the sum of singular values (e.g., see Theorem 3.3.13 of [31]). Since

∑n
i=1 U

T
i LUi is diagonal, we

have
∑n

j=1 σi(
∑n

i=1 U
T
i LUiD) = tr(

∑n
i=1 U

T
i LUiD), and this completes the proof.

We remark that there are alternative proofs of Theorem 3.7.3. One can use the techniques in
Lemma 3.4.5 and work out the scaling matrices of the continuous operator scaling algorithm and
see that R is a diagonal matrix, and then we do not need Lemma 3.7.4 and the proof will be shorter.
We prefer to use Lemma 3.7.4 even though it is longer because it proves a stronger claim that any
operator scaling (not just those from the discrete or continuous operator scaling algorithms) will
give us a solution to the Paulsen problem.

4 Improved Bound through Smoothed Analysis

We note that the smoothed analysis only works in the Paulsen problem (not the operator Paulsen
problem in Definition 3.0.4), so in this section we switch back to the frame setting of the Paulsen
problem. Recall from Definition 3.7.2 for the corresponding definitions.

We first interpret what was done in Section 3 as a reduction from the Paulsen problem to proving
capacity lower bound. Then we see why it could not be improved directly and we motivate the
smoothed analysis as a way to go beyond the bound in Section 3. Then we will give a detailed
outline of the smoothed analysis and the organization of the rest of this section in Subsection 4.1.

Reduction to Capacity Lower Bound: In Section 3, we have proved that using the dynamical
system in Definition 3.2.2, if there is a capacity lower bound

cap(U (t)) ≥ s(U (t))− p(d, n)
√

∆(U (t)) for all t ≥ 0

where p(d, n) is a function in d and n, then we can move an ǫ-nearly equal norm Parseval frame U
to an equal norm Parseval frame V with

dist2(U, V ) ≤ O
(
p(d, n)

√
∆(U (0))

)
≤ O

(
p(d, n) · dǫ

)
≤ O(d2nǫ),
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where the second inequality is from Lemma 3.6.1 and the last inequality is from Theorem 3.5.16
that shows p(d, n) = O(dn).

In general, the matrix capacity lower bound cap(A) ≥ s(A)− dn
√

∆(A)/2 from Proposition 3.5.14
is tight. See Lemma 3.5.17 for an example with s(A) = d, cap(A) = 0 and ∆(A) = 2/n2. This
example implies that the analysis of Theorem 3.5.16 is tight, since the proof is based on a reduction
to matrix capacity lower bound. The same example also shows that the analysis of the dynamical
system in Theorem 3.3.5 is tight, as we know that s(U (∞)) = cap(U (0)) from (3.2) and thus the
size of the frame has shrank much in our dynamical system and

dist2(U (0), U (∞)) ≥ Ω(d) ≥ Ω
(
dn
√

∆(U (0))
)
.

Smoothed Analysis: Our intuition is that the instances with cap(U) ≈ s(U)−dn
√

∆(U) are rare.
So our idea is to perturb the input instance and to prove a stronger capacity lower bound on the
perturbed instance. Using some probabilistic arguments, we will prove that with high probability
a perturbation W of U satisfies ∆(W ) ≈ ∆(U) and cap(W )≫ cap(U). To prove the lower bound
of the capacity in the perturbed instance W , we have developed an interesting method to prove
matrix capacity lower bound using the results in our dynamical system.

4.1 Overview and Organization

We will present an informal proof outline of Theorem 1.3.3 in this subsection. All the definitions
will be formally defined in later subsections, and all the statements will be formally stated and
proved in later subsections.

Given an instance U = {u1, . . . , un} of the Paulsen problem where ui ∈ R
d for 1 ≤ i ≤ n, we would

like to perturb U to an instance W = {w1, . . . , wn} where wi ∈ R
d for 1 ≤ i ≤ n so that U and W

are close, ∆(U) ≈ ∆(W ) and there is a stronger capacity lower bound for W .

Perturbation: The perturbation is informally described as follows. For each 1 ≤ i ≤ n, let gi be a
d-dimensional vector where each entry is an independent Gaussian random variable N(0, σ2) with
mean zero and variance σ2. We let

yi = PL(gi) and wi = ui + yi for 1 ≤ i ≤ n, (4.1)

where L is a subspace of codimension d2+n and PL is the orthogonal projection to the subspace L.
For technical reasons, we will normalize the vectors so that they have equal norm. We will choose

σ2 ≈
√

d∆(U)

n
.

We will explain the choice of σ2 later in this subsection.

Analysis of Perturbed Instances: We will prove that the perturbed instance W = {w1, . . . , wn}
has the following properties with high probability.
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(i) The squared distance between U and W is small in Proposition 4.8.6:

dist2(U,W ) ≤ O(dnσ2) ≤ O(d3/2
√

∆(U)),

where the second inequality is by our choice of σ2.

(ii) Assuming n is large enough and ∆ is small enough, we bound the increase of ∆ in Proposi-
tion 4.8.7 that

∆(W ) ≤ O(∆(U)).

This is the place where we need to use the subspace L in the perturbation process to ensure
that ∆(W ) is bounded, and is also the bottleneck of the current proof that requires the
assumptions on n and ∆.

(iii) Assuming n is large enough, we establish an improved capacity lower bound in Theorem 4.8.8
that

cap(W ) ≥ s(W )−O(

√
∆(W )

d
).

This is the heart of the smoothed analysis, where we have removed the dependency on n in
the capacity lower bound.

Paulsen Problem: From point (iii) and the reduction of the Paulsen problem to capacity lower
bound discussed earlier, we expect that we can set p(d, n) = 1/

√
d and ∆(W ) = O(∆(U)) to bound

the squared distance after the perturbation to be O(
√

∆(U)/d) = O(
√
dǫ), independent of n when

n is large enough. This is eventually what we will prove.

One subtlety is that in Section 3 we assume the capacity lower bound cap(U (t)) ≥ s(U (t)) −
O(dn

√
∆(t)) holds for all t ≥ 0, but the improved capacity lower bound in point (iii) only holds

right after the perturbation and may not hold after we apply the dynamical system on the perturbed
instance.

To fix this, we will do the perturbation step (infinitely) many times, following the framework
in Proposition 3.3.4 and Theorem 3.3.5. Let U (0) := U be the input to the Paulsen problem
and ∆ := ∆(U). We perturb U (0) using the perturbation defined in (4.1). Then we apply the
dynamical system on the perturbed instance until time T1 where ∆(U (T1)) = ∆/2. Then we
perturb U (T1) again, and apply the dynamical system on the perturbed instance until time T2 where
∆(U (T2)) = ∆/4, and so on. Using point (i) and modifying Proposition 3.3.4 and Theorem 3.3.5,
we can prove that the movement in each step is geometrically decreasing, and it is sufficient to have
the capacity lower bound only at time Tj for all j when ∆(U (Tj )) = ∆/2j .

The above will give us the total movement after the perturbation is O(
√
dǫ). Note that the total

movement in point (i) is O(d5/2ǫ), and this is the bound that we get for the Paulsen problem when n
is large enough and ∆ is small enough. So, in the current proof, the movement in the perturbation
step is the bottleneck of the total movement. The precise step-by-step procedure to move from the
initial frame to an equal norm Parseval frame is described in Procedure 4.8.1 of Subsection 4.8.

Projection: A natural attempt for the perturbation is to add independent noise to each coordinate
for each vector. Unfortunately, it does not work as ∆(W ) would become much bigger than ∆(U)
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with high probability. The linear subspace L consists of d2 + n linear constraints which are added
to enforce that the “cross terms/first order terms” become zero to ensure that point (ii) holds. This
comes with the price of the additional assumption that n ≫ d2 for point (iii) to hold, basically
because the linear subspace L has codimension d2 + n.

Matrix Capacity Lower Bound from Dynamical System

Most of the work in Theorem 1.3.3 is to prove point (iii). There are two main ingredients.

Pseudorandom Property: The first ingredient is to identify a pseudorandom property for a
frame to have a stronger capacity lower bound. Instead of doing it directly, we follow the reduction
in Proposition 3.5.8 to consider the corresponding matrix A defined in (3.1). The pseudorandom
property that we will use of a d × n matrix A is that every column has at least one entry with
value at least Ω(σ2) and every row has almost all entries with value at least Ω(σ2). We will
prove in Subsection 4.7 that after we do the perturbation on the vectors as described in (4.1), the
corresponding matrix A defined in (3.1) of Proposition 3.5.8 has the pseudorandom property with
high probability. The proof of this lemma is quite technical, and this is the step that we could not
prove in the operator setting, and also we need the assumption that n ≫ d2 for the proof to go
through.

Bounding Matrix Capacity using Dynamical System: The second ingredient is a newmethod
to prove matrix capacity lower bound. In Subsection 3.3, we have seen that the capacity lower bound
provides an indirect way to argue that ∆(t) will converge to zero. We prove the reverse direction
to establish matrix capacity lower bound, that a fast convergence of ∆(t) to zero implies a good
capacity lower bound.

To do this, we define a matrix version of the Paulsen problem, and also a dynamical system from
matrix scaling to solve this problem. We will show that the dynamical system will satisfy the same
formulas as outlined in Subsection 3.3 and proved in Subsection 3.4. Assuming the pesudorandom
property of a matrix holds in the beginning, we will show in Proposition 4.3.5 that it will hold
during the execution of the dynamical system. Proposition 4.3.5 requires a lower bound on σ2 for
the proof to go through, and this is the reason for our choice of σ2, which is the bottleneck of the
current proof as it requires a large movement in the perturbation process.

A key step is a combinatorial argument in Subsection 4.4 that proves that there exists an absolute
constant κ such that

− d

dt
∆(t) & κσ2n∆(t) for all t ≥ 0 =⇒ ∆(t) . exp(κσ2nt) ·∆(0) for all t ≥ 0,

assuming the pesudorandom property of the matrix holds throughout the execution of the dynamical
system. This can be used to lower bound the matrix capacity using the following relations:

s(0) − cap(A) = s(0) − s(∞) = −
∫ ∞

0

d

dt
s dt =

∫ ∞

0
2∆(t)dt . ∆(0)

∫ ∞

0
2 exp(−κσ2nt)dt =

∆(0)

κσ2n
,

where the first equality is by Proposition 3.5.14 and the third equality is by an identity analogous
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to that in Lemma 3.4.2. This implies that

cap(A) & s(A)− ∆(A)

κσ2n
=⇒ cap(W ) & s(W )− ∆(W )

κσ2n
,

where the implication follows from the reduction in Proposition 3.5.8. This completes the outline
of the proof of point (iii).

Organization

The proof of the smoothed analysis can be roughly divided into two parts. The first part is to prove
a stronger matrix capacity lower bound assuming the pseudorandom property. The second part is
to study the perturbation process and proves that the perturbed instances satisfies the properties
described above. The two parts are mostly independent and so the reader can choose to read which
part first.

For the first part, the proof is divided into three subsections. In Subsection 4.2, we first define the
matrix version of the Paulsen problem. Then, we define a dynamical system based on a continuous
version of the matrix scaling algorithm to solve the problem. Then, we prove the formulas of
the dynamical system that are analogous to those in Subsection 3.4. In Subsection 4.3, we define
the pseudorandom property of a matrix, and show that the pesudorandom property is maintained
throughout the execution of the dynamical system. And we prove that a lower bound on − d

dt∆
(t)

implies a lower bound on the matrix capacity as outlined above. Finally, in Subsection 4.4, we
prove the combinatorial lemma that the pseudorandom property of a matrix implies a lower bound
on − d

dt∆
(t).

For the second part, the proof is also divided into three subsections. In Subsection 4.5, we define the
perturbation process for the vectors. Then we bound the total movement in the perturbation process
as in point (i), and we list the probabilistic tools for the rest of the analysis. In Subsection 4.6, we
prove point (ii) by bounding the increase of ∆ in the perturbation process. Finally, in Subsection 4.7,
we prove point (iii) that after the perturbation on the vectors, the corresponding matrix A in (3.1)
of Proposition 3.5.8 has the pseudorandom property. Both proofs of point (ii) and point (iii) are
quite involved.

We complete the proof in Subsection 4.8, where we describe a step-by-step procedure to move from
the initial frame to an equal norm Parseval frame, and we put all the pieces together and prove
Theorem 1.3.3.

4.2 The Matrix Paulsen Problem and the Dynamical System

We define the matrix Paulsen problem as an analog to the Paulsen problem in the matrix setting.
We would like to mention that it is through this simpler problem that we find our solution to the
Paulsen problem.

Recall from Subsection 3.5 the definitions of doubly balanced and doubly stochastic matrices, the
row sum and the column sum, the size of a matrix, the capacity of a matrix, and the ∆ of a matrix.
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Definition 4.2.1 (ǫ-nearly doubly stochastic matrix). A matrix A ∈ R
m×n is ǫ-nearly doubly

stochastic if

1− ǫ ≤ ri(A) ≤ 1 + ǫ for 1 ≤ i ≤ m and (1− ǫ)
m

n
≤ cj(A) ≤ (1 + ǫ)

m

n
for 1 ≤ j ≤ n.

Definition 4.2.2 (Hadamard product). Given two matrices A,B ∈ R
m×n, the Hadamard product

A ◦B is an m× n matrix with (A ◦B)ij = AijBij. We use the shorthand A◦2 to denote A ◦A.

Definition 4.2.3 (the matrix Paulsen problem). The matrix Paulsen problem asks for the best
function g(m,n, ǫ) such that given any matrix A ∈ R

m×n with A◦2 being ǫ-nearly doubly stochastic,

inf
B

dist2(A,B) := inf
B
‖A−B‖2F ≤ g(m,n, ǫ),

where the infimum B is over the set of matrices where B◦2 is doubly stochastic.

In the standard version of the matrix scaling problem, we are given a matrix A ∈ R
m×n and the

goal is to find a scaling so that the resulting matrix B is doubly stochastic. The corresponding
definition of the matrix Paulsen problem should be to find a B that is close to A so that B is doubly
stochastic. Note that in our definition of the matrix Paulsen problem in Definition 4.2.3, our goal
is to find a matrix B that is close to A so that B◦2 (but not B) is doubly stochastic. This definition
is to be consistent with the Paulsen problem, where we change the vectors in U = {u1, . . . , un} to
V = {v1, . . . , vn} with small squared distance so that ‖vi‖22 are equal and

∑n
i=1 viv

T
i = I, where

both requirements are about the squares of the vectors in V .

As in our approach for the operator Paulsen problem, we would like to find a scaling solution to
the problem.

Definition 4.2.4 (matrix scaling). Given a matrix A ∈ R
m×n, we say a matrix B is a scaling of

A if there exist diagonal matrices

L ∈ R
m×m and R ∈ R

n×n such that B = LAR.

Our dynamical system is a continuous version of the alternating algorithm for matrix scaling in
Subsection 2.5. Note the similarity with the dynamical system for operator scaling as defined in
Definition 3.2.2.

Definition 4.2.5 (dynamical system for matrix scaling). The following differential equation defines
how A(t) changes over time:

d

dt
Aij :=

(
s(A◦2)−mri(A

◦2)
)
Aij +

(
s(A◦2)− ncj(A

◦2)
)
Aij.

To measure the progress of the dynamical system, we keep track of

∆(A◦2) =
1

m

m∑

i=1

(s(A◦2)−mri(A
◦2))2 +

1

n

n∑

j=1

(s(A◦2)− ncj(A
◦2))2,
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as ∆(A◦2) = 0 if and only if A◦2 is doubly balanced. And we measure the size of the matrix as

s(A◦2) =
m∑

i=1

n∑

j=1

A2
ij .

We are going to prove the analogous statements for matrix scaling as in those statements for
operator scaling in Subsection 3.4. We will prove

1. in Lemma 4.2.8 that
d

dt
s((A(t))◦2) = −2∆((A(t))◦2),

which implies that the size of the matrix A◦2 is decreasing over time;

2. in Lemma 4.2.9 that

d

dt
∆((A(t))◦2) = −4

m∑

i=1

n∑

j=1

(
2s
(
(A(t))◦2

)
− nri

(
(A(t))◦2

)
−mcj

(
(A(t))◦2

))2
· (A(t)

ij )
2,

which implies that the ∆((A(t))◦2) is decreasing over time;

3. in Lemma 4.2.12 that cap((A(t))◦2) is unchanged over time.

Remark 4.2.6. It is possible to reduce the matrix Paulsen problem to the operator Paulsen problem,
by using one matrix for each entry. Through this reduction, we can obtain the formulas in the matrix
case as corollaries of the formulas in the operator case in Subsection 3.4. In the following, we simply
present the direct proofs of the formulas in the matrix case, as it is more straightforward than to
present the reduction.

Definition 4.2.7 (matrix shorthand). We use the shorthands

s := s(A◦2), ∆ := ∆(A◦2), ri := ri(A
◦2), and cj := cj(A

◦2),

and write

s =

m∑

i=1

n∑

j=1

A2
ij , ri =

n∑

j=1

A2
ij , cj =

m∑

i=1

A2
ij,

d

dt
Aij = (2s −mri − ncj)Aij and ∆ =

1

m

m∑

i=1

(s−mri)
2 +

1

n

n∑

j=1

(s− ncj)
2.

All the quantities change over time t, but we will drop the superscript for ease of notation.

Formula for the change of s

Lemma 4.2.8.
d

dt
s = −2∆.
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Proof. By the definition of the dynamical system in Definition 4.2.5,

d

dt
Aij = (s−mri + s− ncj)Aij .

Therefore,

d

dt
s = 2

m∑

i=1

n∑

j=1

Aij
d

dt
Aij

= 2
m∑

i=1

n∑

j=1

(s−mri)A
2
ij + 2

m∑

i=1

n∑

j=1

(s−mcj)A
2
ij

= 2

m∑

i=1

(s−mri)ri + 2

n∑

j=1

(s − ncj)cj

= − 2

m

m∑

i=1

(s−mri)(−mri) +−
2

n

n∑

j=1

(s − ncj)(−ncj)

= − 2

m

m∑

i=1

(s−mri)
2 +− 2

n

n∑

j=1

(s − ncj)
2

= −2∆,

where the second last equality follows from
∑m

i=1(s−mri) =
∑n

j=1(s− ncj) = 0.

Formula for change of ∆

Lemma 4.2.9.
d

dt
∆ = −4

m∑

i=1

n∑

j=1

(2s −mri − ncj)
2 · A2

ij .

Proof. Starting from the definition ∆ = 1
m

∑m
i=1(s−mri)

2 + 1
n

∑n
j=1(s − ncj)

2, we have

d

dt
∆ =

2

m

m∑

i=1

(s−mri)(
d

dt
s−m

d

dt
ri) +

2

n

n∑

j=1

(s− ncj)(
d

dt
s− n

d

dt
cj)

= −2
m∑

i=1

(s−mri)
d

dt
ri − 2

n∑

j=1

(s− ncj)
d

dt
cj

= −4
m∑

i=1

n∑

j=1

(s−mri)Aij
d

dt
Aij − 4

m∑

i=1

n∑

j=1

(s − ncj)Aij
d

dt
Aij

= −4
m∑

i=1

n∑

j=1

(s−mri + s− ncj)Aij
d

dt
Aij

= −4
m∑

i=1

n∑

j=1

(s−mri + s− ncj)
2A2

ij ,

51



where the second equality follows from
∑m

i=1(s−mri) =
∑n

j=1(s− ncj) = 0, and the last equality
follows from the definition of the dynamical system in Definition 4.2.5.

