CS848 Advanced Topics in Databases Database Systems on Modern Hardware Spring 2015

Ken Salem

David R. Cheriton School of Computer Science University of Waterloo

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

http://www.analyticspress.com/datacenters.html

 cooling and distribution double consumption

イロト 不得 トイヨト イヨト

1

rom Growth in Data center electricity use 2005 to 2010., Jonathan Koomey. Analytics Press, Oakland, CA. 2011 http://www.analyticspress.com/datacenters.html

Jonathan Koomey. Analytics Press, Oakland, CA. 2011 http://www.analyticspress.com/datacenters.html

- cooling and distribution double consumption
- 1% reduction
 ≈ 1 billion
 kWh/year

э

イロト 不得 トイヨト イヨト

Jonathan Koomey. Analytics Press, Oakland, CA. 2011 http://www.analyticspress.com/datacenters.html

- cooling and distribution double consumption
- 1% reduction
 ≈ 1 billion
 kWh/year
- last year, my condo ≈ 4500 kWh

э

イロト 不得 トイヨト イヨト

Jonathan Koomey. Analytics Press, Oakland, CA. 2011 http://www.analyticspress.com/datacenters.html

- cooling and distribution double consumption
- 1% reduction
 ≈ 1 billion
 kWh/year
- last year, my condo ≈ 4500 kWh
- 1% reduction
 ≈ 200,000
 condos

 most hosting still in small server rooms/closets

- most hosting still in small server rooms/closets
- step 1: move to cloud

- most hosting still in small server rooms/closets
- step 1: move to cloud
- step 2: optimize cloud

Perspectives blog, Nov 2008

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● □ ● ○ ○ ○

http://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/

Perspectives blog, Nov 2008

http://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

• "fully burdened cost of power" \approx 42%

Perspectives blog, Nov 2008

http://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/

- "fully burdened cost of power" $\approx 42\%$
- (+) server costs decreasing, power cost increasing

from James Hamilton, *Cost of Power in Large-Scale Data Centers,* Perspectives blog, Nov 2008 http://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/

- "fully burdened cost of power" $\approx 42\%$
- (+) server costs decreasing, power cost increasing
- (-) server power efficiency improving

Data Center Server Utilization

from Barroso and Hölzle, The Case for Energy-Proportional Computing, IEEE Computer 40(12), Dec 2007, pp. 33-37 utilization of > 5000 Google servers over 6 months

イロト 不得 トイヨト イヨト

-

Data Center Server Utilization

from Barroso and Hölzle, The Case for Energy-Proportional Computing, IEEE Computer 40(12), Dec 2007, pp. 33-37

- utilization of > 5000 Google servers over 6 months
- most servers 10%-50%

イロト 不得 トイヨト イヨト

ъ

Data Center Server Utilization

from Barroso and Hölzle, The Case for Energy-Proportional Computing, IEEE Computer 40(12), Dec 2007, pp. 33-37

- utilization of > 5000 Google servers over 6 months
- most servers 10%-50%

イロト 不得 トイヨト イヨト

• full idle unlikely

Power Proportionality

energy consumption proportional to work done

Power Proportionality

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

- energy consumption proportional to work done
- SPECpower_ssj2008 benchmark

Power Proportionality

- energy consumption proportional to work done
- SPECpower_ssj2008 benchmark
- power range improving over time?

Idle-to-Peak Trend

Techniques for Energy Efficiency

- dynamic server (de)provisioning
 - adjust number of active servers to load
 - idle or power down unused servers
- frequency and voltage scaling
 - adjust CPU frequency based on workload
 - lower frequency ⇒ less power consumed
- energy-aware scheduling
 - choose energy-efficient platform for each workload

ション (中) (日) (日) (日) (日) (日)

Voltage and Frequency Scaling

Power Consumption / SLO satiesfied

System power consumption vs. TPC-C throughput in various p-states Shore-MT, in-memory database

S = process feature size ratio, e.g, 32 nm to 22 nm gives $S = 32/22 \approx 1.4$

Dennard scaling

• \triangle Quantity $\propto S^2$

Source: M.B. Taylor, A Landscape of the New Dark Silicon Design Regime. IEEE Micro 33(5), Aug. 2013, pp. 8-19.

S = process feature size ratio, e.g, 32 nm to 22 nm gives $S = 32/22 \approx 1.4$

- \triangle Quantity $\propto S^2$
- \triangle Frequency $\propto S$

S = process feature size ratio, e.g, 32 nm to 22 nm gives $S = 32/22 \approx 1.4$

- \triangle Quantity $\propto S^2$
- \triangle Frequency $\propto S$
- Δ Capacitance $\propto 1/S$

S = process feature size ratio, e.g, 32 nm to 22 nm gives $S = 32/22 \approx 1.4$

- Δ Quantity $\propto S^2$
- \triangle Frequency $\propto S$
- Δ Capacitance $\propto 1/S$
- \triangle Voltage $\propto 1/S^2$

S = process feature size ratio, e.g, 32 nm to 22 nm gives $S = 32/22 \approx 1.4$

- Δ Quantity $\propto S^2$
- \triangle Frequency $\propto S$
- Δ Capacitance $\propto 1/S$
- \triangle Voltage $\propto 1/S^2$
- $\Rightarrow \Delta$ Power $\propto \Delta QFCV^2 = 1$

S = process feature size ratio, e.g, 32 nm to 22 nm gives $S = 32/22 \approx 1.4$

Dennard scaling

- Δ Quantity $\propto S^2$
- \triangle Frequency $\propto S$
- Δ Capacitance $\propto 1/S$
- \triangle Voltage $\propto 1/S^2$
- $\Rightarrow \Delta$ Power $\propto \Delta QFCV^2 = 1$
- $\Rightarrow \Delta$ Utilization $\propto 1$

Source: M.B. Taylor, A Landscape of the New Dark Silicon Design Regime. IEEE Micro 33(5), Aug. 2013, pp. 8-19.

S = process feature size ratio, e.g, 32 nm to 22 nm gives $S = 32/22 \approx 1.4$

Dennard scaling

- Δ Quantity $\propto S^2$
- \triangle Frequency $\propto S$
- Δ Capacitance $\propto 1/S$
- \triangle Voltage $\propto 1/S^2$
- $\Rightarrow \Delta$ Power $\propto \Delta QFCV^2 = 1$
- $\Rightarrow \Delta$ Utilization $\propto 1$

post-Dennard scaling

- \triangle Quantity $\propto S^2$
- \triangle Frequency \propto S
- \triangle Capacitance $\propto 1/S$
- \triangle Voltage $\propto 1$
- $\Rightarrow \Delta$ Power $\propto \Delta QFCV^2 = S^2$
- $\Rightarrow \Delta$ Utilization $\propto 1/S^2$

Source: M.B. Taylor, A Landscape of the New Dark Silicon Design Regime. IEEE Micro 33(5), Aug. 2013, pp. 8-19.

Dark Silicon

- silicon that is not used all the time, or not used at its full frequency
- fixed power envelope limits growth in Q or F or both

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

- Denard: QF grows by S^3
- post-Denard: QF grows by only S

Dark Silicon Example

Source: M.B. Taylor, A Landscape of the New Dark Silicon Design Regime. IEEE Micro 33(5), Aug. 2013, pp. 8-19.

Responses to Dark Silicon

- smaller chips
- "dim" silicon
 - reduce clock rate, or
 - use more space for low-power functions, e.g., cache,

◆□▶ ▲□▶ ▲□▶ ▲□▶ = □ ○ ○ ○

- power only part of the time
- functional specialization
 - fast or efficient co-processors
 - execution hops around