
Database Design 1

A Parts/Suppliers Database Example

• Description of a parts/suppliers database:

– Each type of part has a name and an identifying number, and

may be supplied by zero or more suppliers. Each supplier may

offer the part at a different price.

– Each supplier has an identifying number, a name, and a contact

location for ordering parts.

CS743 DB Management and Use Fall 2014



Database Design 2

Parts/Suppliers Example (cont.)

Price

City

Sno

SnameSupplier

Part

Supplies

N

N

Pno Pname

An E-R diagram for the parts/suppliers database.

CS743 DB Management and Use Fall 2014



Database Design 3

Parts/Suppliers Example (cont.)

Suppliers

Sno Sname City

S1 Magna Ajax

S2 Budd Hull

Parts

Pno Pname

P1 Bolt

P2 Nut

P3 Screw

Supplies

Sno Pno Price

S1 P1 0.50

S1 P2 0.25

S1 P3 0.30

S2 P3 0.40

An instance of the parts/suppliers database.

CS743 DB Management and Use Fall 2014



Database Design 4

Alternative Parts/Suppliers Database

Pno Supplied_Items City

Sname

PricePname

Sno

An alternative E-R model for the parts/suppliers database.

CS743 DB Management and Use Fall 2014



Database Design 5

Alternative Example (cont.)

Supplied Items

Sno Sname City Pno Pname Price

S1 Magna Ajax P1 Bolt 0.50

S1 Magna Ajax P2 Nut 0.25

S1 Magna Ajax P3 Screw 0.30

S2 Budd Hull P3 Screw 0.40

A database instance corresponding to the alternative E-R model.

CS743 DB Management and Use Fall 2014



Database Design 6

Change Anomalies

• Some questions:

– How do these alternatives compare?

– Is one schema better than the other?

– What does it mean for a schema to be good?

• The single-table schema suffers from several kinds of problems:

– Update problems (e.g. changing name of supplier)

– Insert problems (e.g. add a new item)

– Delete problems (e.g. Budd no longer supplies screws)

– Likely increase in space requirements

• The multi-table schema does not have these problems.

• Goals:

– A methodology for evaluating schemas.

– A methodology for transforming bad schemas into good schemas.

CS743 DB Management and Use Fall 2014



Database Design 7

Designing Good Databases

• What makes a relational database schema good?

– One criterion: independent facts in separate tables

• Functional dependencies (among attributes) are used to determine

which attributes are mutually independent.

CS743 DB Management and Use Fall 2014



Database Design 8

Functional Dependencies

• The schema of relation will be represented by a list R’s attribute

names. Each attribute name will often be designed by a single

letter:

– Example: if R is the Suppliers relation, with attributes Sno,

Sname, City, we may simply write R = SNC

• The notation X ⊆ R will be used to mean that X represents some

subset of the attributes of R, e.g., X = S, or X = SC.

• Let R be a relation schema, and X, Y ⊆ R. The functional

dependency

X → Y

holds on R if no legal instance of R contains two tuples t and u with

t.X = u.X and t.Y 6= u.Y

• The notation t.X means the values of the attributes X in tuple t.

CS743 DB Management and Use Fall 2014



Database Design 9

Functional Dependencies Are Contraints

TEACH

Teacher Course Text

Smith Data Structures Bartram

Smith Data Management Al-Nour

Hall Compilers Hoffman

Brown Data Structures Augenthaler

Functional dependencies are constraints on all instances

of a schema. A single instance can confirm that a func-

tional dependency does not hold. It cannot confirm that a

functional dependency alway holds.

CS743 DB Management and Use Fall 2014



Database Design 10

Functional Dependencies and Keys

• Keys (again)

– A superkey is a set of attributes such that no two tuples (in an

instance) agree on their values for those attributes.

– A (candidate) key is a minimal superkey.

• Functional dependencies generalize the notion of superkey.

Saying that K ⊆ R is a superkey for relation schema R is

the same as saying that the functional dependency K → R

holds on R

CS743 DB Management and Use Fall 2014



Database Design 11

Boyce-Codd Normal Form (BCNF) - Informal

• BCNF formalizes the idea that in a good database schema,

independent relationships are stored in separate tables.

• Given a database schema and a set of functional dependencies for

the attributes in the schema, we can determine whether the

schema is in BCNF. A database schema is in BCNF if each of its

relation schemas is in BCNF.

• Informally, a relation schema is in BCNF if and only if any group of

its attributes that functionally determines any others of its

attributes functionally determines all others, i.e., that group of

attributes is a superkey of the relation.

CS743 DB Management and Use Fall 2014



Database Design 12

BCNF and Redundancy

• Why does BCNF avoid redundancy? Consider:

Supplied Items

Sno Sname City Pno Pname Price

• The functional dependency

Sno → Sname, City

holds for Supplied Items

• This implies that a supplier’s name and city must be repeated each

once for each part supplied by that supplier.