Capacity Unchanged

The proof is similar but simpler than that in Subsection 3.4 as we have an explicit formula for A
(t)
ij ,

which is useful in later proofs.

Lemma 4.2.10. At time T ≥ 0, we have

A
(T )
ij = exp

( ∫ T

0
(2s(t) −mr

(t)
i − nc

(t)
j )dt

)
·A(0)

ij ,

and

A(T ) = diag

(
exp

(∫ T

0

(
s(t) −mr

(t)
i

)
dt
))
· A(0) · diag

(
exp

( ∫ T

0

(
s(t) − nc

(t)
j

)
dt
))

.

Proof. It is easy to check that this solution satisfies the differential equation in Definition 4.2.5 as

d

dT
A

(T )
ij = (2s(T ) −mr

(T )
i − nc

(T )
j ) · exp

(∫ T

0
(2s(t) −mr

(t)
i − nc

(t)
j )dt

)
·A(0)

ij

= (2s(T ) −mr
(T )
i − nc

(T )
j )A

(T )
ij .

By standard theory (see Theorem 2.1 of [5]), there is a unique solution to the differential equation
d
dtz

(t) = c(t)z(t) at an initial value z(0) = A
(0)
ij when c(t) is Lipschitz continuous over t. So the first

part of the lemma follows from the uniqueness of the solution of our dynamical system. Let

xi = exp
(∫ T

0

(
s(t) −mr

(t)
i

)
dt
)

and yj = exp
( ∫ T

0

(
s(t) − nc

(t)
j

)
dt
)
.

Let X ∈ R
m×m be the diagonal matrix with Xii = xi for 1 ≤ i ≤ m and Y ∈ R

n×n be the diagonal
matrix with Yjj = yj for 1 ≤ j ≤ n. Then we see the second part of the lemma as

A
(T )
ij = xiA

(0)
ij yj and thus A(T ) = XA(0)Y.

We see how the capacity changes after scaling. The proof is basically the same as that in Proposi-
tion 2.7 of [22], with a slightly different definition of capacity.

Lemma 4.2.11. Let A ∈ R
m×n, X ∈ R

m×m be a positive diagonal matrix and Y ∈ R
n×n be a

positive diagonal matrix. Then

cap(XAY ) = (

m∏

i=1

Xii)
1/m(

n∏

j=1

Yjj)
1/ncap(A).

52



Proof. Let xi = Xii and yj = Yjj. By Definition 3.5.5,

cap(XAY ) = inf
z>0

∏m
i=1

(
(XAY z)i

)1/m
∏n

j=1 z
1/n
j

=
( m∏

i=1

xi

)1/m
inf
z>0

∏m
i=1

(
(AY z)i

)1/m
∏n

j=1 z
1/n
j

=
( m∏

i=1

xi

)1/m
inf
z>0

∏m
i=1

(
(Az)i

)1/m
∏n

j=1(zj/yj)
1/n

=
( m∏

i=1

xi

)1/m( n∏

j=1

yj

)1/n
inf
z>0

∏m
i=1

(
(Az)i

)1/m
∏n

j=1(zj)
1/n

=
( m∏

i=1

xi

)1/m( n∏

j=1

yj

)1/n
cap(A).

We are ready to check that the capacity of cap((A(t))◦2) is unchanged over time t.

Lemma 4.2.12. For any T ≥ 0, we have

cap
(
(A(T ))◦2

)
= cap

(
(A(0))◦2

)
.

Proof. Let

X = diag

(
exp

( ∫ T

0

(
s(t) −mr

(t)
i

)
dt
))

and Y = diag

(
exp

( ∫ T

0

(
s(t) − nc

(t)
j

)
dt
))

.

By Lemma 4.2.10, we have A(T ) = XA(0)Y . Since X and Y are diagonal matrices, we have

(A(T ))◦2 = A(T ) ◦ A(T ) = (XA(0)Y ) ◦ (XA(0)Y ) = X◦2 · (A(0))◦2 · Y ◦2.

Therefore, by Lemma 4.2.11, we have

cap
(
(A(T ))◦2

)
=
( m∏

i=1

(
X◦2

)
ii

)1/m( n∏

j=1

(
Y ◦2

)
jj

)1/n
cap
(
(A(0))◦2

)
.

To prove that the capacity is unchanged, it remains to check that
∏m

i=1

(
X◦2

)
ii
=
∏n

j=1

(
Y ◦2

)
jj

= 1.
Note that
√√√√

m∏

i=1

(
X◦2

)
ii
=

m∏

i=1

Xii =

m∏

i=1

exp
(∫ T

0

(
s(t) −mr

(t)
i

)
dt
)
= exp

(∫ T

0

m∑

i=1

(
s(t) −mr

(t)
i

)
dt
)
= 1,

as
∑m

i=1(s−mri) = ms−m
∑m

i=1 ri = ms−ms = 0. Similarly, we can check that
∏n

j=1

(
Y ◦2

)
jj

= 1
and the lemma follows.
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4.3 Matrix Capacity Lower Bound from Dynamical System

In this subsection, we present a new method to prove matrix capacity lower bound, and use it to
prove that a pseudorandom matrix has a stronger capacity lower bound. First, we show how to
prove matrix capacity lower bound using a lower bound on the convergence rate of the dynamical
system. Then, we define the pseudorandom property of a matrix and state the main results about
matrix capacity lower bound. Finally, we show that the pesudorandom property is maintained
throughout the execution of the dynamical system. In the next subsection, we will prove the
combinatorial lemma that the pseudorandom property of a matrix implies a lower bound on the
convergence rate of the dynamical system, and this will complete the first part of Section 4.

Matrix Capacity Lower Bound from Convergence Rate Lower Bound

In Subsection 3.3, the operator capacity lower bound is used to show that the size of the operator
will not decrease much (see point (iv) in Subsection 3.3), and this implies that ∆ must decrease quick
enough, as otherwise the size will decrease too much by the formula d

dts = −2∆ from Lemma 3.4.3,
contradicting the capacity lower bound. To summarize, the capacity lower bound provides an
indirect way to argue about the fast convergence of ∆ to zero.

In this subsection, we establish the reverse direction to prove capacity lower bound. The following
proposition shows that if we have a lower bound on the convergence rate of ∆, then we can use it
to prove a lower bound on the capacity. Recall the shorthand notation defined in Definition 4.2.7.

Proposition 4.3.1. For the dynamical system defined in Definition 4.2.5 with A(0) as the input
matrix, if the following convergence lower bound holds throughout the execution of the dynamical
system

− d

dt
∆(t) ≥ µ∆(t) for all t ≥ 0,

then we have the capacity lower bound

cap(0) ≥ s(0) − 2∆(0)

µ
.

Proof. The matrix capacity lower bound is obtained from the formulas in the dynamical system in
Subsection 4.2 as follows.

s(0) − cap(0) = s(0) − cap(∞)

= s(0) − s(∞)

= −
∫ ∞

0

d

dt
s dt

= 2

∫ ∞

0
∆(t) dt

≤ 2∆(0)

∫ ∞

0
e−µtdt

=
2∆(0)

µ
.
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The first line is because the matrix capacity is unchanged by Lemma 4.2.12. To see the second line,
we first claim that limt→∞∆(t) = 0. Otherwise, as ∆(t) is non-increasing over time by Lemma 4.2.9,
there exists a constant η > 0 such that ∆(t) ≥ η for all t ≥ 0. Since d

dts
(t) = −2∆(t) by Lemma 4.2.8,

this would imply that s(∞) is unbounded below (in particular, negative), a contradiction to that
s is non-negative. With ∆(∞) = 0 proved, the second line then follows from s(A◦2) ≥ cap(A◦2) ≥
s(A◦2)−mn

√
∆(A◦2)/2 applied to A := A(∞), where the first inequality is by the capacity upper

bound in Lemma 3.5.7 applied to A◦2 and the second inequality is by the capacity lower bound
in Proposition 3.5.15 applied to A◦2. The fourth line is by Lemma 4.2.8, and the fifth line is by
∆(t) ≤ e−µt∆(0) which follows from the assumption. The third line and the last line are simple
calculations, and rearranging completes the proof.

Pseudorandom Property

We now define the pseudorandom property that we will use, and state the combinatorial lemma
that shows a convergence lower bound for pseudorandom matrices.

Definition 4.3.2 (pesudorandom property of a matrix). A non-negative matrix A ∈ R
m×n is

(α, β)-pseudorandom, denoted by A &β α, if it satisfies the following two properties:

• Every column has at least one entry with value at least α.

• Every row has at least (1− β)n entries with value at least α.

The following is a key step which we will prove in the next subsection. This allows us to prove that
the pseudorandom property will be maintained throughout the execution of the dynamical system
in Proposition 4.3.5, so that we can apply Proposition 4.3.1 to prove a capacity lower bound for a
pseudorandom matrix.

Proposition 4.3.3. If (A(t))◦2 &β α for a constant β ≤ 10−9 for all t ≥ 0, then there exists an
absolute constant κ ≥ 10−7 such that

− d

dt
∆(t) ≥ καn∆(t) for all t ≥ 0.

A corollary is that
∆(t) ≤ e−καnt ·∆(0) for all t ≥ 0.

The proof of Proposition 4.3.3 is combinatorial and has an involved case analysis, which is deferred
to the next subsection. Assuming Proposition 4.3.3 and Proposition 4.3.5, we prove the main result
in this subsection. In our application to the Paulsen problem in Subsection 4.8, we will argue that
all the assumptions will be satisfied.

Theorem 4.3.4. Suppose (A(0))◦2 is (α, β)-pseudorandom for a constant β ≤ 10−9 and all the
column sums are the same, i.e.

(A(0))◦2 &β α and c
(0)
j =

s(0)

n
for 1 ≤ j ≤ n,
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where κ is the absolute constant in Proposition 4.3.3. Also assume that

α ≥ 80
√
m∆(0)

κn
, s(0) = m and ∆(0) ≤ 1/10.

Then

cap(0) ≥ s(0) − ∆(0)

5καn
.

Proof. The assumptions are needed to apply Proposition 4.3.5 to prove that when A(0) is given as
the input matrix to the dynamical system, all the matrices (A(t))◦2 throughout the execution of
the dynamical system is still ( 1

10α, β)-pseudorandom. Thus, by Proposition 4.3.3, we have

− d

dt
∆(t) ≥ 1

10
καn∆(t) for all t ≥ 0.

We can then apply Proposition 4.3.1 with µ = καn/10 to get

cap(0) ≥ s(0) − ∆(0)

5καn
.

In the remaining of this subsection, we will prove Proposition 4.3.5, and then Proposition 4.3.3 in
the next subsection.

Invariance of Pseudorandom Property

The following proposition proves that the pseudorandom property is maintained throughout the
execution of the dynamical system. This is an important proposition for the matrix capacity lower
bound, and the assumption on α is the reason for our choice of σ2 in the perturbation step. We
will also explain how the proof of the following proposition can be used to bound the running time
of the matrix scaling algorithms in [17].

Proposition 4.3.5. Suppose (A(0))◦2 is (α, β)-pseudorandom and all the initial column sums are
the same, i.e.

(A(0))◦2 &β α and c
(0)
j =

s(0)

n
for 1 ≤ j ≤ n,

where κ is the constant in Proposition 4.3.3. Also assume that

α ≥ 80
√
m∆(0)

κn
, s(0) = m and ∆(0) ≤ 1/10.

Then the matrix in the dynamical system is still ( 1
10α, β)-pesudorandom at any time t, i.e.

(A(t))◦2 &β
α

10
for all t ≥ 0.
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Proof. Consider the set of indices S = {(i, j) | (A(0)
ij )2 ≥ α}. Let T be the supremum such that

(A
(t)
ij )

2 ≥ α/10 for all (i, j) ∈ S and 0 ≤ t ≤ T . Our goal is to prove that T is unbounded, which

will imply that A(t) is (α/10, β)-pesudorandom for all t ≥ 0.

From Lemma 4.2.10, we know the explicit formula for

A
(T )
ij = exp

( ∫ T

0
(s(t) −mr

(t)
i )dt

)
· A(0)

ij · exp
(∫ T

0
(s(t) − nc

(t)
j )dt

)
.

Let xi := exp
( ∫ T

0 (s(t) −mr
(t)
i )dt

)
and yj := exp

( ∫ T
0 (s(t) − nc

(t)
j )dt

)
. Then A

(T )
ij = xiA

(0)
ij yj. We

would like to bound the exponents of xi and yj. Using (s − mri)
2 ≤ m∆ that follows from the

definition of ∆ in Definition 3.5.6, we have
∣∣∣∣
∫ T

0
(s(t) −mr

(t)
i )dt

∣∣∣∣ ≤
∫ T

0
|s(t) −mr

(t)
i |dt

≤
∫ T

0

√
m∆(t)dt

≤
√

m∆(0)

∫ T

0
e−

καnt
20 dt

≤ 20
√
m∆(0)

καn
,

where the third inequality is from the corollary in Proposition 4.3.3 and our assumption that (A(t))◦2

is (α/10, β)-pesudorandom for 0 ≤ t ≤ T . Since we assume that α ≥ 80
√
m∆(0)/(κn), we have

−1

4
≤
∫ T

0
(s(t) −mr

(t)
i )dt ≤ 1

4
=⇒ e−1/4 ≤ xi ≤ e1/4.

So we have that xi is a constant for 1 ≤ i ≤ n. To bound (A
(T )
ij )2 in terms of (A

(0)
ij )2, it remains to

lower bound yj by a constant. Note that

(A
(T )
ij )2 = x2i (A

(0)
ij )2y2j ≤ e1/2(A

(0)
ij )2y2j ≤ 2(A

(0)
ij )2y2j .

To lower bound yj, we consider the column sum by summing the above inequality

c
(T )
j =

m∑

i=1

(A
(T )
ij )2 ≤ 2y2j

m∑

i=1

(A
(0)
ij )2 = 2y2j c

(0)
j =

2s(0)y2j
n

=⇒ y2j ≥
c
(T )
j n

2s(0)
,

where the last equality follows from our assumption about the initial column sum. Therefore, to
lower bound y2j , it suffices to show that the column sum at time T is not much smaller than the

initial column sum which is s(0)/n. To lower bound c
(T )
j , we keep track of the change of cj over

time. By the definition of the dynamical system in Definition 4.2.5,

d

dt
cj =

d

dt

m∑

i=1

A2
ij = 2

m∑

i=1

Aij
d

dt
Aij = 2

m∑

i=1

A2
ij(s−mri + s− ncj).

=⇒ 1

2

d

dt
cj =

m∑

i=1

(s −mri)A
2
ij +

m∑

i=1

(s− ncj)A
2
ij =

m∑

i=1

(s−mri)A
2
ij + (s − ncj)cj .
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Since (s − mri)
2 ≤ m∆ ≤ m∆(0) as ∆ is non-increasing over time by Lemma 4.2.9, we have

s−mri ≥ −
√
m∆(0) and thus

1

2

d

dt
cj ≥ −

m∑

i=1

√
m∆(0)A2

ij + (s− ncj)cj = (s− ncj −
√

m∆(0))cj .

This implies that cj is non-decreasing whenever s−ncj −
√
m∆(0) ≥ 0 ⇐⇒ cj ≤ (s−

√
m∆(0))/n.

Note that c
(0)
j ≥ (s(0) −

√
m∆(0))/n by the definition of ∆(0). Since s(T ) is non-increasing, the

column sum can never go below this value and in particular

c
(T )
j ≥ s(T ) −

√
m∆(0)

n
.

So, to lower bound the column sum, it suffices to lower bound the size of the matrix at time T .
We can do this directly by using the result in the dynamical system, very similar to the proof in
Proposition 4.3.1. Note that

s(0) − s(T ) = −
∫ T

0

d

dt
s dt = 2

∫ T

0
∆ dt ≤ 2∆(0)

∫ T

0
e−

καnt
10 dt ≤ 20∆(0)

καn
≤
√
∆(0)

4
√
m

,

where the second equality is by Lemma 4.2.8, the first inequality is by our assumption that A is
(α/10, β)-pesudorandom and the corollary in Proposition 4.3.3, and the last inequality is by our
assumption about α. Therefore,

c
(T )
j ≥ s(0) − 1

4

√
∆(0)/m−

√
m∆(0)

n
=⇒ y2j ≥

c
(T )
j n

2s(0)
≥ s(0) − 1

4

√
∆(0)/m−

√
m∆(0)

2s(0)
.

Using our assumptions that s(0) = m and ∆(0) ≤ 1/10, we conclude that

y2j ≥
1

4
=⇒ (A

(T )
ij )2 = x2i (A

(0)
ij )2y2j ≥

e−1/2(A
(0)
ij )2

4
≥ 1

8
(A

(0)
ij )2 ≥ α

8
.

Since A
(t)
ij is a continuous function of t during the execution of the dynamical system, this implies

that (A
(T+ξ)
ij )2 > α/10 for a small enough ξ > 0, which contradicts that T is the supremum that

(A
(t)
ij )

2 ≥ α/10 for all 0 ≤ t ≤ T . Therefore, T is unbounded and the pseudorandom property is
maintained throughout the execution of the dynamical system.

Bounding Optimal Matrix Scaling Solution

Before we move on to the combinatorial lemma in the next subsection, we discuss how the proofs
in Proposition 4.3.5 could be used to bound the running time of the algorithms in [17]. This part
can be skipped as this is not related to the Paulsen problem.
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Remark 4.3.6 (bounding optimal matrix scaling solution). Given a non-negative matrix A ∈
R
n×n, the matrix scaling problem in [17, 1] is to find diagonal matrices L and R such that LAR

is doubly stochastic (i.e. row and column sums are all one). In [17], the time complexities of the
algorithms depend on the parameter κ (do not confuse with our κ which is an absolute constant),
which is defined as the ratio of the maximum entry to the minimum entry in L and R.

Our matrix scaling problem is slightly different but closely related, in which we are given a matrix
A ∈ R

n×n and we would like to find diagonal matrices L and R such that (LAR)◦2 is doubly
stochastic. We can define κ similarly as in [17], and note that the κ in our problem is just the
square of the κ in [17].

In the proof of Proposition 4.3.5, we consider the quantities xi(T ) := exp
( ∫ T

0 (s(t)−mr
(t)
i )dt

)
and

yj(T ) := exp
( ∫ T

0 (s(t) − nc
(t)
j )dt

)
for 1 ≤ i, j ≤ n. Let X be the diagonal matrix with Xii = xi(∞)

for 1 ≤ i ≤ n, and Y be the diagonal matrix with Yjj = yj(∞) for 1 ≤ j ≤ n. Then Lemma 4.2.10
shows that XAY is doubly balanced as A(∞) is doubly balanced. Note that the scaling solution for
matrix scaling is unique under very mild assumption (i.e. the underlying graph is connected), and
so we only need to bound the ratio of the maximum entry to the minimum entry of X and similarly
for Y . Assuming the conditions in Proposition 4.3.5, the proof of Proposition 4.3.5 shows that
e−1/4 ≤ xi(T ) ≤ e1/4 for 1 ≤ i ≤ n for all T , and the same argument can be used to show that
e−1/4 ≤ yj(T ) ≤ e1/4 for all T for 1 ≤ j ≤ n when the input is a square matrix. This implies
that the κ in [17] is bounded by a constant when the input matrix A satisfies the assumptions of
Proposition 4.3.5, and it follows that the algorithms in [17] have near linear time for these instances.
The only known previous result about bounding κ is in [32] when A is strictly positive, which is
incomparable to our assumptions.

