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US Data Center Energy Consumption

from Growth in Data center electricity use 2005 to 2010.,
Jonathan Koomey. Analytics Press, Oakland, CA. 2011
http://www.analyticspress.com/datacenters.html
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Energy Efficiency of Cloud Computing

from E. Masanet et al, The Energy Efficiency Potential of Cloud-Based
Software: A U.S. Case Study,

Lawrence Berkeley National Laboratory, June 2013
http:

//crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf

� most hosting still
in small server
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Cost of Large Data Centers

from James Hamilton, Cost of Power in Large-Scale Data Centers,
Perspectives blog, Nov 2008

http://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/

� “fully burdened cost of power” ≈ 42%
� (+) server costs decreasing, power cost

increasing
� (-) server power efficiency improving
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Power Proportionality
� energy consumption proportional to work done

� SPECpower_ssj2008 benchmark

� power range improving over time?

Dell PowerEdge R630
(April 2015)

dual proc/36 cores/64 GB

Dell PowerEdge 2950 III
(Dec 2007)

dual proc/8 cores/16 GB
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Power Proportionality
� energy consumption proportional to work done
� SPECpower_ssj2008 benchmark

� power range improving over time?

Dell PowerEdge R630
(April 2015)

dual proc/36 cores/64 GB

Dell PowerEdge 2950 III
(Dec 2007)

dual proc/8 cores/16 GB



Idle-to-Peak Trend
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Techniques for Energy Efficiency

� dynamic server (de)provisioning
� adjust number of active servers to load
� idle or power down unused servers

� frequency and voltage scaling
� adjust CPU frequency based on workload
� lower frequency ⇒ less power consumed

� energy-aware scheduling
� choose energy-efficient platform for each

workload



Voltage and Frequency Scaling

System power consumption vs. TPC-C throughput
in various p-states

Shore-MT, in-memory database



CPU Scaling
S = process feature size ratio, e.g,

32 nm to 22 nm gives S = 32/22 ≈ 1.4

Dennard scaling

� ∆ Quantity ∝ S2

� ∆ Frequency ∝ S

� ∆ Capacitance ∝ 1/S
� ∆ Voltage ∝ 1/S2

� ⇒ ∆ Power
∝ ∆QFCV2 = 1

� ⇒ ∆ Utilization ∝ 1

post-Dennard scaling

� ∆ Quantity ∝ S2

� ∆ Frequency ∝ S

� ∆ Capacitance ∝ 1/S
� ∆ Voltage ∝ 1
� ⇒ ∆ Power
∝ ∆QFCV2 = S2

� ⇒ ∆ Utilization ∝ 1/S2

Source: M.B. Taylor, A Landscape of the New Dark Silicon Design Regime. IEEE Micro 33(5), Aug.
2013, pp. 8-19.
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Dark Silicon

� silicon that is not used all the time, or not used
at its full frequency

� fixed power envelope limits growth in Q or F or
both

� Denard: QF grows by S3

� post-Denard: QF grows by only S



Dark Silicon Example

4 cores at 1.8 GHz 

4 cores at 2×1.8 GHz

(12 cores dark) 

2×4 cores at 1.8 GHz

(8 cores dark, 8 dim) 

(Industry’s choice) 

75% dark after two generations;

93% dark after four generations

65 nm 32 nm

Spectrum of trade-offs

between no. of cores and

frequency  

Example:

65 nm → 32 nm (S = 2)    

....

....

....

Source: M.B. Taylor,
A Landscape of the New Dark Silicon Design Regime.

IEEE Micro 33(5), Aug. 2013, pp. 8-19.



Responses to Dark Silicon

� smaller chips
� “dim” silicon

� reduce clock rate, or
� use more space for low-power functions, e.g.,

cache,
� power only part of the time

� functional specialization
� fast or efficient co-processors
� execution hops around