• Now, assume this FD holds over a schema R that is in BCNF. This

implies that:

– Sno is a superkey for R

– each Sno value appears on one row only

– no need to repeat Sname and City values

CS743 DB Management and Use Fall 2014



Database Design 13

Formal Definition of BCNF

• Let R be a relation schema and F a set of functional dependencies.

A functional dependency X → Y is trivial if Y ⊆ X .

• Schema R is in BCNF if and only if whenever (X → Y ) ∈ F+ and

XY ⊆ R, then either

– (X → Y ) is trivial, or

– X is a superkey of R

• A database schema {R1, . . . , Rn} is in BCNF if each relation schema

Ri is in BCNF

CS743 DB Management and Use Fall 2014



Database Design 14

Closure of FD Sets

• The definition of BCNF refers to F+. This is called the closure of

the set of functional dependencies F .

• Informally, F+ includes all of the dependencies in F , plus any

dependencies they imply.

• For example, suppose that F consists of the two dependencies

A → B

B → C

If a relation satisfies these two dependencies, then it must also

satisfy the dependency

A → C

This means that A → C should be included in F+.

• Note that F ⊆ F+

CS743 DB Management and Use Fall 2014



Database Design 15

Armstrong’s Axioms

• Logical implications of a set of functional dependencies can be

derived by using inference rules called Armstrong’s axioms

– (reflexivity) Y ⊆ X ⇒ X → Y

– (augmentation) X → Y ⇒ XZ → Y Z

– (transitivity) X → Y , Y → Z ⇒ X → Z

• Additional rules can be derived from the three above:

– (union) X → Y , X → Z ⇒ X → Y Z

– (decomposition) X → Y Z ⇒ X → Y

• These axioms are

– sound (anything derived from F is in F+)

– complete (anything in F+ can be derived)

CS743 DB Management and Use Fall 2014



Database Design 16

Using Armstrong’s Axioms

• Let F consist of:

SIN, PNum → Hours

SIN → EName

PNum → PName, PLoc

PLoc, Hours → Allowance

• A derivation of: SIN, PNum → Allowance

1. SIN, PNum → Hours (∈ F )

2. PNum → PName, PLoc (∈ F )

3. PLoc, Hours → Allowance (∈ F )

4. SIN, PNum → PNum (reflexivity)

5. SIN, PNum → PName, PLoc (transitivity, 4 and 2)

6. SIN, PNum → PLoc (decomposition, 5)

7. SIN, PNum → PLoc, Hours (union, 6, 1)

8. SIN, PNum → Allowance (transitivity, 7 and 3)

CS743 DB Management and Use Fall 2014



Database Design 17

Computing Attribute Closures

• There is a more efficient way of using Armstrong’s axioms

function ComputeX+(X, F) {

X+ = X;

while there exists (Y → Z) ∈ F such that

Y ⊆ X+ and Z 6⊆ X+ do {

X+ = X+ ∪ Z;

}

return (X+);

}

CS743 DB Management and Use Fall 2014



Database Design 18

Computing Attribute Closures (cont’d)

• Let R be a relational schema and F a set of functional dependencies

on R. Then

Theorem: X → Y ∈ F+ if and only if

Y ⊆ ComputeX+(X,F )

Theorem: X is a superkey of R if and only if

ComputeX+(X,F ) = R

CS743 DB Management and Use Fall 2014



Database Design 19

Attribute Closure Example

• Let F consists of:

– SIN→EName

– Pnum→Pname,Ploc

– PLoc,Hours→Allowance

• ComputeX+({Pnum,Hours},F):

FD X+

initial Pnum,Hours

Pnum→Pname,Ploc Pnum,Hours,Pname,Ploc

PLoc,Hours→Allowance Pnum,Hours,Pname,Ploc,Allowance

CS743 DB Management and Use Fall 2014



Database Design 20

Computing a Normal Form

• What to do if a given relational schema is not in BCNF?

• Strategy: identify undesirable dependencies, then decompose the

schema.

• Let R be a relation schema. A collection {R1, . . . , Rn} of relation

schemas is a decomposition of R if

R = R1 ∪R2 ∪ · · · ∪Rn

• A good decomposition does not

– lose information

– complicate checking of constraints

CS743 DB Management and Use Fall 2014



Database Design 21

Lossless-Join Decompositions

• Consider decomposing

Marks

Student Assignment Group Mark

Ann A1 G1 80

Ann A2 G3 60

Bob A1 G2 60

into two tables

SGM

Student Group Mark

Ann G1 80

Ann G3 60

Bob G2 60

AM

Assignment Mark

A1 80

A2 60

A1 60

CS743 DB Management and Use Fall 2014



Database Design 22

Lossless-Join Decompositions (cont’d)

• Computing the natural join of SGM and AM produces

Student Assignment Group Mark

Ann A1 G1 80

Ann A2 G3 60

Ann A1 G3 60

Bob A2 G2 60

Bob A1 G2 60

• The join result contains spurious tuples. Information would be lost

if we were to replace Marks by SGM and AM.