To extend the results in this section to bound κ, what we need to do is to find a property/condition
of the input matrix under which we can lower bound − d

dt∆
(t) as stated in Proposition 4.3.3, and to

prove that the property/condition will be maintained as in Proposition 4.3.5.

4.4 Convergence Rate Lower Bound from Pseudorandom Property

In this subsection, we prove Proposition 4.3.3 that establishes the convergence rate lower bound
using the pseudorandom property. We first begin with some notations for the proof, and then
we will prove a stronger lower bound using a stronger pseudorandom property, and finally we will
prove Proposition 4.3.3.

Recall from Lemma 4.2.9 that

d

dt
∆ = −4

m∑

i=1

n∑

j=1

(s−mri + s− ncj)
2 ·A2

ij ,

where from the shorthand in Definition 4.2.7 that

∆ =
1

m

m∑

i=1

(s−mri)
2 +

1

n

n∑

j=1

(s− ncj)
2, s =

m∑

i=1

n∑

j=1

A2
ij , ri =

n∑

j=1

A2
ij , cj =

m∑

i=1

A2
ij .

We will divide the rows and columns into buckets in the proof and the following are the notations.
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Definition 4.4.1 (buckets). Let A◦2 be a non-negative m×n matrix. We say a column j is positive
if s−ncj is positive, and a column j is negative if s−ncj is negative. We denote the set of positive
columns by C+, the set of negative columns by C−, and the set of all columns by C. Similarly, we
say a row i is positive if s−mri is positive, and is negative if s−mri is negative. We denote the
set positive rows by R+, the set of negative rows by R− and the set of all rows by R. We assume
without loss of generality that

∑
j∈C+(s− ncj)

2 ≥∑j∈C−(s− ncj)
2.

We divide the positive columns into buckets, so that for each column j in bucket Cl for l ∈ Z, the
column j satisfies 2l ≤ s− ncj ≤ 2l+1. Similarly, we divide the negative rows into buckets, so that
for each row i in bucket Rl for l ∈ Z, the row i satisfies −2l ≥ s−mri ≥ −2l+1. Note that a bucket
could be an empty set. We use the notations

Cl±1 := Cl−1 ∪ Cl ∪ Cl+1 and Cl±2 := Cl−2 ∪ Cl−1 ∪ Cl ∪ Cl+1 ∪ Cl+2

as the unions of the adjacent buckets of bucket l, and also

Cl±1 = C \ Cl±1 and Cl±2 = C \ Cl±2

as the complements of the unions. Likewise, we use the analogous notations for the buckets of rows
such as Rl±1, Rl±1, Rl±2, Rl±2. The main reason for these definitions is the following: For a column
j in bucket Cl and a row i in bucket Rl±1, it follows from the definitions that

|s−mri + s− ncj | ≥
1

2
|s− ncj | =⇒ (s −mri + s− ncj)

2 ≥ 1

4
(s− ncj)

2. (4.2)

Likewise, we have the same inequality for a column j in Cl±1 and a row i in Rl±2. This will help
us to bound the summands in d

dt∆.

Recall from Definition 4.3.2 that A◦2 is (α, β)-pseudorandom if every column of A◦2 has at least
one entry with value at least α and every row of A◦2 has at least (1 − β)n entries with value at
least α.

We will first prove the following stronger conclusion assuming a stronger pseudorandom property,
where we also require each column to have most entries with value at least α. The statement will
not be used in other places, but the proof is useful for the proof of Proposition 4.3.3, and we think
that the statement may be useful to improve our results.

Proposition 4.4.2. Let A◦2 be an m× n matrix. Suppose A◦2 satisfies the following properties:

1. Every row has at most n/8000 entries smaller than α.

2. Every column has at most m/8000 entries smaller than α.

Then

− d

dt
∆ ≥ αmn∆

32000
.

Finally we will prove the following precise result that will imply Proposition 4.3.3.
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Proposition 4.4.3. Let A◦2 be an m×n matrix which is (α, β)-pesudorandom for β ≤ 10−9. Then

− d

dt
∆ ≥ αn∆

8192000
.

The following definition will be useful in the proof of Proposition 4.4.3.

Definition 4.4.4 (strong/weak columns). Let A◦2 be an m×n matrix which is (α, β)-pseudorandom.
We say a column of A◦2 is strong if it has at most m/128000 entries with value less than α; oth-
erwise we say a column is weak. Since A◦2 is (α, β)-pseudorandom, each row of A◦2 has at most
βn entries with value less than α, and so there are at most βmn/(m/128000) = 128000βn weak
columns in A◦2. In Proposition 4.3.3, we assume β ≤ 10−9, and so there will be at most n/7500
columns of A◦2 which are weak.

To lower bound d
dt∆, we can think of d

dt∆ as the inner product of two matrices 〈B,A◦2〉 where
Bij = (s−mri + s−ncj)

2. Our strategy is to find a large area of B with large value, and then use
the pseudorandom property of A◦2 to conclude that the inner product is large.

Strong Lower Bound from Strong Pseudorandom Property

We prove Proposition 4.4.2 in this subsubsection. The following lemma will be useful in both
proofs. We will use the following lemma with γ being an absolute constant at least 1/64.

Lemma 4.4.5. Suppose C ′ ⊆ C+ is a set of columns with
∑

j∈C′(s − ncj)
2 ≥ γn∆ for some

1 ≥ γ > 0, and every column in C ′ has at most γm/2000 entries of value smaller than α. Then

− d

dt
∆ ≥ αγ2mn∆

2000
.

Proof. In this proof, we will restrict our attention only to the columns in C ′. We use C ′
l to denote

Cl ∩ C ′. As stated in (4.2) of Definition 4.4.1, for columns in Cl and rows in Rl±1, we have

∑

j∈C′

∑

i∈R

(s−mri+s−ncj)2·A2
ij ≥

∑

l∈Z

∑

j∈C′
l

∑

i∈Rl±1

(s−mri+s−ncj)2·A2
ij ≥

∑

l∈Z

∑

j∈C′
l

∑

i∈Rl±1

1

4
(s−ncj)2·A2

ij .

Case 1: Suppose |Rl±1| ≥ γm/1000 for all l ∈ Z. As each column j ∈ C ′
l has at most γm/2000

entries with value smaller than α, there are at least γm/2000 entries which belong to Rl±1 with
value at least α. Therefore,

− d

dt
∆ ≥ 4

∑

i∈R

∑

j∈C′

(s−mri + s− ncj)
2 · A2

ij ≥
∑

l∈Z

∑

j∈C′
l

∑

i∈Rl±1

(s− ncj)
2 · A2

ij

≥
∑

l∈Z

∑

j∈C′
l

γm

2000
· (s− ncj)

2 · α =
αγm

2000

∑

j∈C′

(s− ncj)
2 ≥ αγ2mn∆

2000
,

where the last inequality follows from the assumption of the lemma, and we are done in this case.

Case 2: Otherwise, there exists an l∗ such that |Rl∗±1| ≤ γm/1000 ≤ m/1000, which implies that
|Rl∗−1 ∪Rl∗ ∪Rl∗+1| ≥ 999m/1000. We consider C ′

l∗±2 and divide into two subcases.
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(a) The first subcase is when
∑

j∈C′
l∗±2

(s−ncj)
2 ≤ 1

2

∑
j∈C′(s−ncj)

2. In this subcase, we consider

the contribution to d
dt∆ from the columns in C ′

l∗±2 := C ′ \ C ′
l∗±2. Our assumption in this

subcase implies that

∑

j∈C′
l∗±2

(s− ncj)
2 ≥ 1

2

∑

j∈C′

(s− ncj)
2 ≥ 1

2
γn∆.

Furthermore, for every bucket C ′
l ∈ C ′

l∗±2, we now have Rl∗−1 ∪ Rl∗ ∪ Rl∗+1 ⊆ Rl±1 and thus

|Rl±1| ≥ 999m/100 ≥ 3m/4 for all such l. We can apply a similar argument as in case 1 to
conclude that

− d

dt
∆ ≥ 4

∑

i∈R

∑

j∈C′
l∗±2

(s−mri + s− ncj)
2 ·A2

ij ≥
∑

l /∈l∗±2

∑

j∈C′
l

∑

i∈Rl±1

(s− ncj)
2 · A2

ij

≥
∑

l /∈l∗±2

∑

j∈C′
l

m

2
· (s− ncj)

2 · α =
αm

2

∑

j∈C′
l∗±2

(s− ncj)
2 ≥ αγmn∆

4
,

where the second inequality is from (4.2) in Definition 4.4.1, the third inequality is because
|Rl±1| ≥ 3m/4 and there are at most γm/1000 ≤ m/1000 entries in each column with value
smaller than α, and the final inequality is from our assumption in this subcase. Therefore, the
lemma also holds in this subcase.

(b) The remaining subcase is when
∑

j∈C′
l∗±2

(s−ncj)
2 ≥ 1

2

∑
j∈C′(s−ncj)

2 ≥ 1
2γn∆. We will rule

this subcase out by deriving a contradiction, which will complete the proof of the lemma. We
will derive a contradiction by showing that

∑
i∈Rl∗±1

(s−mri)
2 is too large.

Note that every row i ∈ Rl∗±1 satisfies |s −mri| ≥ 1
16 |s − nc| where |s − nc| is the maximum

|s− ncj | term in C ′
l∗±2, as |s − ncj| ≤ 2l

∗+3 for j ∈ Cl∗±2 and |s−mri| ≥ 2l
∗−1 for i ∈ Rl∗±1.

Since we have
∑m

i=1(s−mri) = ms−m
∑m

i=1 ri = 0, we know that

∣∣∣
∑

i∈Rl∗±1

(s−mri)
∣∣∣ =

∣∣∣
∑

i∈Rl∗±1

(s−mri)
∣∣∣ =

∑

i∈Rl∗±1

∣∣s−mri
∣∣ ≥ 1

16

∣∣Rl∗±1

∣∣(s− nc).

As
∣∣Rl∗±1

∣∣ ≤ m/1000, we use Cauchy-Schwarz to lower bound

∑

i∈Rl∗±1

(s−mri)
2 ≥ 1∣∣Rl∗±1

∣∣
( ∑

i∈Rl∗±1

(s−mri)
)2
≥
∣∣Rl∗±1

∣∣2(s− nc)2

256
∣∣Rl∗±1

∣∣.

Note that
∣∣C ′

l∗±2

∣∣(s−nc)2 ≥∑j∈C′
l∗±2

(s−ncj)
2 ≥ 1

2γn∆, which implies that (s−nc)2 ≥ 1
2γ∆.

Hence,
∑

i∈Rl∗±1

(s−mri)
2 ≥ γ∆

∣∣Rl∗±1

∣∣2

512
∣∣Rl∗±1

∣∣ ≥
γ∆(999m/1000)2

512(γm/1000)
> m∆,

contradicting to the definition of ∆. Therefore, case (2b) cannot happen.
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Proposition 4.4.2 follows rather easily from Lemma 4.4.5.

Proof of Proposition 4.4.2. Recall that ∆ = 1
m

∑m
i=1(s −mri)

2 + 1
n

∑n
j=1(s − ncj)

2, so either

we have
∑m

i=1(s−mri)
2 ≥ m∆/2 or

∑n
j=1(s− ncj)

2 ≥ n∆/2.

If
∑n

j=1(s− ncj)
2 ≥ n∆/2, then we can assume without loss of generality that

∑
j∈C+(s−ncj)

2 ≥
n∆/4. Then, we apply Lemma 4.4.5 with C ′ = C+ and γ = 1/4. Note that the assumption in
Lemma 4.4.5 that every column in C ′ has at most γm/2000 = m/8000 is satisfied by the assumption
in Proposition 4.4.2. So we can conclude from Lemma 4.4.5 that

− d

dt
∆ ≥ αmn∆

32000
.

The other case is the same. We have not used any property of the rows in Lemma 4.4.5. When∑m
i=1(s−mri)

2 ≥ m∆/2, we can simply exchange the roles of m and n (or consider the transpose
of the matrix) and apply Lemma 4.4.5 as in the previous paragraph to get the same conclusion.

Lower Bound from Pseudorandom Property

We prove Proposition 4.4.3 in this subsubsection, and then use it to prove Proposition 4.3.3. The
case analysis is more involved in the proof of Proposition 4.4.3, in some cases we can just apply
Lemma 4.4.5 to get the (stronger) conclusion, but in the final case we can only use the weaker
property to get the (weaker) conclusion.

Proof of Proposition 4.4.3. As in the proof of Proposition 4.4.2, we start with either
∑m

i=1(s−
mri)

2 ≥ m∆/2 or
∑n

j=1(s − ncj)
2 ≥ n∆/2. In the former case, we can apply Lemma 4.4.5 as in

Proposition 4.4.2 because all rows have at most βn ≪ n/8000 entries with value smaller than α.
Henceforth, we consider the latter case and assume without loss of generality that

n∑

j=1

(s− ncj)
2 ≥ n∆/2 and

∑

j∈C+

(s− ncj)
2 ≥ n∆/4.

As in the proof of Lemma 4.4.5, we will restrict our attention only to the columns in C+, and
consider the buckets in C+.

Definition 4.4.6 (strong/weak column buckets). We call a column bucket Cl strong if at least half
of the columns in it are strong; otherwise we call the bucket Cl weak.

Let CS be the union of the columns of the strong buckets, and let CW be the union of the columns
of the weak buckets.

Since
∑

j∈C+(s− ncj)
2 ≥ n∆/4, either

∑

j∈CS

(s− ncj)
2 ≥ n∆/8 or

∑

j∈CW

(s− ncj)
2 ≥ n∆/8.
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We consider the two cases separately.

Case 1: Suppose we are in the former case when
∑

j∈CS
(s−ncj)

2 ≥ n∆/8. For each strong bucket

Cl, we throw away the weak columns and call the remaining columns C ′
l . Since each (s − ncj)

2 in
the same bucket is within a factor 4 of each other and we throw away at most half the columns,
we still have

∑
j∈C′

l
(s−ncj)

2 ≥ 1
8

∑
j∈Cl

(s−ncj)
2. Call the union of the remaining columns in the

strong buckets C ′
S . Then

∑
j∈C′

S
(s − ncj)

2 ≥ 1
8

∑
l∈CS

(s − ncj)
2 ≥ n∆/64. Since each column in

C ′
S is strong, we can apply Lemma 4.4.5 with C ′ := C ′

S and γ = 1/64 to get

− d

dt
∆ ≥ αmn∆

8192000
.

This is the case where we require each strong column to have at most m/128000 entries of value
smaller than α, so that the assumption in Lemma 4.4.5 that every column in C ′ has at most
γm/2000 entries of value smaller than α is satisfied. In other cases, we apply Lemma 4.4.5 with
larger γ.

Case 2: Suppose we are in the latter case when
∑

j∈CW
(s − ncj)

2 ≥ n∆/8. We distinguish the
weak column buckets into two types.

Definition 4.4.7 (close to a big bucket). We say a column bucket is big if it has at least n/10
columns. Note that a big column bucket must be a strong column bucket, as there are at most
n/7500 weak columns as stated in Definition 4.4.4.

We say a weak bucket Cl is close to a big bucket if there is a big bucket in Cl±2; otherwise it is not
close to a big bucket.

We denote the union of the columns of the weak buckets that are close to a big bucket by CW ∗, and
the union of the columns of the weak buckets that are not close to a big bucket by CW ∗.

Since
∑

j∈CW
(s− ncj)

2 ≥ n∆/8 in this case, either

∑

j∈CW∗

(s− ncj)
2 ≥ n∆

16
or

∑

j∈C
W∗

(s− ncj)
2 ≥ n∆

16
.

We consider these two subcases separately.

(a) The first subcase is when
∑

j∈CW∗
(s − ncj)

2 ≥ n∆/16. We will reduce this subcase to case 1

(with different parameters). For each weak bucket Cl that is close a big bucket, let C̃ be a big
bucket in Cl±2. We claim that

∑

j∈C̃

(s− ncj)
2 ≥ 375

8

∑

j∈Cl

(s− ncj)
2.

The reasons are as follows. Firstly, each summand on the LHS is at least a factor of 1/8 of each
summand on the RHS, as the worst case is when C̃ = Cl−2. Secondly, the number of terms
on the LHS is at least 375 times the number of terms on the RHS, as Cl has at most 2n/7500
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columns since it is a weak bucket and there are at most n/7500 weak columns as stated in
Definition 4.4.4, while C̃ has at least n/10 columns. So we have the claim.

Let CB be the union of the columns of the big buckets that are close to a weak bucket contained
in CW ∗ . Note that each big bucket contained in CB can be close to at most four weak buckets.
Therefore, ∑

j∈CB

(s− ncj)
2 ≥ 1

4

375

8

∑

j∈CW∗

(s− ncj)
2 ≥ 375

32

n∆

16
=

375

512
n∆.

Since each big bucket is a strong bucket, we can apply the same argument as in case 1. We
throw away the weak columns in CB and call the set of the remaining columns C ′

B. Then

∑

j∈C′
B

(s− ncj)
2 ≥ 1

8

∑

j∈CB

(s− ncj)
2 ≥ 375

4096
n∆ =⇒ − d

dt
∆ ≥ αmn∆

800000
,

where the implication follows from Lemma 4.4.5 with C ′ := C ′
B and γ = 375/4096 ≥ 1/20.

(b) The second subcase is when
∑

j∈C
W∗

(s − ncj)
2 ≥ n∆/16. This is the remaining case that we

can only use the weak property. For each weak bucket Cl contained in CW ∗, we consider the
corresponding row buckets in Rl±1. There are two situations.

The first situation is when Rl±1 = ∅. Since each column in Cl has at least one entry with value
at least α, we have

∑

j∈Cl

m∑

i=1

(s −mri + s− ncj)
2 ·A2

ij ≥
∑

j∈Cl

m∑

i=1

1

4
(s− ncj)

2 · A2
ij ≥

∑

j∈Cl

α

4
(s− ncj)

2, (4.3)

where the first inequality is from (4.2) in Definition 4.4.1.

The second situation is when Rl±1 6= ∅. In this situation, we instead consider the contribution
of the entries in Rl±1 to d

dt∆. Again using (4.2) in Definition 4.4.1, we have

∑

i∈Rl±1

n∑

j=1

(s−mri+s−ncj)2·A2
ij ≥

∑

i∈Rl±1

∑

j∈Cl±2

(s−mri+s−ncj)2·A2
ij ≥

∑

i∈Rl±1

1

4

∣∣Cl±2

∣∣(s−mri)
2·A2

ij .

As Cl is not close to a big bucket, we have
∣∣Cl±2

∣∣ ≥ n/2. As each row has at most βn entries
with value smaller than α and there are at most n/7500 weak columns, there are at least n/4
entries in each row which belong to Cl±2 and have value at least α and moreover do not belong
to the weak columns. Therefore,

∑

i∈Rl±1

∑

j∈Cl±2

(s−mri + s− ncj)
2 · A2

ij ≥
∑

i∈Rl±1

1

4

∣∣Cl±2

∣∣(s−mri)
2 ·A2

ij ≥
∑

i∈Rl±1

αn

16
(s−mri)

2.

In the worst case, there is only one row in Rl±1, but we still have

∑

i∈Rl±1

∑

j∈Cl±2

(s−mri + s− ncj)
2 · A2

ij ≥
∑

i∈Rl±1

αn

16
(s −mri)

2 ≥ αn

256
(s− ncj)

2, (4.4)
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where we used |s−mri| ≥ 1
4 |s− ncj| for i ∈ Rl±1 and j ∈ Cl.

Now we combine the two situations together. For a weak column bucket Cl that is not close
to a big bucket, if Rl±1 = ∅, we lower bound the contribution to − d

dt∆ from Cl using (4.3).

Otherwise, we lower bound the contribution to − d
dt∆ from Rl±1 using (4.4). In either case, the

contribution is at least

min
{∑

j∈Cl

α

4
(s− ncj)

2,
αn

256
(s− ncj)

2
}
≥
∑

j∈Cl

α

256
(s− ncj)

2.

Note that the contribution from any row in Rl±1 is counted at most 5 times, when we consider
the buckets in Cl±2. And when we consider the rows, we consider those entries not in the
weak columns, and so the contributions from the rows and from the columns are disjoint. To
summarize and to conclude, we have

− d

dt
∆ =

m∑

i=1

n∑

j=1

(s−mri + s− ncj)
2 · A2

ij

≥ 1

5

∑

l∈W ∗

min
{∑

j∈Cl

m∑

i=1

(s−mri + s− ncj)
2 · A2

ij ,
∑

i∈Rl±1

∑

j∈Cl±2

(s−mri + s− ncj)
2 ·A2

ij

}

≥ 1

5

∑

l∈W ∗

min
{∑

j∈Cl

α

4
(s− ncj)

2,
∑

j∈Cl

α

256
(s− ncj)

2
}

≥ 1

5

∑

l∈W ∗

∑

j∈Cl

α

256
(s− ncj)

2

=
α

1280

∑

j∈C
W∗

(s − ncj)
2

≥ αn∆

20480
,

where the last inequality is by the assumption in this subcase.

We have considered all cases, and the proposition follows by taking the minimum contribution to
− d

dt∆ of these cases, which is achieved by Case 1.

It is clear that Proposition 4.3.3 follows from Proposition 4.4.3 with κ ≥ 1/8192000. So, we have
completed the first part of the smoothed analysis, that a pseudorandom matrix has a stronger
capacity lower bound. Next, we move on to the perturbation process and its analysis.

4.5 The Perturbation Process

In this subsection, we describe the perturbation process of the vectors. Then we bound the move-
ment during the perturbation process. We end this subsection by listing the facts and results that
we will use for the rest of the analysis of the perturbation process.
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Procedure 4.5.1 (perturbation process). We consider the following perturbation process:

1. (Preprocess) Rescale the vectors uj ∈ R
d such that ‖uj‖2 = d

n for 1 ≤ j ≤ n.

2. (Gaussian noise) Let x ∈ R
d×n be the concatenation of the vectors x1, . . . , xn ∈ R

d such that
xi,j := (xj)i. Let

x ∼ N(0, σ2Idn),

where x is sampled from a multivariate Gaussian distribution with zero mean and the covari-
ance being the identity matrix. Explicitly, xj ∈ R

d is a vector with each coordinate being an
independent Gaussian random variable in N(0, σ2) with mean zero and variance σ2.

3. (First subspace) Let y ∈ R
d×n be the concatenation of the vectors y1, . . . , yn ∈ R

d such that
yi,j := (yj)i. Let

L1 = {y ∈ R
d×n such that 〈uj , yj〉 = 0 for all 1 ≤ j ≤ n} and y ∼ N(0, σ2PL1

),

where y is sampled from a multivariate Gaussian distribution with the covariance matrix being
PL1
∈ R

(d×n)×(d×n), which is the orthogonal projection matrix to the subspace L1. Note that
L1 is of co-dimension n and rank(PL1

) ≥ (d− 1)n. Explicitly, yj is the orthogonal projection
of xj to the subspace perpendicular to uj , such that

yj = xj −
〈uj , xj〉uj
‖uj‖2

= xj −
n

d
〈uj, xj〉uj .

4. (Second subspace) Let z ∈ R
d×n be the concatenation of the vectors z1, . . . , zn ∈ R

d such that
zi,j := (zj)i. Let

L2 = {z ∈ R
d×n such that

n∑

j=1

ujz
T
j = 0} and z ∼ N(0, σ2PL1∩L2

),

where z is sampled from a multivariate Gaussian distribution with the covariance matrix being
PL1∩L2

, which is the orthogonal projection matrix to the subspace L1 ∩L2. Note that L2 is of
co-dimension at most d2 and thus rank(PL1∩L2

) ≥ dn−n− d2. Equivalently, we can think of
z = PL1∩L2

y.

5. (Noise adding) The vector z is the noise vector that we generate. For 1 ≤ j ≤ n, let the
vectors v1, . . . , vn ∈ R

d be
vj := uj + zj for 1 ≤ j ≤ n.

6. (Postprocess) We rescale each perturbed vector to have squared norm d/n by letting

wj =

√
d

n

vj
‖vj‖

.

The vectors w1, . . . , wn are the perturbed vectors that we generate.
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In the remainder of this section, we assume that the size of a frame is exactly d, and this is more
convenient for the calculations as we do not need to keep track of s in the definition of ∆.

Definition 4.5.2 (normalization for the Paulsen problem). Given a frame U = {u1, . . . , un} where
ui ∈ R

d for 1 ≤ i ≤ n, when s(U) = d,

∆(U) = d tr(Id −
n∑

i=1

uiu
T
i )

2 + n

n∑

i=1

(
d

n
− ‖ui‖2)2 = d

∥∥∥∥∥Id −
n∑

i=1

uiu
T
i

∥∥∥∥∥

2

F

+ n

n∑

i=1

(
d

n
− ‖ui‖2)2.

Recall that ∆(U) ≤ d2ε2 by Lemma 3.6.1.

Bounding the Movement in the Perturbation Process

We first bound the movement and the increase in ∆ in the preprocessing step of the perturbation
process.

Lemma 4.5.3. Let U = {u1, . . . , un} where ui ∈ R
d for 1 ≤ i ≤ n and s(U) = d. Let V =

{v1, . . . , vn} where

vi =

√
d

n

ui
‖ui‖

for 1 ≤ i ≤ n so that ‖vi‖2 =
d

n
for 1 ≤ i ≤ n.

Assuming that ∆(U) ≤ d/16, we have

dist2(U, V ) =

n∑

i=1

‖vi − ui‖2 ≤
∆(U)

d
and ∆(V ) ≤ 20∆(U).

Proof. For the movement,

n∑

i=1

‖vi − ui‖2 =

n∑

i=1

∥∥∥∥∥(
√

d

n

1

‖ui‖
− 1)ui

∥∥∥∥∥

2

=

n∑

i=1

(√
d

n
− ‖ui‖

)2

=

n∑

i=1

(
d

n
− ‖ui‖2

)2

/

(√
d

n
+ ‖ui‖

)2

≤ n

d

n∑

i=1

(
d

n
− ‖ui‖2

)2

≤ ∆(U)

d
,

where the last inequality follows from Definition 4.5.2.

For the bound on ∆(V ), since ‖vi‖2 = d/n and s(V ) = d, it follows from Definition 4.5.2 that

∆(V ) = d tr(Id −
n∑

i=1

viv
T
i )

2 = d

∥∥∥∥∥Id −
n∑

i=1

viv
T
i

∥∥∥∥∥

2

F

≤ 2d

∥∥∥∥∥Id −
n∑

i=1

uiu
T
i

∥∥∥∥∥

2

F

+ 2d

∥∥∥∥∥

n∑

i=1

uiu
T
i −

n∑

i=1

viv
T
i

∥∥∥∥∥

2

F

,
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where the last inequality uses that ‖A+B‖2F ≤ 2 ‖A‖2F + 2 ‖B‖2F for two symmetric matrices A
and B.

Let I be the set of i such that ‖ui‖2 ≤ d
2n . Note that

∆(U) ≥ n
∑

i∈I

(
d

n
− ‖ui‖2)2 ≥ n · ( d

2n
)2|I| =⇒ |I| ≤ 4n

d2
∆(U).

Let γi = 1− d
n ‖ui‖

−2 if i /∈ I and γi = 0 for i ∈ I. By triangle inequality and the definition of vi,
∥∥∥∥∥

n∑

i=1

uiu
T
i −

n∑

i=1

viv
T
i

∥∥∥∥∥
F

≤
∥∥∥∥∥
∑

i∈I

uiu
T
i −

∑

i∈I

viv
T
i

∥∥∥∥∥
F

+

∥∥∥∥∥

n∑

i=1

γiuiu
T
i

∥∥∥∥∥
F

.

For the first term, using that ∆(U) ≤ d
16 , it follows that

∥∥∥∥∥
∑

i∈I

uiu
T
i −

∑

i∈I

viv
T
i

∥∥∥∥∥
F

≤
∑

i∈I

(∥∥uiuTi
∥∥
F
+
∥∥vivTi

∥∥
F

)
≤ 2d

n
|I| ≤ 8

d
∆(U) ≤ 2

√
∆(U)

d
.

For the second term, we have that
∥∥∥∥∥

n∑

i=1

γiuiu
T
i

∥∥∥∥∥

2

F

=

n∑

i=1

n∑

j=1

γiγj(u
T
i uj)

2 ≤
n∑

i=1

n∑

j=1

(
γ2i
2

+
γ2j
2

)
(uTi uj)

2 =

n∑

i=1

γ2i tr(uiu
T
i

n∑

j=1

uju
T
j ).

Using that ∆(U) ≤ d, it follows that
∑n

j=1 uju
T
j � 2I and hence

∥∥∥∥∥

n∑

i=1

γiuiu
T
i

∥∥∥∥∥

2

F

≤ 2

n∑

i=1

γ2i tr(uiu
T
i ) = 2

∑

i/∈I

(‖ui‖2 − d
n)

2

‖ui‖2
≤ 4

n

d

∑

i/∈I

(‖ui‖2 −
d

n
)2 ≤ 4

d
∆(U).

Combining both terms, we have that
∥∥∥∥∥

n∑

i=1

uiu
T
i −

n∑

i=1

viv
T
i

∥∥∥∥∥
F

≤ 4

√
∆(U)

d
.

Therefore,

∆(V ) ≤ 2d

∥∥∥∥∥Id −
n∑

i=1

uiu
T
i

∥∥∥∥∥

2

F

+ 2d

∥∥∥∥∥

n∑

i=1

uiu
T
i −

n∑

i=1

viv
T
i

∥∥∥∥∥

2

F

≤ 2∆(U) + 16∆(U).

Next, we bound the movement in the rest of the perturbation process.

Lemma 4.5.4. Let U = {u1, . . . , un} where ui ∈ R
d and ‖ui‖2 = d/n for 1 ≤ i ≤ n be the vectors

after the preprocessing step of the perturbation process. Then the expected squared distance between
U and the output W of the perturbation process in Procedure 4.5.1 is

E dist2(U,W ) = E

n∑

i=1

‖ui − wi‖2 ≤ 2σ2dn.
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Proof. By the triangle inequality, for any 1 ≤ j ≤ n,

‖uj − wj‖ ≤ ‖uj − vj‖+ ‖vj − wj‖ = ‖zj‖+
∥∥∥∥∥vj −

√
d

n

vj
‖vj‖

∥∥∥∥∥

= ‖zj‖+
∣∣∣∣∣‖vj‖ −

√
d

n

∣∣∣∣∣ = ‖zj‖+
∣∣∣ ‖uj + zj‖ − ‖uj‖

∣∣∣ ≤ 2 ‖zj‖ ,

where we used vj = uj + zj in the perturbation process and ‖uj‖2 = d/n. Therefore,

E dist2(U,W ) = E

n∑

j=1

‖uj −wj‖2 ≤ 2E
n∑

j=1

‖zj‖2 ≤ 2
n∑

j=1

σ2d = 2σ2dn,

where the second inequality follows because E ‖xj‖2 = dσ2 by definition and zj is a projection of
xj as stated in Procedure 4.5.1.

Facts and Results for the Rest of the Analysis

We list some facts and results for the analysis of the perturbation process. First we start with some
facts about projection matrices.

Fact 4.5.5 (projection matrices). Some basic facts about projection matrices that we will use:

1. An orthogonal projection matrix P ∈ R
n×n has only two eigenvalues 1 and 0, with multiplicity

rank(P ) and n− rank(P ) respectively. In particular, tr(P ) = rank(P ) as trace is equal to the
sum of eigenvalues.

2. For a real symmetric matrix A ∈ R
n×n, it holds that ‖A‖2F =

∑n
i=1 λi(A)

2 where λi(A) is
the i-th eigenvalue of A. In particular, for an orthogonal projection matrix P , it follows that
‖P‖2F = rank(P ).

3. For an orthogonal projection matrix P ∈ R
n×n, it holds that 0 � P � In, and any principle

submatrix Q of P satisfies 0 � Q � I. In particular, if the principle submatrix Q of P is a
k × k matrix, then ‖Q‖2F ≤ k.

4. For a positive semidefinite matrix A ∈ R
n×n, it holds that ‖A‖F ≤ tr(A). This follows from

tr(A) =
∑n

i=1 λi(A), λi(A) ≥ 0 for all i by our assumption and the previous fact.

Next we state some results about Gaussian distributions that we will use.

Fact 4.5.6 (Gaussian distribution). Some results about Gaussian distributions that we will use:

1. (Moment Bound: Theorem 5.22 in [35]) For any mean 0 log-concave distribution p, it holds
that

Ex∼p ‖x‖k ≤ (2k)k
(
Ex∼p ‖x‖2

)k/2
.

Since multivariate Gaussian distributions are log-concave, we can apply this results to x, y, z
in the perturbation process.
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2. (Isserlis’ Theorem) If (x1, x2, x3, x4) is a zero-mean multivariate normal random vector, then

E[x1x2x3x4] = E[x1x2]E[x3x4] + E[x1x3]E[x2x4] + E[x1x4]E[x2x3].

3. Let y ∼ N(0,Σ). Then

Var[‖y‖22] = E[‖y‖42]− (E[‖y‖22])2 = 2 ‖Σ‖2F .

This can be seen by reducing to the diagonal case and using the fact that Var[x2] = 2 for
x ∼ N(0, 1).

Finally, we state some concentration inequalities.

Fact 4.5.7 (concentration inequalities). Some concentration inequalities that we will use:

1. (Chernoff bound) Let X1, . . . ,Xn be independent random variables with Xi ∈ {0, 1}. Let
X =

∑n
i=1Xi. Then, for any δ > 0

P(X ≥ (1 + δ)EX) ≤
(

eδ

(1 + δ)δ

)EX

.

2. (Theorem 6.1 of [33]) For any δ ≥ 0, we have

Pz∼N(0,In)

(
zTAz ≥ trA+ 2 ‖A‖F

√
δ + 2 ‖A‖2 δ

)
≤ e−δ.

3. If I � A � 0, for any 0 ≤ δ ≤ 1
e2

trA,

Pz∼N(0,In)

(
zTAz ≤ δ

)
≤
(

δ

trA

) 1

4
trA

.

Proof. We include a proof of the last concentration inequality for completeness. First, we can
assume that A is a diagonal matrix. Otherwise, we can write A = UDUT where the columns in U
are orthonormal and D is a diagonal matrix. Then tr(A) = tr(UDUT ) = tr(DUTU) = tr(D) and
UT z is still distributed as N(0, In), both are because the columns in U are orthonormal. Therefore,
the problem is reduced to proving the inequality for the diagonal matrix D.

So we assume A is diagonal and let Aii = ai where 0 ≤ ai ≤ 1. Then zTAz =
∑

i aiz
2
i . By the

moment generating function of the chi-squared distribution, we know that for u < 1/2,

Ezie
uz2i = (1− 2u)−1/2.

Since zi are independent, for any u > −1/2,

Eze
−u(

∑
i aiz

2
i ) =

∏

i

(1 + 2uai)
−1/2 = e−

1

2

∑
i log(1+2uai).

71



By Markov’s inequality,

Pz

(∑

i

aiz
2
i ≤ δ

)
= Pz

(
e−u(

∑
i aiz

2
i ) ≤ e−uδ

)
≤ Eze

−u(
∑

i aiz
2
i )

e−uδ
≤ euδ−

1

2

∑
i log(1+2uai).

Let λ ,
∑

ai. To upper bound the RHS, we would like to lower bound the term
∑

i log(1 + 2uai)
for any 0 ≤ ai ≤ 1 with

∑
ai = λ. Since

∑
i log(1 + 2uai) is concave, the minimum is achieved

when we set ⌊λ⌋ of ai to be one, one ai to be λ− ⌊λ⌋ and the rest to be zero, and this gives us a
lower bound ∑

i

log(1 + 2uai) ≥ λ log(1 + 2u).

Plugging this back into the previous inequality and choosing u = λ
2δ − 1

2 , we get

Pz(
∑

i

aiz
2
i ≤ δ) ≤ exp(uδ − λ

2
log(1 + 2u)) ≤ exp(

λ

2
− δ

2
− λ

2
log(

λ

δ
)).

Therefore, when δ ≤ λ/e2, we conclude that

Pz(z
TAz ≤ δ) = Pz(

∑

i

aiz
2
i ≤ δ) ≤ exp(−λ

4
log(

λ

δ
)) =

(
δ

λ

)λ
4

=

(
δ

trA

) 1

4
trA

.

4.6 Bounding the Increase of ∆ in the Perturbation Process

In this subsection, we bound the increase of ∆ in the perturbation process after the preprocessing
step. The proof is a bit long as there are many terms to keep track of.

Proposition 4.6.1. Let U = {u1, . . . , un} where ui ∈ R
d and ‖ui‖2 = d/n for 1 ≤ i ≤ n be the

vectors after the preprocessing step of the perturbation process. Assume ∆(U) ≤ 1 and σ2 ≤ 1
n .

Then the expected value of ∆(W ) for the output W of the perturbation process in Procedure 4.5.1
is

E∆(W ) ≤ 6∆(U) + 40σ4n2
√
∆(U) + 107σ4d3n+ 1014σ6d3n3.

Proof. Since ‖wi‖2 = d/n by the postprocessing step of the perturbation process, by Defini-
tion 4.5.2,

∆(W ) = d tr(Id −
n∑

i=1

wiw
T
i )

2 = d

∥∥∥∥∥Id −
n∑

i=1

wiw
T
i

∥∥∥∥∥

2

F

.

By the property of the first subspace L1,

‖vi‖2 = ‖ui + zi‖2 = ‖ui‖2 + 2〈ui, zi〉+ ‖zi‖2 = ‖ui‖2 + ‖zi‖2 ,
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as 〈ui, zi〉 = 0 for 1 ≤ i ≤ n by construction. Therefore, by the definition of wi and ‖ui‖2 = d/n,

n∑

i=1

wiw
T
i =

d

n

n∑

i=1

viv
T
i

‖vi‖2
=

d

n

n∑

i=1

viv
T
i

‖ui‖2 + ‖zi‖2
=

n∑

i=1

viv
T
i

1 + n
d ‖zi‖

2 .