• If re-joining SGM and AM would always produce exactly the tuples

in Marks, then SGM and AM is called a lossless-join

decomposition.

CS743 DB Management and Use Fall 2014



Database Design 23

Another Lossless-Join Decomposition Example

Consider the following (BCNF) decomposition of the relation from the

parts/suppliers database.

Snos

Sno

S1

S2

Snames

Sname

Magna

Budd

Cities

City

Ajax

Hull

Pnum

Inum

I1

I2

I3

Pname

Iname

Bolt

Nut

Screw

Price

Price

0.50

0.25

0.30

0.40

CS743 DB Management and Use Fall 2014



Database Design 24

Identifying Lossless-Join Decompositions

• Since schemas, not schema instances, are decomposed, how to be

sure that a decomposition is lossless?

• A decomposition {R1, R2} of R is lossless if and only if the common

attributes of R1 and R2 form a superkey for either schema, that is

R1 ∩R2 → R1 or R1 ∩R2 → R2

• Example:

R = {Student, Assignment, Group, Mark}

F = {(Student, Assignment → Group, Mark),

(Assignment, Group → Mark) }

R1 = {Student, Group, Mark} R2 = {Assignment, Mark}

• Decomposition {R1, R2} is lossy because R1 ∩R2 is not a superkey

of either SGM or AM

CS743 DB Management and Use Fall 2014



Database Design 25

Computing a Lossless-Join BCNF Decomposition

function ComputeBCNF(D, F) {

Result = D;

while some R ∈ Result and X → Y ∈ F+

violate the BCNF condition do {

remove R from Result;

insert R − (Y − X) into Result;

insert X ∪ Y into to Result;

}

return(Result);

}

No efficient procedure to do this exists.

CS743 DB Management and Use Fall 2014



Database Design 26

Decomposition - An Example

• R = {Sno,Sname,City,Pno,Pname,Price}

• functional dependencies:

Sno → Sname,City

Pno → PName

Sno,Pno → Price

• This schema is not in BCNF because, for example, Sno determines

Sname and City, but is not a superkey of R.

CS743 DB Management and Use Fall 2014



Database Design 27

Decomposition - An Example (cont.)

• Using the dependency

Sno → Sname,City

R can be decomposed into

R1 = {Sno,Pno,Pname,Price}

R2 = {Sno,Sname,City}

• R2 is now in BCNF (why?) but R1 is not, and must be further

decomposed.

CS743 DB Management and Use Fall 2014



Database Design 28

Decomposition - An Example (cont.)

• Using the dependency

Pno → Pname

R1 can be decomposed into

R3 = {Sno,Pno,Price}

R4 = {Pno,Pname}

• The complete schema is now

R2 = {Sno,Sname,City}

R3 = {Sno,Pno,Price}

R4 = {Pno,Pname}

• This schema is a lossless-join, BCNF decomposition of the original

schema R.

CS743 DB Management and Use Fall 2014



Database Design 29

Decomposition Diagram

{Sno,Sname,City,Pno,Pname,Price}

{Sno,Sname,City}{Sno,Pno,Pname,Price}

{Sno,Pno,Price} {Pno,Pname}

Sno −> Sname,City

Pno −> Pname

CS743 DB Management and Use Fall 2014



Database Design 30

Dependency Preservation

• Ideally, a decomposition would be dependency preserving as well as

lossless.

• Dependency preserving decompositions allow for efficient testing of

constraints on the decomposed schema.

• Consider a relation schema R = {Proj, Dept, Div} with

functional dependencies

FD1: Proj → Dept

FD2: Dept → Div

FD3: Proj → Div

• Consider two decompositions

D1 = {R1 = {Proj, Dept}, R2 = {Dept, Div}}

D2 = {R1 = {Proj, Dept}, R3 = {Proj, Div}}

• Both are lossless. (Why?)

CS743 DB Management and Use Fall 2014



Database Design 31

Dependency Preservation (cont’d)

• Decomposition D1 lets us test FD1 on table R1 and FD2 on table

R2; if they are both satisfied, FD3 is automatically satisfied

• In decomposition D2 we can test FD1 on table R1 and FD3 on table

R3. Dependency FD2 is an interrelational constraint: testing it

requires joining tables R1 and R3

• Let R be a relation schema and F a set of functional dependencies

on R. A decomposition D = {R1, . . . , Rn} of R is dependency

preserving if there is an equivalent set F ′ of functional

dependencies, none of which is interrelational in D

It is possible that no dependency preserving BCNF

decomposition exists. Consider R = ABC and

F = {AB → C, C → B}.

CS743 DB Management and Use Fall 2014