Using that 1
1+x = 1− x+ x2

1+x , we split the right hand side of the above equality into three terms
so that

n∑

i=1

wiw
T
i =

n∑

i=1

viv
T
i −

n

d

n∑

i=1

viv
T
i ‖zi‖2 +

n2

d2

n∑

i=1

viv
T
i

‖zi‖4

1 + n
d ‖zi‖

2 .

We will show that the first term
∑n

i=1 viv
T
i ≈ (1+σ2 n

d (d−1))I, and the second term
∑n

i=1 viv
T
i ‖zi‖2 ≈

σ2(d− 1)I. So, our plan is to bound

1

d
E∆(W ) = E

∥∥∥∥∥

n∑

i=1

wiw
T
i − I

∥∥∥∥∥

2

F

= E

∥∥∥∥∥

n∑

i=1

viv
T
i − I − n

d

n∑

i=1

viv
T
i ‖zi‖2 +

n2

d2

n∑

i=1

viv
T
i

‖zi‖4

1 + n
d ‖zi‖

2

∥∥∥∥∥

2

F

≤ 3E

∥∥∥∥∥

n∑

i=1

viv
T
i − (1 + σ2n

d
(d− 1)I

∥∥∥∥∥

2

F

+
3n2

d2
E

∥∥∥∥∥

n∑

i=1

viv
T
i ‖zi‖2 − σ2(d− 1)I

∥∥∥∥∥

2

F

+
3n4

d4
E

∥∥∥∥∥

n∑

i=1

viv
T
i

‖zi‖4

1 + n
d ‖zi‖

2

∥∥∥∥∥

2

F

, (4.5)

where we used the inequality that ‖A+B + C‖2F ≤ 3 ‖A‖2F + 3 ‖B‖2F + 3 ‖C‖2F for symmetric
matrices A,B,C.

We will bound the three terms separately in the following three claims, and then we will combine the
bounds to prove the lemma. The following claim relies on the second subspace in the perturbation
process.

Claim 4.6.2. Let u1, . . . , un ∈ R
d be such that ‖uj‖2 = d

n for 1 ≤ j ≤ n. Assume n ≥ d2 and
∆(U) ≤ d4. Then

E

∥∥∥∥∥

n∑

i=1

viv
T
i − (1 + σ2n

d
(d− 1))I

∥∥∥∥∥

2

F

≤ 2

∥∥∥∥∥

n∑

i=1

uiu
T
i − I

∥∥∥∥∥

2

F

+ 8σ4

(
n2

d

√
∆(U) + nd2

)
.

Proof. Recall that vi = ui + zi. Since z is in the second subspace L2, we have the important
property that the “cross terms”

n∑

i=1

uiz
T
i =

n∑

i=1

ziu
T
i = 0.

This implies that

n∑

i=1

viv
T
i =

n∑

i=1

(
uiu

T
i + uiz

T
i + ziu

T
i + ziz

T
i

)
=

n∑

i=1

uiu
T
i +

n∑

i=1

ziz
T
i .
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The main work of this claim is to bound

E

∥∥∥∥∥

n∑

i=1

ziz
T
i

∥∥∥∥∥

2

F

= E tr
( n∑

i=1

ziz
T
i

n∑

j=1

zjz
T
j

)
= E

n∑

i=1

n∑

j=1

〈zi, zj〉2 = E

n∑

i=1

n∑

j=1

d∑

l1=1

d∑

l2=1

zl1,izl1,jzl2,izl2,j ,

where we recall that zl,i = (zi)l as defined in Procedure 4.5.1. We apply Isserlis’ theorem in
Fact 4.5.6 to break the right hand side into three terms so that

E

∥∥∥∥∥

n∑

i=1

ziz
T
i

∥∥∥∥∥

2

F

=
∑

i,j,l1,l2

E(zl1,izl1,j)E(zl2,izl2,j)+
∑

i,j,l1,l2

E(zl1,izl2,i)E(zl1,jzl2,j)+
∑

i,j,l1,l2

E(zl1,izl2,j)E(zl1,jzl2,i).

(4.6)
To bound these terms, we consider the (d× n)× (d× n) matrix Z where

Z(l1,i),(l2,j) = E(zl1,izl2,j).

By the perturbation process,
Z = σ2PL1∩L2

.

To bound the first term in (4.6), let Z(l) be the n × n matrix where (Z(l))ij := E(zl,izl,j). Then,
the first term is

∑

i,j,l1,l2

E(zl1,izl1,j)E(zl2,izl2,j) =
∑

i,j,l1,l2

Z
(l1)
ij Z

(l2)
ij =

∑

l1,l2

tr(Z(l1)Z(l2)) ≤
∑

l1,l2

∥∥∥Z(l1)
∥∥∥
F

∥∥∥Z(l2)
∥∥∥
F
,

where the inequality is by Cauchy-Schwarz. Note that Z(l) is a principle submatrix of the matrix

Z = σ2PL1∩L2
where PL1∩L2

is a projection matrix, so Z(l) � σ2In and hence
∥∥Z(l)

∥∥2
F
≤ σ4n by

Fact 4.5.5(2). Therefore, the first term is bounded by

∑

i,j,l1,l2

E(zl1,izl1,j)E(zl2,izl2,j) ≤
d∑

l1=1

d∑

l2=1

∥∥∥Z(l1)
∥∥∥
F

∥∥∥Z(l2)
∥∥∥
F
≤ σ4d2n.

To bound the third term in (4.6), let Z(i,j) be the d × d matrix where Z
(i,j)
l1l2

= E(zl1,izl2,j). Then,
the third term is

∑

i,j,l1,l2

E(zl1,izl2,j)E(zl1,jzl2,i) =
∑

i,j,l1,l2

Z
(i,j)
l1,l2

Z
(j,i)
l1,l2

=
∑

i,j

tr(Z(i,j)Z(j,i))

≤
∑

i,j

∥∥∥Z(i,j)
∥∥∥
F

∥∥∥Z(j,i)
∥∥∥
F
=
∑

i,j

∥∥∥Z(i,j)
∥∥∥
2

F
= ‖Z‖2F ≤ σ4dn.

where the first inequality is by Cauchy-Schwarz and the second inequality is by Fact 4.5.5(2) as
Z = σ2PL1∩L2

.

The second term in (4.6) requires more care. Let Z(i) be the d×d matrix where Z
(i)
l1,l2

= E(zl1,izl2,i).
Then, the second term is

∑

i,j,l1,l2

E(zl1,izl2,i)E(zl1,jzl2,j) =
∑

i,j,l1,l2

Z
(i)
l1,l2

Z
(j)
l1,l2

=
∑

i,j

tr(Z(i)Z(j)) =

∥∥∥∥∥

n∑

i=1

Z(i)

∥∥∥∥∥

2

F

.
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Note that we can bound the second term as in the first term to get a bound σ4dn2, but we could not

afford the n2 factor. We bound
∥∥∑n

i=1 Z
(i)
∥∥2
F

by looking at the special structure in the subspace

L1. Let y ∈ R
d×n be the (noise) vector in the perturbation process, and let Y be the (d×n)×(d×n)

matrix and Y (i) be the d× d matrix where

Y(l1,i),(l2,j) = E(yl1,iyl2,j) so that Y = σ2PL1
, and Y

(i)
l1,l2

= E(yl1,iyl2,i).

Note that 0 � Z(i) � Y (i) for all i and hence
∥∥∑n

i=1 Z
(i)
∥∥2
F
≤
∥∥∑n

i=1 Y
(i)
∥∥2
F
. Now, we use the

special structure of L1 to bound
∥∥∑n

i=1 Y
(i)
∥∥
F
. As stated in step (3) in the perturbation process

in Procedure 4.5.1, Y (i) can be described explicitly as

Y (i) = σ2(Id −
n

d
uiu

T
i ).

So,

∥∥∥∥∥

n∑

i=1

Y (i)

∥∥∥∥∥
F

= σ2

∥∥∥∥∥

n∑

i=1

(Id −
n

d
uiu

T
i )

∥∥∥∥∥
F

= σ2

∥∥∥∥∥nId −
n

d

n∑

i=1

uiu
T
i

∥∥∥∥∥
F

≤ σ2

(∥∥∥∥∥
n

d
(Id −

n∑

i=1

uiu
T
i )

∥∥∥∥∥
F

+
∥∥∥(n− n

d
)Id

∥∥∥
F

)
= σ2

(
n

d

√
∆(U)

d
+ n(1− 1

d
)
√
d

)
,

where the last equality is by Definition 4.5.2 and the assumption that ‖ui‖2 = d/n for 1 ≤ i ≤ n.
Hence, ∥∥∥∥∥

n∑

i=1

Z(i)

∥∥∥∥∥
F

≤ σ2

(
n

d

√
∆(U)

d
+ n(1− 1

d
)
√
d

)
.

Squaring both sides, we get that the second term is

∥∥∥∥∥

n∑

i=1

Z(i)

∥∥∥∥∥

2

F

≤ σ4

(
n2∆(U)

d3
+ dn2(1− 1

d
)2 +

2n2

d
(1− 1

d
)
√

∆(U)

)
≤ σ4

(
dn2(1− 1

d
)2 +

3n2

d

√
∆(U)

)
,

where the last inequality follows from the assumption that ∆(U) ≤ d4. Putting all three bounds
back to (4.6), we finally have

E

∥∥∥∥∥

n∑

i=1

ziz
T
i

∥∥∥∥∥

2

F

≤ σ4

(
dn2(1− 1

d
)2 +

3n2

d

√
∆(U) + 2d2n

)
.

Going back to the left hand side of the claim,

E

∥∥∥∥∥

n∑

i=1

viv
T
i − (1 + σ2n

d
(d− 1))I

∥∥∥∥∥

2

F

≤ 2E

∥∥∥∥∥

n∑

i=1

uiu
T
i − I

∥∥∥∥∥

2

F

+ 2E

∥∥∥∥∥

n∑

i=1

ziz
T
i − σ2n

d
(d− 1)I

∥∥∥∥∥

2

F

,

(4.7)
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where the second term in (4.7) is

2E

∥∥∥∥∥

n∑

i=1

ziz
T
i

∥∥∥∥∥

2

F

− 4σ2n(1− 1

d
)E

n∑

i=1

‖zi‖2 + 2σ4dn2(1− 1

d
)2.

Note that

E

n∑

i=1

‖zi‖2 =
n∑

i=1

tr(Z(i)) = tr(Z) = σ2 tr(PL1∩L2
) = σ2 rank(PL1∩L2

) ≥ σ2(dn− n− d2),

where the last equality is by Fact 4.5.5(1) and the inequality is because the codimension of L1 is at

most n and the codimension of L2 is at most d2. Using the bound for E
∥∥∑n

i=1 ziz
T
i

∥∥2
F
, the second

term in (4.7) is at most

2σ4

(
dn2(1− 1

d
)2 +

3n2

d

√
∆(U) + 2d2n− 2n(1− 1

d
)(dn − n− d2) + dn2(1− 1

d
)2
)

= 2σ4

(
3n2

d

√
∆(U) + 2d2n+ 2nd2(1− 1

d
)

)
≤ 2σ4

(
3n2

d

√
∆(U) + 4nd2

)
.

Putting this back into the second term of (4.7) proves the claim.

In the second term of (4.5), we show that
∑n

i=1 viv
T
i ‖zi‖2 is close to the matrix σ2(d− 1)I.

Claim 4.6.3. Let u1, . . . , un ∈ R
d be such that ‖uj‖2 = d

n for 1 ≤ j ≤ n. Assuming σ2 ≤ 1
n and

∆(U) ≤ d, then

E

∥∥∥∥∥

n∑

i=1

viv
T
i ‖zi‖2 − σ2(d− 1)I

∥∥∥∥∥

2

F

≤ 4σ4d∆(U) + 106
d4

n
σ4 + 108σ6d4n.

Proof. Recall that vi = ui + zi, so

n∑

i=1

viv
T
i ‖zi‖2 =

n∑

i=1

uiu
T
i ‖zi‖2 +

n∑

i=1

(uiz
T
i + ziu

T
i + ziz

T
i ) ‖zi‖2 .

To bound the left hand side of the claim, we use the above equation to split the left hand side into
two terms

E

∥∥∥∥∥

n∑

i=1

viv
T
i ‖zi‖2 − σ2(d− 1)I

∥∥∥∥∥

2

F

≤ 2E

∥∥∥∥∥

n∑

i=1

uiu
T
i ‖zi‖2 − σ2(d− 1)I

∥∥∥∥∥

2

F

+ 2E

∥∥∥∥∥

n∑

i=1

(uiz
T
i + ziu

T
i + ziz

T
i ) ‖zi‖2

∥∥∥∥∥

2

F

. (4.8)

To bound the first term on the right hand side of (4.8), we let

ri = ‖zi‖2 − ‖yi‖2 .
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We further split the first term in (4.8) into two terms such that

E

∥∥∥∥∥

n∑

i=1

uiu
T
i ‖zi‖2 − σ2(d− 1)I

∥∥∥∥∥

2

F

≤ 2E

∥∥∥∥∥

n∑

i=1

uiu
T
i ‖yi‖2 − σ2(d− 1)I

∥∥∥∥∥

2

F

+ 2E

∥∥∥∥∥

n∑

i=1

riuiu
T
i

∥∥∥∥∥

2

F

.

(4.9)

Recall from point (3) of Procedure 4.5.1 that yi = xi− n
d 〈xi, ui〉ui, this allows us to compute E ‖yi‖2

exactly as

E ‖yi‖2 = E ‖xi‖2 − E
n

d
〈xi, ui〉2 = σ2d− n

d
σ2 ‖ui‖2 = σ2(d− 1), (4.10)

where the second equality is because xi is a d-dimensional vector in which each coordinate is an
independent Gaussian variable with variance σ2. Therefore, the first term in (4.9) is

E

∥∥∥∥∥

n∑

i=1

uiu
T
i ‖yi‖2 − σ2(d− 1)I

∥∥∥∥∥

2

F

=

n∑

i=1

n∑

j=1

〈ui, uj〉2 · E ‖yi‖2 ‖yj‖2 − 2σ2(d− 1)

n∑

i=1

‖ui‖2 E ‖yi‖2 + σ4(d− 1)2d

= σ4(d− 1)2




n∑

i=1

n∑

j=1

〈ui, uj〉2 − 2

n∑

i=1

‖ui‖2 + d


+

n∑

i=1

‖ui‖4
(
E ‖yi‖42 − (E ‖yi‖2)2

)

= σ4(d− 1)2

∥∥∥∥∥

n∑

i=1

uiu
T
i − I

∥∥∥∥∥

2

F

+
d2

n2

n∑

i=1

(
E ‖yi‖42 − (E ‖yi‖2)2

)

= σ4(d− 1)2
∆(U)

d
+

d2

n2

n∑

i=1

(
E ‖yi‖42 − (E ‖yi‖2)2

)

≤ σ4d∆(U) +
d2

n2

n∑

i=1

(
E ‖yi‖42 − (E ‖yi‖2)2

)
,

where the second equality uses that yi and yj are independent random variables for i 6= j and
E ‖yi‖2 = σ2(d − 1) as calculated above, the third equality is by our assumption that ‖ui‖2 = d/n
for 1 ≤ i ≤ n, and the last equality follows from Definition 4.5.2 and the same assumption.

For the variance term, since y follows a multivariate distribution with covariance matrix σ2(Id −
n
duiu

T
i ), Fact 4.5.6(3) implies that

E ‖yi‖4 −
(
E ‖yi‖2

)2
= 2σ4

∥∥∥Id −
n

d
uiu

T
i

∥∥∥
2

F
= 2σ4(d− 1),

where the last equality uses the assumption that ‖ui‖2 = d/n for 1 ≤ i ≤ n. Therefore, the first
term in (4.9) is

E

∥∥∥∥∥

n∑

i=1

uiu
T
i ‖yi‖2 − σ4(d− 1)I

∥∥∥∥∥

2

F

≤ σ4d∆(U) + 2σ4 d
3

n
. (4.11)
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For the second term in (4.9), we note as in Lemma 4.5.3 that

E

∥∥∥∥∥
∑

i

riuiu
T
i

∥∥∥∥∥

2

F

= E

n∑

i,j=1

rirj(u
T
i uj)

2 ≤ E

n∑

i,j=1

(
r2i
2

+
r2j
2

)
(uTi uj)

2 = E

n∑

i=1

r2i tr(uiu
T
i

n∑

j=1

uju
T
j ).

Using that ∆(U) ≤ d, we have that
∑n

j=1 uju
T
j � 2I and hence

E

∥∥∥∥∥
∑

i

riuiu
T
i

∥∥∥∥∥

2

F

≤ 2E

n∑

j=1

r2j ‖uj‖2 =
2d

n
E

n∑

j=1

(
‖zj‖2 − ‖yj‖2

)2
.

Note that ∣∣∣‖zi‖2 − ‖yi‖2
∣∣∣ ≤ (‖yi‖+ ‖zi − yi‖)2 − ‖yi‖2 = 2 ‖zi − yi‖ ‖yi‖+ ‖zi − yi‖2 ,

which implies that

E

(
‖zi‖2 − ‖yi‖2

)2
≤ 8E ‖zi − yi‖2 ‖yi‖2 + 2E ‖zi − yi‖4 .

By the AM-GM inequality,

‖zi − yi‖2 ‖yi‖2 ≤
E ‖yi‖2

2E ‖zi − yi‖2
‖zi − yi‖4 +

E ‖zi − yi‖2

2E ‖yi‖2
‖yi‖4 .

Therefore,

E

(
‖zi‖2 − ‖yi‖2

)2
≤ 4E ‖yi‖2

E ‖zi − yi‖2
E ‖zi − yi‖4 +

4E ‖zi − yi‖2

E ‖yi‖2
E ‖yi‖4 + 2E ‖zi − yi‖4

≤ 4E ‖yi‖2

E ‖zi − yi‖2
· 212

(
E ‖zi − yi‖2

)2
+

4E ‖zi − yi‖2

E ‖yi‖2
· 212

(
E ‖yi‖2

)2
+ 2 · 212(E ‖zi − yi‖2)2

= 215E ‖yi‖2 E ‖zi − yi‖2 + 214(E ‖zi − yi‖2)2,
where we used Fact 4.5.6 in the second inequality. Let PL1∩L⊥

2
be the projector to the subspace L1∩

L⊥
2 such that z−y = σ2PL1∩L⊥

2
x. Let Q(i) be the n×n matrix where (Q(i))l1,l2 = (PL1∩L⊥

2
)(l1,i),(l2,i)

such that σ2 tr(Q(i)) = E ‖zi − yi‖2; in other words, Q(i) ∈ R
d×d is the (i, i)-th block of PL1∩L⊥

2
. So

the second term in (4.9) is

E

∥∥∥∥∥
∑

i

riuiu
T
i

∥∥∥∥∥

2

F

≤ 216
d

n

n∑

i=1

(
E ‖yi‖2 E ‖zi − yi‖2 + (E ‖zi − yi‖2)2

)

≤ 216
d

n
σ4

n∑

i=1

(
d · tr(Q(i)) + (tr(Q(i)))2

)

≤ 217
d2

n
σ4

n∑

i=1

tr(Q(i))

= 217
d2

n
σ4 tr(PL1∩L⊥

2
)

≤ 217
d4

n
σ4, (4.12)
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where the second inequality is by (4.10) and the definition of Q(i), the third inequality uses
Fact 4.5.5(3) tr(Q(i)) ≤ d as Q(i) is a d × d principle submatrix of a projector matrix, and the
last inequality uses Fact 4.5.5(1) that L2 is of codimension at most d2. Plugging back the right
hand sides of (4.11) and (4.12) into (4.9), we get that

E

∥∥∥∥∥

n∑

i=1

uiu
T
i ‖zi‖2 − σ2(d− 1)I

∥∥∥∥∥

2

F

≤ 2σ4d∆(U) + 4σ4 d
3

n
+ 218

d4

n
σ4. (4.13)

For the second term in (4.8), using triangle inequality and Cauchy-Schwarz,

∥∥∥∥∥

n∑

i=1

(uiz
T
i + ziu

T
i + ziz

T
i ) ‖zi‖2

∥∥∥∥∥
F

≤
n∑

i=1

(2 ‖ui‖2 ‖zi‖3 + ‖zi‖4) = 2

√
d

n

n∑

i=1

‖zi‖3 +
n∑

i=1

‖zi‖42 .

Again we bound the higher moments of ‖zi‖ using Fact 4.5.6(1). Since E ‖zi‖2 ≤ σ2d, we can bound

E

∥∥∥∥∥

n∑

i=1

(uiz
T
i + ziu

T
i + ziz

T
i ) ‖zi‖2

∥∥∥∥∥

2

F

≤ 8
d

n
E

( n∑

i=1

‖zi‖3
)2

+ 2E
( n∑

i=1

‖zi‖4
)2

≤ 8
d

n

(
63n(σ2d)3/2

)2
+ 2
(
84n(σ2d)2

)2
≤ 106σ6d4n+ 4 · 107σ8d4n2. (4.14)

Combining (4.13) and (4.14) into (4.8), we get that

E

∥∥∥∥∥

n∑

i=1

uiu
T
i ‖zi‖2 − σ2(d− 1)I

∥∥∥∥∥

2

F

≤ 4σ4d∆(U) + 8σ4 d
3

n
+ 219

d4

n
σ4 + 2 · 106σ6d4n+ 8 · 107σ8d4n2

≤ 4σ4d∆(U) + 106
d4

n
σ4 + 108σ6d4n,

where we used the assumption that σ2 ≤ 1
n .

Finally, we bound the third term of the right hand side of (4.5).

Claim 4.6.4. Let u1, . . . , un ∈ R
d be such that ‖uj‖2 = d

n for 1 ≤ j ≤ n. Assume σ2 ≤ 1
n . Then,

E

∥∥∥∥∥

n∑

i=1

viv
T
i

‖zi‖4

1 + n
d ‖zi‖

2

∥∥∥∥∥

2

F

≤ 1013σ8d6.

Proof. By triangle inequality,

∥∥∥∥∥

n∑

i=1

viv
T
i

‖zi‖4

1 + n
d ‖zi‖

2

∥∥∥∥∥
F

≤
n∑

i=1

‖zi‖4

1 + n
d ‖zi‖

2 ‖vi‖
2 ≤

n∑

i=1

‖zi‖4 (‖ui‖2 + ‖zi‖2) =
d

n

n∑

i=1

‖zi‖4 +
n∑

i=1

‖zi‖6 ,
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where we used that ‖vi‖2 = ‖ui‖2 + ‖zi‖2 by the property of the subspace L1 and ‖ui‖2 = d/n for
1 ≤ i ≤ n. Therefore, by Fact 4.5.6(1), with E ‖zi‖22 ≤ σ2d and σ2 ≤ 1

n , we can bound

E

∥∥∥∥∥

n∑

i=1

viv
T
i

‖zi‖4

1 + n
d ‖zi‖

2

∥∥∥∥∥

2

F

≤ 2d2

n2
E

( n∑

i=1

‖zi‖4
)2

+ E

( n∑

i=1

‖zi‖6
)2

≤ 2d2

n2

(
84n(σ2d)2

)2
+
(
(12)6n(σ2d)3)2 ≤ 1013σ8d6.

Using Claim 4.6.2, Claim 4.6.3 and Claim 4.6.4 in (4.5), we have that

E∆(W ) ≤ 3d


2

∥∥∥∥∥

n∑

i=1

uiu
T
i − I

∥∥∥∥∥

2

F

+ 8σ4

(
n2

d

√
∆(U) + nd2

)


+
3n2

d

(
4σ4d∆(U) + 106

d4

n
σ4 + 108σ6d4n

)
+

3n4

d3
(
1013σ8d6

)

≤ 6∆(U) + 24σ4n2
√

∆(U) + 24σ4d3n+ 12σ4n2∆(U)

+ 3 · 106σ4nd3 + 3 · 108σ6d3n3 + 3 · 1013σ8d3n4

≤ 6∆(U) + 40σ4n2
√

∆(U) + 107σ4d3n+ 1014σ6d3n3,

where we used our assumptions that σ2 ≤ 1
n and ∆(U) ≤ 1.

4.7 Improved Capacity Lower Bound for a Perturbed Frame

Our goal in this subsection is to establish the foundation to prove a strong capacity lower bound
on a frame W produced by the perturbation process in Procedure 4.5.1. To prove a frame capacity
lower bound, as in Subsection 3.5, we use the reduction in Proposition 3.5.8 to construct a d × n
matrix B from W such that cap(B) ≤ cap(W ) and ∆(B) ≤ ∆(W ), and then our goal is reduced
to proving a strong lower bound on cap(B) in terms of ∆(B). In Subsection 4.3, we proved in
Theorem 4.3.4 that if a matrix B is pesudorandom, then cap(B) has a stronger lower bound than
the general lower bound in Proposition 3.5.15. The main work in this subsection is to prove that
B is pseudorandom if W is the output of the perturbation process.

Our plan is as follows. First, using the special structure in the frame setting, we show that the
matrix B has a simpler form than that in the general reduction from Proposition 3.5.8. Then, the
main work is a probabilistic analysis to prove that B is pseudorandom. In the next subsection,
we use the pseudorandom property to establish an improved capacity lower bound for a perturbed
frame.

Lemma 4.7.1. Given a frame U = {u1, . . . , un} where ui ∈ R
d for 1 ≤ i ≤ n, there exists an

orthonormal basis g1, . . . , gd ∈ R
d so that the d× n non-negative matrix A with

Aij = 〈gi, uj〉2 for 1 ≤ i ≤ d, 1 ≤ j ≤ n
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satisfies the properties

cap(A) ≤ cap(U) and ∆(A) ≤ ∆(U) and s(A) = s(U).

Furthermore, if ‖uj‖2 = d/n for 1 ≤ j ≤ n, then cj(A) = d/n for 1 ≤ j ≤ n.

Proof. The proof is mostly similar to the proof of Proposition 3.5.8, and so we focus on the observa-
tion that simplifies the matrix. Recall in Definition 3.7.1 that we reduce a frame U = {u1, . . . , un}
to an operator U = {U1, . . . , Un} where each Ul is a d × n matrix with the l-th column being ul
and other columns being zero. From Definition 3.7.2 the capacity of a frame U is defined as

cap(U) = cap(U) = inf
X�0

ddet(
∑n

l=1 UlXUT
l )

1/d

det(X)1/n
= inf

X�0

ddet(
∑n

l=1 Xllulu
T
l )

1/d

det(X)1/n
,

where the last equality follows from the specific U from a frame U as described above. As in
Proposition 3.5.8, we let X ∈ R

n×n be an approximate minimizer to this optimization problem
such that

X ≻ 0 and
ddet(

∑n
l=1Xllulu

T
l )

1/d

det(X)1/n
≤ cap(U) + δ for some δ > 0.

The observation is that X can be assumed to be a diagonal matrix. Consider the n × n diagonal
matrix X with Xii = Xii for 1 ≤ i ≤ n. We will show that X is a feasible solution to the
optimization problem with objective value at most that of X. Firstly, as X ≻ 0, each diagonal entry
of X is positive, and thus X ≻ 0. Secondly, it is clear that the numerators are the same. Finally,
Hadamard’s inequality (see [31] Theorem 7.8.1) says that for a positive definite matrix Y ∈ R

n×n,
we have det(Y ) ≤∏n

i=1 Yii, which implies that det(X) ≤∏n
i=1Xii = det(X). Therefore,

X ≻ 0 and
ddet(

∑n
l=1 X llulu

T
l )

1/d

det(X)1/n
≤ ddet(

∑n
l=1Xllulu

T
l )

1/d

det(X)1/n
≤ cap(U) + δ for some δ > 0.

Then, in the proof of Proposition 3.5.8, we consider the eigen-decomposition of X, and we can thus
assume that the orthonormal basis is simply the standard basis, i.e. fj = ej for 1 ≤ j ≤ n. The
(i, j)-th entry of the associated matrix A ∈ R

d×n is defined in (3.1) as

Aij = gTi
( n∑

l=1

Ulfjf
T
j U

T
l

)
gi

where g1, . . . , gd is an orthonormal basis. Using the special structure of Ul and fj = ej for 1 ≤ j ≤ n,
the (i, j)-th entry of the associated matrix thus becomes

Aij = gTi
( n∑

l=1

Uleje
T
j U

T
l

)
gi = gTi

(
Ujeje

T
j Uj

)
gi = 〈gi, uj〉2.

The rest of the proof is the same as the proof of Proposition 3.5.8, and we have cap(A) ≤ cap(U) =
cap(U), ∆(A) ≤ ∆(U) = ∆(U) and s(A) = s(U) = s(U). Finally, if ‖uj‖2 = d/n for 1 ≤ j ≤ n,
then notice that

∑n
j=1 U

T
j Uj =

d
nIn. It follows from the furthermore part in Proposition 3.5.8 that

cj(A) = d/n for 1 ≤ j ≤ n.
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Proving the Pseudorandom Property

The main result in this subsection is the following proposition.

Proposition 4.7.2. Let W = {w1, . . . , wn} where wj ∈ R
d for 1 ≤ j ≤ n be the output of the

perturbation process in Procedure 4.5.1 when U = {u1, . . . , un} where uj ∈ R
d for 1 ≤ j ≤ n is

given as the input with ‖uj‖2 = d/n for 1 ≤ j ≤ n. Let B be a d× n matrix with

Bij = 〈gi, wj〉2 for 1 ≤ i ≤ d and 1 ≤ j ≤ n where g1, . . . , gd ∈ R
d form an orthonormal basis.

Assume that

‖uj‖2 =
d

n
for 1 ≤ j ≤ n and σ2 ≤ 1

1600n
and n ≥ 1600d2

βζ
,

where ζ = (β/(800e))160 and β = 10−9 are absolute constants. Then B is (ζσ2, β)-pseudorandom
with probability at least 0.9.

Proof. Recall from Definition 4.3.2 for a matrix to be (α, β)-pseudorandom. The first property is
easy to check. The j-th column sum of B is

cj(B) =
d∑

i=1

〈gi, cj〉2 = ‖cj‖2 =
d

n
≥ dσ2,

where the second equality is because g1, . . . , gd is an orthonormal basis, the third equality is by
the postprocessing step in the perturbation process, and the inequality is by our assumption that
σ2 ≤ 1/n. Therefore, there must be an entry with value at least σ2, satisfying the first property in
Definition 4.3.2.

For the second property in Definition 4.3.2, we will prove that with probability at least 0.99 over
the perturbation process, for every row 1 ≤ i ≤ d, there are at most βn entries with 〈gi, wj〉2 < ζσ2.
We will establish this by proving a stronger statement that with probability at least 0.99 over the
perturbation process, for any unit vector g ∈ R

d, there are at most βn entries with 〈g,wj〉2 < ζσ2.

To do this, we follow the perturbation process and keep track of the pseudorandom property. Recall
that in the perturbation process, we first generate some correlated Gaussian noise z1, . . . , zn ∈ R

d

and set vj = uj + zj for 1 ≤ j ≤ n, and then we rescale each vj to form wi. In Lemma 4.7.6, we will
prove that with probability at least 0.99 over the perturbation process, for any unit vector g ∈ R

d,
there are at most βn/2 entries with 〈g, vj〉2 < 2ζσ2.

Assuming Lemma 4.7.6, we then consider the rescaling step. Since wj =
√

d
n

vj
‖vj‖

for 1 ≤ j ≤ n, we

have

〈g,wj〉2 =
d

n
‖vj‖−2 〈g, vj〉2 for 1 ≤ j ≤ n.

If we can prove that ‖vj‖2 ≤ 2d/n for at most βn/2 entries with probability at least 0.99, then this
implies the lemma that there are at most βn entries with 〈g,wj〉2 < ζσ2 with probability at least
0.9. Note that

‖vj‖2 = ‖uj + zj‖2 = ‖uj‖2 + 2〈uj , zj〉+ ‖zj‖2 = ‖uj‖2 + ‖zj‖2 ,

82



where the last equality is by the first subspace in the perturbation process that 〈uj , zj〉 = 0 for all
1 ≤ j ≤ n. Note that ‖zj‖2 ≤ ‖xj‖2 where xj ∈ R

d with each entry sampled from N(0, σ2), as zj
is a projection of xj in the perturbation process. By our assumption, E ‖xj‖2 = dσ2 ≤ d/(100n).
By Fact 4.5.7(2), P(‖xj‖2 ≥ d/n) ≤ e−100, and therefore the expected number of entries with
‖xj‖2 ≤ d/n is at most e−100n ≪ βn/2. By Chernoff bound, there are at most βn/2 entries with
‖xj‖2 > d/n with probability at least 0.99, and therefore ‖vj‖2 ≤ 2d/n for at most βn/2 entries
with probability at least 0.99.

To finish the proof of Proposition 4.7.2, it remains to prove Lemma 4.7.6 which is the main work
in this subsection. To prove Lemma 4.7.6, we first consider ṽj = uj + yj and prove in Lemma 4.7.3
that for any unit vector g ∈ R

d, there are a small number of entries with small 〈g, ṽj〉2, and then
we use it to prove Lemma 4.7.6. The idea is to use the special property of the subspace L1 in the
perturbation process to prove Lemma 4.7.3, and then we use that L2 is a subspace with codimension
d2 to argue that there are at most O(d2) more small entries in 〈g, vj〉2.
The core of the technical argument in this subsection is in the following lemma.

Lemma 4.7.3. Assume σ2 ≤ 1/(1600n) and n ≥ 4(d log d)/(βζ) and ζ ≤ (β/(800e))160. The
probability over the perturbation process that there exists a unit vector g ∈ R

d and a subset S ⊆ [n]
with |S| ≥ βn/4 such that

〈g, uj + yj〉2 ≤ 4ζσ2 for all j ∈ S

is at most 0.001.

Proof. Our plan is to use the concentration inequality in Fact 4.5.7(3) to prove that the probability
is small for a given g ∈ R

d and a given large subset S, and then we apply a union bound on an
epsilon-net in R

d and all large subsets S.

We first assume that ‖yj‖2 ≥ 100dσ2 for at most βn/8 vectors. The reason is as follows. Note
that ‖yj‖2 ≤ ‖xj‖2 where xj ∈ R

d with each entry independently sampled from N(0, σ2), as yj
is a projection of xj in the perturbation process. By definition, E ‖xj‖2 = dσ2. By Fact 4.5.7(2),
P(‖xj‖2 ≥ 100dσ2) ≤ e−100, and therefore the expected number of vectors with ‖xj‖2 ≥ 100dσ2 is
at most e−100n≪ βn/8. By Chernoff bound, there are at most βn/8 vectors with ‖xj‖2 ≥ 100dσ2

with probability at least 0.9999, and hence there are at most βn/8 vectors with ‖yj‖2 ≥ 100dσ2

with probability at least 0.9999. In the following, we condition on this event.

For an entry with |〈g, uj〉| ≥ ‖uj‖ /2 and ‖yi‖ ≤ 10
√
dσ, we have

|〈g, uj + yj〉| ≥ |〈g, uj〉| − |〈g, yj〉| ≥
1

2
‖uj‖ − ‖yj‖ ≥

1

2
‖uj‖ − 10

√
dσ ≥ 10

√
dσ ≫ 2

√
ζσ,

where the second last inequality is by our assumptions that ‖uj‖2 = d/n ≥ 1600dσ2. So, for an entry
with |〈g, uj〉| ≥ ‖uj‖ /2, it will be too small after the perturbation process only if ‖yi‖ ≥ 10

√
dσ.

Therefore, by the above assumption, there are at most βn/8 entries with |〈g, uj〉| ≥ ‖uj‖ /2 that
could become too small after the perturbation process.

Hence, we can restrict our attention to those entries with |〈g, uj〉| ≤ ‖uj‖ /2. The following claim
contains the key concentration argument.

83



Claim 4.7.4. Assume that n ≥ 2d/β. For a unit vector g and a subset S ⊆ [n] with |S| ≥ βn with
|〈g, uj〉| ≤ 3 ‖uj‖ /4 for all j ∈ S,

Py[〈g, uj + yj〉2 ≤ 16ζσ2 for all j ∈ S] ≤ (100ζ)|S|/20.

Proof. We will reduce our setting to applying Fact 4.5.7(3). Assume without loss of generality
that 〈g, uj + yj〉2 ≤ 16ζσ2 for 1 ≤ j ≤ |S|. Let γ ∈ R

|S| be the vector with the j-th entry being
γj = 〈g, uj〉. Let yg ∈ R

|S| be the vector with the j-th entry being ygj = 〈g, yj〉. Let h ∈ R
|S| be the

vector with the j-th entry being

hj = 〈g, uj + yj〉 = 〈g, uj〉+ 〈g, yj〉 = γj + ygj .

Note that γ is in a fixed d-dimensional subspace L ⊆ R
|S|, where γ = UT

S g where US is the d× |S|
matrix with the j-th column being uj . Let L⊥ being the orthogonal subspace of L in R

|S|, so the
dimension of L⊥ is at least |S| − d ≥ |S|/2 by our assumptions |S| ≥ βn and n ≥ 2d/β. Let PL⊥

be the projector matrix to the subspace L⊥. Our assumption is equivalent to

‖h‖∞ ≤ 4
√

ζσ,

which implies that

‖PL⊥yg‖2 = ‖PL⊥h‖2 ≤ ‖h‖2 ≤
√
|S| · ‖h‖∞ = 4

√
ζ|S|σ.

The intuition is that a random Gaussian vector yg will have a large projection to a high dimensional
subspace with high probability, and we will make it precise using Fact 4.5.7(3).

To apply Fact 4.5.7(3), the Gaussian vector should have independent entries, and so we write yg in
terms of the independent Gaussian vector x in the perturbation process. In the following, think of
a (d× |S|)-dimensional vector as having |S| blocks of d entries. Let yS be the (d× |S|)-dimensional
vector with yj ∈ R

d in the j-th block for 1 ≤ j ≤ |S|, where yj is generated in the perturbation
process. Let G be the |S|× (d×|S|) matrix with the i-th row being the (d×|S|)-dimensional vector
with g ∈ R

d in the i-th block while other blocks are zero. Then we can write

yg = GyS.

Let xS be the (d×|S|)-dimensional vector with xj ∈ R
d in the j-th block for 1 ≤ j ≤ |S|, where xj is

generated in the perturbation process. Recall that yS is the projection of xS into the first subspace
L1 such that 〈yj , uj〉 = 0. The projection matrix can be written explicitly as a (d× |S|)× (d× |S|)
matrix P where the (j, j)-th diagonal block of P being

Id −
uju

T
j

‖uj‖2

and all other blocks being zero. Then we can write

yS = PxS =⇒ yg = GPxS ,
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where GP is the |S| × (d × |S|) matrix with the i-th row being the (d × |S|)-dimensional vector
with the i-th block being

gT (I − uiu
T
i

‖ui‖2
).

So, we can finally write
‖PL⊥yg‖2 = ‖PL⊥GPxS‖2 ,

where xS is a vector with independent Gaussian variable with mean zero and variance σ2.

Now, we can apply Fact 4.5.7(3) to bound the probability that the right hand side is small. To do
so, we need to compute

tr((GP )TPL⊥(GP )) = tr(PL⊥(GP )(GP )T ).

Note that D := (GP )(GP )T is an |S| × |S| diagonal matrix with

Dii = gT (I − uiu
T
i

‖ui‖2
)(I − uiu

T
i

‖ui‖2
)g = ‖g‖2 − 〈g, ui〉

2

‖ui‖2
≥ ‖gi‖2 −

9

16
=

7

16
,

where the inequality is by our assumption that |〈g, ui〉| ≤ 3 ‖ui‖ /4 for all i ∈ S. Therefore,

tr((GP )TPL⊥(GP )) = tr(PL⊥D) ≥ 7

16
tr(PL⊥) =

7

16
rank(PL⊥) ≥ 7

16
(|S| − d) ≥ 7

32
|S|,

where the last equality is by Fact 4.5.5. Since 0 � (GP )TPL⊥(GP ) � I, we can apply Fact 4.5.7(3)
and get that the probability of the event that

‖PL⊥GPxS‖22 = ‖PL⊥yg‖22 ≤ 16ζ|S|σ2

is at most

16ζ|S|
tr
(
(GP )TPL⊥(GP )

)
1

4
tr
(
(GP )TP

L⊥(GP )
)

≤
(512

7
ζ
) 7

128
|S|
.

We conclude that

Py

[
〈g, uj+yj〉2 ≤ 16ζσ2 for all j ∈ S

]
= Py

[
‖h‖2∞ ≤ 16ζσ2

]
≤ Py

[
‖PL⊥yg‖22 ≤ 16ζ|S|σ2

]
≤ (100ζ)|S|/20.

With the claim, we apply a standard union bound on an epsilon-net in the d-dimensional space
and all subsets of size at least βn/8 to prove the following.

Claim 4.7.5. Assume σ2 ≤ 1/(1600n) and n ≥ 4(d log d)/(βζ) and ζ ≤ (β/(800e))160 . After
generating y1, . . . , yn ∈ R

d as described in the perturbation process, the probability that there exists
a unit vector g ∈ R

d and a subset S ⊆ [n] with

|S| ≥ βn/8, |〈g, uj〉| ≤ ‖uj‖ /2 for all j ∈ S, ‖yi‖2 ≤ 100dσ2 for all j ∈ S

such that
〈g, uj + yj〉2 ≤ 4ζσ2 for all j ∈ S

is at most exp(−βn/4).
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Proof. We use the same notation as defined in Claim 4.7.4, and use that

Py

[
〈g, uj + yj〉2 ≤ 4ζσ2 for all j ∈ S

]
≤ Py

[
‖PL⊥yg‖22 ≤ 4ζ|S|σ2

]

To apply an epsilon-net argument, we check how quickly the quantity ‖PL⊥yg‖2 changes under
some small change of g. Let g̃ = g + δ where δ ∈ R

d. Recall that the i-th entry of yg = 〈g, yi〉, and
so the i-th entry of yg̃ = 〈g + δ, yi〉 = 〈g, yi〉+ 〈δ, yi〉, and so

∥∥PL⊥yg̃
∥∥
2
− ‖PL⊥yg‖2 =

∥∥∥PL⊥yg + PL⊥yδ
∥∥∥
2
− ‖PL⊥yg‖2 ≤

∥∥∥PL⊥yδ
∥∥∥
2

≤
∥∥∥yδ
∥∥∥
2
=

√√√√
|S|∑

i=1

〈δ, yi〉2 ≤

√√√√
|S|∑

i=1

‖δ‖2 ‖yi‖2 ≤ 10
√

d|S|σ ‖δ‖ ,

and also ∣∣∣|〈g + δ, ui〉| − |〈g, ui〉|
∣∣∣ ≤ |〈δ, ui〉| ≤ ‖δ‖ ‖ui‖ .

Let N is an 1
10

√
ζ
d -net of the unit sphere in R

d. Then, if there exists any unit vector g ∈ R
d such

that

‖PL⊥yg‖2 ≤ 2
√

ζ|S|σ and |〈g, ui〉| ≤
1

2
‖ui‖ ,

then there exists a unit vector g̃ in N such that

∥∥PL⊥yg̃
∥∥
2
≤ 4
√

ζ|S|σ and |〈g̃, ui〉| ≤
3

4
‖ui‖ .

It is known that (e.g. see [47]) that the net N has size

|N | ≤
(
1 +

2

1
10

√
ζ
d

)d

By a union bound on N and S with Claim 4.7.4, the probability that we want to bound in this
claim is at most

∑

|S|=βn/8

∑

g̃∈N

Py

[ ∥∥PL⊥yg̃
∥∥2
2
≤ 16ζ|S|σ2

]
≤
(

n

βn/8

)(
1 +

2

1
10

√
ζ
d

)d
(100ζ)βn/160

≤
( ne

βn/8

)βn/2
exp

(
d log

(
1 + 20

√
d

ζ

)
+

βn

160
log(100ζ)

)

= exp
(βn

2
log(

8e

β
) + d log

(
1 + 20

√
d

ζ

)
− βn

160
log(

1

100ζ
)
)

If we set ζ ≤ ( β
800e )

160, then

∑

|S|=βn/8

∑

g̃∈N

Py

[
‖PL⊥yg‖22 ≤ 16ζ|S|σ2

]
≤ exp

(
d log

(
1 + 20

√
d

ζ

)
− βn

2
log(

8e

β
)
)
≤ exp(−βn/4),

where the final inequality uses that n ≥ 4(d log d)/(βζ).
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Continuing the proof of Lemma 4.7.3, with probability at least 0.9999, we have ‖yj‖2 ≥ 100dσ2 for
at most βn/8 vectors. We condition on this event and assume that in the worst case that all the
entries in those columns become very small. Hence, for each unit vector g ∈ R

d, we restrict our
attention to those columns with ‖yj‖2 ≤ 100dσ2. As explained before Claim 4.7.4, for the entries
with |〈g, uj〉| ≥ ‖uj‖ /2, we always have 〈g, uj + yj〉2 ≫ 4ζσ2 if ‖yj‖2 ≤ 100dσ2. So, we further
restrict our attention to those entries with |〈g, uj〉| ≤ ‖uj‖ /2. Now, we can apply Claim 4.7.5 to
prove that with probability at least 1−exp(−βn/4), every unit vector g ∈ R

d has at most βn/8 such
entries with 〈g, uj + yj〉2 ≤ 4ζσ2. Therefore, with probability at least 0.9999 − exp(βn/4) ≥ 0.999,
every unit vector g ∈ R

d has at most βn/4 entries with 〈g, uj + yj〉2 ≤ 4ζσ2.

In Lemma 4.7.3, we have proved that with probability at least 0.999, every unit vector g ∈ R
d has

at most βn/4 entries with 〈g, uj + yj〉2 ≤ 4ζσ2. To prove Proposition 4.7.2, we need to prove that
every unit vector g ∈ R

d has at most βn/2 entries with 〈g, uj + zj〉2 ≤ 2ζσ2. To do this, we use
that z = PL1∩L2

y and L2 is a subspace with codimension d2. With the assumption n ≫ d2, our
plan is to show that 〈g, uj + zj〉2 ≈ 〈g, uj + yj〉2 for most entries.

Lemma 4.7.6. Assume that n ≥ 1600d2/(βζ). The probability over the perturbation process that
there exists a unit vector g ∈ R

d and a subset S ⊆ [n] with |S| ≥ βn/2 such that

〈g, uj + zj〉2 ≤ 2ζσ2 for all j ∈ S

is at most 0.01.

Proof. First, we bound the difference between 〈g, uj + yj〉2 and 〈g, uj + zj〉2. Recall that y ∈ R
d×n

is the concatenation of y1, . . . , yn ∈ R
d, and z ∈ R

d×n is the concatenation of z1, . . . , zn ∈ R
d. Since

y = PL1
x and z = PL1∩L2

x as described in the perturbation process,

‖y − z‖2 = ‖(PL1
− PL1∩L2

)x‖2 = xT (PL1
− PL1∩L2

)(PL1
− PL1∩L2

)x = xT (PL1
− PL1∩L2

)x.

Note that PL1
−PL1∩L2

= PL1∩L⊥
2
. Since rank(L1 ∩L⊥

2 ) ≤ rank(L⊥
2 ) ≤ d2, using Fact 4.5.7(2) with

A = PL1
− PL1∩L2

shows that

Px(‖y − z‖2 ≥ 100d2 · σ2) ≤ e−10d2 .

Therefore, with probability 1− e−10d2 , we have that

n∑

j=1

〈g, yj − zj〉2 ≤
n∑

j=1

‖g‖2 ‖yj − zj‖2 = ‖y − z‖2 ≤ 100d2σ2

for all unit vector g ∈ R
d. This implies that there are at most 4002/ζ terms with 〈g, yj−zj〉2 ≥ 1

4ζσ
2.

Lemma 4.7.3 shows that for all unit vector g ∈ R
d, there are at most βn/4 entries with 〈g, uj+yj〉2 ≤

4ζσ2 with probability 0.999. For an entry with 〈g, uj + yj〉2 > 4ζσ2 and 〈g, yj − zj〉2 ≤ 1
4ζσ

2, we
have

〈g, uj + zj〉2 ≥ 〈g, uj + yj〉2 − 2|〈g, uj + yj〉||〈g, zj − yj〉| ≥
1

2
〈g, uj + yj〉2 ≥ 2ζσ2.
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Therefore, besides the βn/4 entries with 〈g, uj + yj〉2 ≤ 4ζσ2, there could be at most 400d2/ζ

more entries with 〈g, uj + zj〉2 ≤ 2ζσ2 with probability 1 − e−10d2 . By our assumption that
400d2/ζ ≤ βn/4, for all unit vectors g ∈ R

d, there are at most βn/2 entries with 〈g, uj+zj〉2 ≤ 2ζσ2

with probability at least 0.999 − e−10d2 ≥ 0.99.

This completes the proof of Proposition 4.7.2.

In the next subsection, with the right choice of the parameters, we can prove point (iii) in Subsec-
tion 4.1 about the improved capacity lower bound.

4.8 The Path to an Equal Norm Parseval Frame

In this subsection, we put together the results in this section to prove Theorem 1.3.1.

We describe precisely how to move from the initial ǫ-nearly equal norm Parseval frame to the final
equal norm Parseval frame. We also state the properties that we will maintain, and will prove these
properties later.

Procedure 4.8.1 (path). The following is a step-by-step procedure, with the properties required
stated.

1. Input: an ǫ-nearly equal norm Parseval frame U = {u1, . . . , un} where ui ∈ R
d for 1 ≤ i ≤ n.

2. Apply Lemma 3.6.2 to scale U to U0 such that

U0 is an O(ǫ)-nearly equal norm Parseval frame, s(U0) = d and dist2(U,U0) = O(dǫ2).

3. Let ∆ := ∆(U0). Note that ∆ ≤ O(d2ǫ2) by Lemma 3.6.1.

4. Global assumptions:

n ≥ 1015d4

ζ2κ2
and ∆ ≤ ζ6κ6

1055d9
,

where 0 < κ < 1 is the small constant in Proposition 4.3.5 and 0 < ζ < 1 is the small constant
in Proposition 4.7.2.

5. Let l := 0. Repeat the following steps.

(a) Apply the perturbation process to U l = {ul1, . . . , uln} to produce W l = {wl
1, . . . , w

l
n} with

σ2 =
104
√

d∆(U l)

ζκn
.

The assumptions are that

s(U l) = d and ∆(U l) ≤ ∆ so that σ2 ≪ 1

n
.

The properties of W l are that
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(i) (Size and equal norm) The following is guaranteed by the perturbation process in
Procedure 4.5.1:

s(W l) = d and
∥∥∥wl

i

∥∥∥
2

2
=

d

n
for 1 ≤ i ≤ n.

(ii) (Movement) We will prove in Proposition 4.8.6 that

dist2(U l,W l) = O
(
d3/2

√
∆(U l)

)
.

(iii) (∆) We will prove in Proposition 4.8.7 that

∆(W l) = O(∆(U l)).

(iv) (Capacity) We will prove in Theorem 4.8.8 that

cap(W l) ≥ s(W l)−O
(√∆(W l)

d

)
.

(b) Let W (0) := W l. Apply the dynamical system in Definition 3.2.2 with W (0) as the input
until the first time T when

∆(W (T )) ≤ ∆

3 · 2l .

The properties of W (T ) are that

(i) (Movement) We will prove in Proposition 4.8.10 that

dist2(W (0),W (T )) ≤ O
(
√

∆(U l)

d

)
.

(ii) (Size) We will prove in Proposition 4.8.10 that

s(W (T )) ≥ d−O
(
√

∆(U l)

d

)
.

(c) Rescale W (T ) to U l+1 such that
s(U l+1) = d.

We will prove in Lemma 4.8.11 that

dist2(W (T ), U l+1) ≤ O
(
√

∆(U l)

d

)
and ∆(U l+1) ≤ ∆

2l+1
.

Increment l by one.

6. Output: an equal norm Parseval frame V := U∞.

We will first prove the main theorems assuming all the claims in Procedure 4.5.1. Then we will
justify all the claims in Procedure 4.8.1.
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Theorem 4.8.2. Assume the global assumptions in Step 4 of Procedure 4.8.1 hold. Then, in the
l-th iteration of Step 5 in Procedure 4.8.1,

dist2(U l, U l+1) ≤ O(d3/2
√

∆(U l)) = O(d3/2
√

∆/2l).

Proof. We analyze the total movement in the l-th iteration of Step 5. We first apply the perturba-
tion process to U l to obtain W l in Step 5a and by Proposition 4.8.6

dist2(U l,W l) = O(d3/2
√

∆(U l)).

Then we apply the dynamical system to W l to obtain W (T ) in Step 5b and by Proposition 4.8.10

dist2(W l,W (T )) = O(

√
∆(U l)

d
).

Finally, we rescale W (T ) to obtain U l+1 in Step 5c and by Lemma 4.8.11

dist2(W (T ), U l+1) = O(

√
∆(U l)

d
).

By the triangle inequality, the total movement in one iteration is

dist(U l, U l+1) ≤ dist(U l,W l) + dist(W l,W (T )) + dist(W (T ), U l+1)

≤ O
(√

d3/2
√

∆(U l)
)
+O

(
√√

∆(U l)

d

)
+O

(
√√

∆(U l)

d

)

≤ O
(√

d3/2
√

∆(U l)
)
.

Squaring both sides proves the result.

The following theorem implies Theorem 1.3.3.

Theorem 4.8.3. Assume the global assumptions in Step 4 of Procedure 4.8.1 hold. Given any
ǫ-nearly equal norm Parseval frame U = {u1, . . . , un} where ui ∈ R

d for 1 ≤ i ≤ n, there exists an
equal norm Parseval frame V with

dist2(U, V ) = O(d3/2
√
∆) = O(d5/2ǫ).

Proof. It is clear that the U l is converging to an equal norm Parseval frame, as ∆(U l) ≤ ∆(U0)/2l,
and ∆(U l) = 0 if and only if U l is an equal norm Parseval frame.

Using Theorem 4.8.2 and the triangle inequality, the total movement in all iterations is

dist(U0, U∞) ≤
∞∑

l=0

dist(U l, U l+1) ≤
∞∑

l=0

O
(√

d3/2
√

∆(U l)
)

≤
∞∑

l=0

O
(√

d3/2
√

∆/2l
)
≤ O

(√
d3/2
√
∆
)
,
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where the last inequality is a decreasing geometric sum. From the preprocessing in Step 2, we have
dist2(U,U0) = O(dǫ2) and ∆ ≤ O(d2ǫ2). Therefore, since we set V = U∞, we have

dist(U, V ) ≤ dist(U,U0) + dist(U0, U∞)

≤ O(
√
dǫ2) +O

(√
d3/2
√
∆
)
≤ O(

√
dǫ2) +O(

√
d5/2ǫ) = O(

√
d5/2ǫ).

Squaring both sides proves the theorem.

Finally, we prove an unconditional bound for the Paulsen problem, which implies Theorem 1.3.1.

Theorem 4.8.4. Given any ǫ-nearly equal norm Parseval frame U = {u1, . . . , un} where ui ∈ R
d

for 1 ≤ i ≤ n, there exists an equal norm Parseval frame V with

dist2(U, V ) = O(d13/2ǫ).

Proof. If the assumptions in Theorem 4.8.3 are satisfied, then we can find an equal norm Parseval
frame V with dist2(U, V ) = O(d5/2ǫ).

If the first assumption is not satisfied, then n = O(d4), and we can apply the result in Theorem 3.7.3
to obtain an equal norm Parseval frame V with dist2(U, V ) = O(d2nǫ) = O(d6ǫ).

If the second assumption is not satisfied, then Ω(1/d9) ≤ ∆ ≤ O(d2ǫ2) by Lemma 3.6.1 in Step 3.
This implies that ǫ ≥ Ω(1/d11/2). In this case, we simply output any equal norm Parseval frame V
and dist2(U, V ) = O(d) = O(d13/2ǫ), where we have shown the trivial bound O(d) in Subsection 2.1.

So, in all cases, the bound is at most O(d13/2ǫ) and is independent of n.

Justifying the Steps

The preprocessing in Step 2 and the initial bound on ∆ in Step 3 are already justified. So we start
with the assumptions in Step 5a.

Lemma 4.8.5. The assumptions in Step 5a are always satisfied.

Proof. The assumption s(U l) = d in Step 5a is satisfied initially in Step 2 and is always maintained
by Step 5c afterwards.

The assumption ∆(U l) ≤ ∆ in Step 5a is satisfied initially and is always maintained by Step 5c
afterwards.

The properties in Step 5(a)i are guaranteed by the postprocessing step in the perturbation process
in Procedure 4.5.1. We next consider Step 5(a)ii in Procedure 4.8.1.

Proposition 4.8.6. Let U = {u1, . . . , un} with each ui ∈ R
d and s(U) = d. If we apply the

perturbation process in Procedure 4.5.1 with the choice of σ2 as defined in Procedure 4.8.1 to obtain
output W , then

dist2(U,W ) ≤ O(σ2dn) ≤ O(d3/2
√

∆(U)),

with probability at least 0.9.
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Proof. The perturbation process assumes that s(U) = d, which is satisfied by our assumption. In
the first step of the perturbation process, the vectors in U are renormalized to Û so that they have
the same norm, and by Lemma 4.5.3

dist2(U, Û ) ≤ ∆(U)

d
.

Then we apply the projection step and the postprocessing step in the perturbation process and get
W . Since the vectors Û are of squared length exactly d/n and σ2 ≤ 1/n, we can apply Lemma 4.5.4
to prove that

E dist2(Û ,W ) ≤ 2σ2dn = O(d3/2
√

∆(U)).

By Markov’s inequality, with probability at least 0.9, the random variable is at most 10 times the
expected value and we still have

dist2(Û ,W ) ≤ O(d3/2
√

∆(U)).

By the triangle inequality,

dist(U,W ) ≤ dist(U, Û) + dist(Û ,W ) ≤ O(

√
∆(U)

d
) +O(

√
d3/2

√
∆(U)) = O(

√
d3/2

√
∆(U)),

and squaring both sides proves the lemma.

We next justify Step 5(a)iii. This is the step that we need to use the global assumptions, so that
the next step in Theorem 4.8.8 would go through.

Proposition 4.8.7. Assume the global assumptions in Step 4 of Procedure 4.8.1. Let U =
{u1, . . . , un} with each ui ∈ R

d and s(U) = d and ∆(U) ≤ ∆. If we apply the perturbation
process in Procedure 4.5.1 with the choice of σ2 as defined in Procedure 4.8.1 to obtain output W ,
then

∆(W ) ≤ 200∆(U)

with probability at least 1/4.

Proof. The perturbation process assumes that s(U) = d, which is satisfied by our assumption. In
the first step of the perturbation process, the vectors in U are renormalized to Û so that they have
the same norm, and by Lemma 4.5.3

∆(Û) ≤ 20∆(U).

Then we apply the projection step and the postprocessing step in the perturbation process and
get W . Since the vectors Û are of squared length exactly d/n and σ2 ≤ 1/n, we can apply
Proposition 4.6.1 to prove that

E∆(W ) ≤ 6∆(Û) + 40σ4n2
√

∆(Û) + 107σ4d3n+ 1014σ6d3n3.

≤ 120∆(U) + 200σ4n2
√
∆(U) + 107σ4d3n+ 1014σ6d3n3.
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We choose σ2 = 104
√

d∆(U)/(ζκn) in Procedure 4.8.1, and so the right hand side is

= 120∆(U) + 200(
108d∆(U)

ζ2κ2n2
)n2
√

∆(U) + 107(
108d∆(U)

ζ2κ2n2
)d3n+ 1014(

1012d3/2∆(U)3/2

ζ3κ3n3
)d3n3

≤ 120∆(U) +
1011d∆(U)3/2

ζ2κ2
+

1015d4∆(U)

ζ2κ2n
+

1026d9/2∆(U)3/2

ζ3κ3

≤ 120∆(U) +
1015d4∆(U)

ζ2κ2n
+

1027d9/2∆(U)3/2

ζ3κ3

≤ 120∆(U) + ∆(U) + ∆(U)

= 122∆(U),

where the last inequality uses the assumption that n ≥ 1015d4/(ζ2κ2) and the assumption that
∆(U) ≤ 10−55ζ6κ6/d9 so that

√
∆(U) ≤ 10−27ζ3κ3/d9/2. By Markov’s inequality, with probability

at least 1/4, we have ∆(W ) ≤ 200∆(U).

Step 5(a)iv is the heart of the smoothed analysis, where we have removed the dependency on n
from Theorem 3.5.16 for a perturbed instance.

Theorem 4.8.8. Let U = {u1, . . . , un} with each ui ∈ R
d and s(U) = d and ∆(U) ≤ ∆. If we

apply the perturbation process in Procedure 4.5.1 with the choice of σ2 as defined in Procedure 4.8.1
to obtain output W , then

cap(W ) ≥ s(W )−O(

√
∆(W )

d
),

with probability at least 0.9 assuming ∆(W ) ≤ 200∆(U).

Proof. The perturbation process assumes that s(U) = d, which is satisfied by our assumption. In
the first step of the perturbation process, the vectors in U are renormalized to Û so that they have
the same norm. Then we apply the projection step and the postprocessing step in the perturbation
process and get W = {w1, . . . , wn} where wi ∈ R

d for 1 ≤ i ≤ n. Note that s(W ) = d and
‖wi‖22 = d/n for 1 ≤ i ≤ n by the postprocessing step in the perturbation process. We would like
to prove a lower bound on the capacity of W .

To prove a capacity lower bound for the frame W , we apply the reduction in Proposition 3.5.8 to
construct a d× n non-negative matrix B with

cap(B) ≤ cap(W ), ∆(B) ≤ ∆(W ), and s(B) = s(W ) = d.

Our plan is to prove that B is pesudorandom and use Theorem 4.3.4 to establish a lower bound
on cap(B). Since all vectors in Û have the same squared norm d/n and the assumptions σ2 ≤ 1/n
and n≫ d2 are satisfied, Proposition 4.7.2 implies that the matrix B is (ζσ2, 10−9)-pseudorandom
with probability at least 0.9. As we choose σ2 = 104

√
d∆(U)/(ζκn) in Procedure 4.8.1, let

α =
104
√

d∆(U)

κn
and β = 10−9 =⇒ B &β α.
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By Proposition 4.8.7, we have ∆(U) ≥ ∆(W )/200. Therefore, assuming this event happens, α
satisfies the assumption in Theorem 4.3.4 as

α =
104
√

d∆(U)

κn
≥ 80

√
d∆(W )

κn
≥ 80

√
d∆(B)

κn
.

Also, β satisfies the assumption in Theorem 4.3.4, and ∆(B) satisfies the assumption in Theo-
rem 4.3.4 as ∆(B) ≤ ∆(W ) ≤ 200∆(U) ≤ 200∆ ≪ 1/10, and s(B) satisfies the assumption in
Theorem 4.3.4 as s(B) = s(W ) = d. It remains to verify the assumption that cj(B) = d/n for
all 1 ≤ j ≤ n, for which we will use the property that ‖wi‖22 = d/n for 1 ≤ i ≤ n guaranteed by
the perturbation process as stated in Step 5(a)i. Using the reduction from frame to operator in
Definition 3.7.1 where Wl is the d× n matrix with the l-th column being wl and all other columns
being zero, we have

∑n
l=1W

T
l Wl =

d
nIn. Therefore, by the furthermore part of Proposition 3.5.8,

we have that cj(B) = d/n for 1 ≤ j ≤ n.

So, all the assumptions of Theorem 4.3.4 are satisfied, by substituting (A(0))◦2 := B. This sub-
stitution is justified as B is a non-negative matrix, and thus is the Hadamard product square of
some matrix (e.g. where each entry is the square root of the corresponding entry in B). Therefore,
Theorem 4.3.4 concludes that

cap(B) ≥ s(B)− ∆(B)

5καn
.

The properties from the reduction implies that

cap(W ) ≥ cap(B) ≥ s(B)− ∆(B)

5καn
≥ s(W )− ∆(W )

5καn
= s(W )− ∆(W )

50000
√

d∆(U)
,

where the last equality is by our choice of α. By Proposition 4.8.7 that ∆(U) ≥ ∆(W )/200, we
conclude that

cap(W ) ≥ s(W )−
√

∆(W )

5000
√
d
.

Remark 4.8.9 (Probability). The conclusions of Proposition 4.8.6, Proposition 4.8.7 and Theo-
rem 4.8.8 are all probabilistic. By the union bound, however, there is a positive probability that all
the conclusions hold. This implies that there exists a perturbation that simultaneously satisfies all
three lemmas, and we will proceed with such a perturbation.

We next justify Step 5(b)i in Procedure 4.8.1. The argument is similar to the proof of Proposi-
tion 3.3.4. The current statement highlights more clearly the relation between the distance moved
and the capacity lower bound.

Proposition 4.8.10. Let W (0) = {w(0)
1 , . . . , w

(0)
n } be the input to the dynamical system in Defini-

tion 3.2.2 with w
(0)
j ∈ R

d for 1 ≤ j ≤ n and

cap(W (0)) ≥ s(W (0))− p(d, n,∆(W (0))) where p(d, n,∆(W (0))) is a function of d, n,∆(W (0)).
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Let T be the first time in the dynamical system when ∆(W (T )) ≤ ∆ for some given ∆ < ∆(W (0)).
Then

dist2(W (0),W (T )) ≤ 2∆(W (0)) · p(d, n,∆(W (0)))

∆
and s(W (T )) ≥ s(W (0))− p(d, n,∆(W (0))).

In particular, given the specific setting in Step 5(b)i and Step 5(b)ii in Procedure 4.8.1, we have

dist2(W (0),W (T )) ≤ O
(√∆(U l)

d

)
and s(W (T )) ≥ d−O

(√∆(U l)

d

)
.

Proof. Using the capacity upper bound in Lemma 3.3.3, the capacity lower bound in the assump-
tion, and Lemma 3.4.7 that capacity is unchanged over time, we have the size lower bound

s(W (T )) ≥ cap(W (T )) = cap(W (0)) ≥ s(W (0))− p(d, n,∆(W (0))).

The assumption about T is equivalent to ∆(t) > ∆ for 0 ≤ t < T . It follows from Lemma 3.4.2 that

d

dt
s(W (t)) = −2∆(W (t)) < −2∆ for all 0 ≤ t < T.

The size lower bound thus allows us to conclude that T ≤ p(d, n,∆(W (0))/(2∆), as otherwise

s(W (T )) = s(W (0)) +

∫ T

0

d

dt
s(W (t))dt < s(W (0))− 2∆T < s(W (0))− p(d, n,∆(W (0))).

Similar to the calculation in Proposition 3.3.4 and using the reduction from frame to operator in
Definition 3.7.1,

dist(W (0),W (T )) ≤
∫ T

0

√√√√
n∑

i=1

∥∥∥∥
d

dt
W

(t)
i

∥∥∥∥
2

F

dt = 2

∫ T

0

√
− d

dt
∆(W (t))dt

≤ 2

√∫ T

0
(− d

dt
∆(W (t)))dt ·

∫ T

0
1dt ≤ 2

√
∆(W (0)) · T

≤
√

2∆(W (0)) · p(d, n,∆(W (0)))

∆
,

where the first inequality is by Lemma 3.3.1, the first equality is by Lemma 3.4.3, the second
inequality is by Cauchy-Schwarz, and the last inequality is by the bound on T above.

In the specific setting in Step 5(b)i and Step 5(b)ii, we have from Step 5(a)iv that

cap(W (0)) ≥ s(W (0))−O
(√∆(W (0))

d

)
so that p(d, n,∆(W (0))) ≤ O

(√∆(W (0))

d

)
.

As ∆(W (0)) = ∆(W l) ≤ O(∆(U l)) by Proposition 4.8.7 and s(W (0)) = s(W l) = d by Step 5(a)i in
Procedure 4.8.1, we have the size lower bound

s(W (T )) ≥ s(W (0))− p(d, n,∆(W (0))) ≥ d−O
(√∆(W (0))

d

)
≥ d−O

(
√

∆(U l)

d

)
.
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The target ∆ in Step 5b is

∆ =
∆

3 · 2l and ∆(W (0)) = ∆(W l) ≤ O(∆(U l)) ≤ O(
∆

2l+1
),

where the first inequality is by Proposition 4.8.7 and the second inequality is by Step 5c in the
previous iteration. Therefore, ∆(W (0))/∆ = O(1) and this implies that

dist2(W (0),W (T )) ≤ O
(∆(W (0)) · p(d, n,∆(W (0)))

∆

)
≤ O

(√∆(W (0))

d

)
≤ O

(√∆(U l)

d

)
,

where the last inequality is by Proposition 4.8.7.

Finally, we justify Step 5c, which is similar to the proof in Lemma 3.6.3.

Lemma 4.8.11. Let W = {w1, . . . , wn} where wi ∈ R
d for 1 ≤ i ≤ n and s := s(W ). Let

U = {u1, . . . , un} where ui =
√

d
s · wi for 1 ≤ i ≤ n. Then

s(U) = d and dist2(U,W ) = (
√
d−√s)2 and ∆(U) =

d2

s2
∆(W ).

In particular, given the specific setting in Step 5c, we have

dist2(W (T ), U l+1) ≤ O
(
√

∆(U l)

d

)
and ∆(U l+1) ≤ ∆

2l+1
.

Proof. It is clear from Definition 3.7.2 that

s(U) =

n∑

i=1

‖ui‖22 =
d

s

n∑

i=1

‖wi‖22 =
d

s
· s(W ) = d.

The squared distance between U and W is

dist2(U,W ) =
n∑

i=1

‖ui − wi‖22 = (

√
d

s
− 1)2

n∑

i=1

‖wi‖22 = (

√
d

s
− 1)2 · s = (

√
d−√s)2.

It follows from Definition 3.7.2 that

∆(cW ) = c4∆(W ) =⇒ ∆(U) = ∆(

√
d

s
W ) =

d2

s2
∆(W ).

In Step 5c, we have the size lower bound s := s(W (T )) ≥ d− O(

√
∆(U l)

d ), and we rescale W (T ) to

U l+1 such that s(U l+1) = d. Therefore,

dist2(U l+1,W (T )) ≤
(√

d−

√

d−O
(
√

∆(U l)

d

) )2
= d
(
1−

√

1−O
(
√

∆(U l)

d3
) )2

≤ O
(
√

∆(U l)

d

)
,
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where the last inequality follows from the inequality 1 −
√
1− x ≤ x for 0 ≤ x ≤ 1 and the

assumption that ∆(U l) ≤ ∆≪ 1. Finally,

d2

s2
≤ d2

(
d−O

(√∆(U l)
d

))2 =
(
1−O

(
√

∆(U l)

d3
))−2

≤
(
1 +O

(
√

∆(U l)

d3
))2
≤ 3

2
,

where the second inequality is by (1 − x)−2 ≤ 1 + 2x for 0 ≤ x ≤ 1/2 and O
(√

∆(U l)/d3
)
≪ 1/2

by our assumption that ∆ is small enough in Step 4 of Procedure 4.8.1, and the last inequality
is also by the same assumption. (To be precise, we should trace out the constants in the big-O
notation in Proposition 4.8.10. In the last line of Theorem 4.8.8, we see that the hidden constant in
the capacity lower bound is reasonable. Hence, the hidden constants in Proposition 4.8.10 are also
reasonable, as they only depend on the capacity lower bound. On the other hand, the constant in
our assumption on ∆ in Step 4 of Procedure 4.8.1 is much smaller.) Therefore,

∆(U l+1) ≤ 3

2
∆(W (T )) ≤ 3

2
· ∆

3 · 2l ≤
∆

2l+1
,

where the second inequality is by Step 5b in Procedure 4.8.1.

We have justified all steps in Procedure 4.8.1, and so we have the conclusions from Theorem 4.8.2,
Theorem 4.8.3 and Theorem 4.8.4.

5 Conclusions and Discussions

We have proved that the bound in the Paulsen problem is independent of the number of vectors, and
through the reduction in [10] we have also proved the projection conjecture with the same bound.
We hope that our results and techniques will find applications in other problems, in particular the
dynamical system and the new method in proving capacity lower bound.

The following are some discussions about improving the results.

1. The O(m2nǫ) bound in Theorem 3.7.3 holds in the more general operator setting. The current
smoothed analysis only works in the frame setting. It would be very nice if the smoothed
analysis can also be extended to the operator setting (e.g. this is related to the Brascamp-Lieb
constants).

2. There is a gap between the O(d13/2ǫ) upper bound and the Ω(dǫ) lower bound. We believe
that the correct answer is Θ(dǫ). There are several bottlenecks in improving the current proof.
One interesting intermediate step is to prove the O(dǫ) bound in the case when n is large
enough and ǫ is small enough, for which we proved the bound O(d5/2ǫ), where the bottleneck
is in the perturbation process.

3. Our proof shows the existence of an equal norm Parseval frame which is close to the input
frame, but it does not provide an efficient algorithm to output such a frame. It would be
very nice to find a polynomial time algorithm to output such a frame, with the running time
depends only on log(1/ǫ).
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4. The current approach relies heavily on the operator capacity lower bound, which is used to
argue indirectly that ∆ converges to zero in order to prove the squared distance bound. To
prove the operator capacity lower bound, we reduce to proving matrix capacity lower bound,
which we prove by establishing a lower bound on the convergence rate − d

dt∆. This approach
is rather indirect.

Consider the simpler matrix Paulsen problem. Since we can directly lower bound − d
dt∆, it

follows that ∆ converges to zero quickly, and this implies the squared distance bound without
using the concept of matrix capacity.

This naturally leads to the question whether we can directly analyze the perturbation process
and prove a lower bound on − d

dt∆ in the operator/frame case. If so, this will likely significantly
simplifies and improves the current analysis. The technical challenge is to identify the correct
pseudorandom property in the operator/frame setting.
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B Tight Example for Matrix Capacity Lower Bound

We complete the details in Lemma 3.5.17. Let E = xk(k + 1) be the sum of the upper right
submatrix and F = y(k − 1)k be the sum of the lower left submatrix. Then E + F = s(A) = 1.
Now we have

ri(A) =

{
E/k for i ≤ k,
F/(k − 1) for i > k.

And similarly,

cj(A) =

{
F/k for i ≤ k,
E/(k + 1) for i > k.
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So

∆(A) =
1

2k − 1

2k−1∑

i=1

(s− (2k − 1)ri)
2 +

1

2k + 1

2k+1∑

j=1

(s − (2k + 1)cj)
2

=
1

2k − 1

(
k(1− (2k − 1)E

k
)2 + (k − 1)(1 − (2k − 1)F

k − 1
)2
)

+
1

2k + 1

(
k(1− (2k + 1)F

k
)2 + (k + 1)(1− (2k + 1)E

k + 1
)2
)

=
1

2k − 1

(
k − 2(2k − 1)E +

(2k − 1)2E2

k
+ (k − 1)− 2(2k − 1)F +

(2k − 1)2F 2

k − 1

)

+
1

2k + 1

(
k − 2(2k + 1)F +

(2k + 1)2F 2

k
+ (k + 1)− 2(2k + 1)E +

(2k + 1)2E2

k + 1

)

= 1− 2(E + F ) + (2k − 1)(
E2

k
+

F 2

k − 1
)

+ 1− 2(F + E) + (2k + 1)(
F 2

k
+

E2

k + 1
)

= −2 + (
2k − 1

k
+

2k + 1

k + 1
)E2 + (

2k − 1

k − 1
+

2k + 1

k
)F 2

= −2 + (2k2 + k − 1) + (2k2 + k)

k(k + 1)
E2 +

(2k2 − k) + (2k2 − k − 1)

(k − 1)k
F 2

= −2 + 4k2 + 2k − 1

k(k + 1)
E2 +

4k2 − 2k − 1

(k − 1)k
F 2.

Now given E + F = 1, for positive a and b, aE2 + bF 2 attains its minimum opt = (a−1 + b−1)−1

when E = opt/a and F = opt/b. Taking corresponding value for x and y, we have

∆(A) = −2 + (
k(k + 1)

4k2 + 2k − 1
+

(k − 1)k

4k2 − 2k − 1
)−1

= −2 + (k
(4k3 + 2k2 − 3k − 1) + (4k3 − 2k2 − 3k + 1)

16k4 − 12k2 + 1
)−1

= −2 + 16k4 − 12k2 + 1

8k4 − 6k2

=
1

8k4 − 6k2
.

Since m2n2 = 16k4 − 8k2 + 1, we have

∆ = (2 + o(1))
1

m2n2
.
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