

Robust Identification of Fuzzy Duplicates

Authors:

Surajit Chaudhuri (Microsoft Research)

Venkatesh Ganti (Microsoft Research)

Rajeev Motwani (Stanford University)

Publication:

21st International Conference on Data Engineering (ICDE 2005)

Presented By:

David Xu

Agenda

- 1. Introduction to Fuzzy Duplicates
- 2. Overview of Machine Learning
- 3. Duplicate Elimination Strategy
- 4. Duplicate Elimination Algorithm
- 5. Evaluation
- 6. Results

Introduction - Definition

- "Fuzzy Duplicates are multiple seemingly distinct tuples which represent the same real-world entity" [1]
- Database: Distinct
- Reality: The same

ID	ArtistName	TrackName
1	The Doors	LA Woman
2	Doors	LA Woman

^[1] S. Chaudhuri, V. Ganti, and R. Motwani. Robust Identification of Fuzzy Duplicates . In Proc. Int'l Conf. on Data Engineering (ICDE'05), 2005, pp. 865-876.

Example – Real World Example

SORRY DAVID

BUT YOU OR SOMEONE IN YOUR HOUSEHOLD HAS ALREADY REQUESTED A FREE SAMPLE.

Feel the difference with Colgate Sensitive Pro-Relief*

 Rub the toothpaste directly on the sensitive tooth with your fingertip and gently massage for 1 minute.

 Eat or drink something that triggers your tooth sensitivity, and discover the instant relief and freshness of Colgate Sensitive Pro-Relief* toothpaste.

Let your friends and followers know about this great offer!

To close this box, click X in the upper right hand corner

THANK YOU DAVID
YOUR REQUEST IS BEING PROCESSED
YOU WILL RECEIVE YOUR SAMPLE IN THE MAIL WITHIN 6-8 WEEKS.

Feel the difference with Colgate Sensitive Pro-Relief*

 Rub the toothpaste directly on the sensitive tooth with your fingertip and gently massage for 1 minute.

 Eat or drink something that triggers your tooth sensitivity, and discover the instant relief and freshness of Colgate Sensitive Pro-Relief* toothpaste.

Let your friends and followers know about this great offer!

Example – Media Dataset

ID	ArtistName	TrackName
1	The Doors	LA Woman
2	Doors	LA Woman
3	The Beatles	A Little Help from My Friends
4	Beatles, The	With a Little Help From My Friend
7	4 th Elemynt	Ears/Eyes
8	4 th Elemynt	Ears/Eyes – Part II
9	4 th Elemynt	Ears/Eyes – Part III
10	4 th Elemynt	Ears/Eyes – Part IV
11	Aaliyah	Are You Ready
12	AC DC	Are You Ready

M. Bilenko. RIDDLE: Repository of information on duplicate detection, record linkage, and identity uncertainty. http://www.cs.utexas.edu/users/ml/riddle/index.html

Example – Media Dataset

ID	ArtistName	TrackName		
1	The Doors	LA Woman		5
2	Doors	LA Woman		Duplicates
3	The Beatles	A Little Help from My Friends	П	Duplicatos
4	Beatles, The	With a Little Help From My Friend		Duplicates
7	4 th Elemynt	Ears/Eyes		
8	4 th Elemynt	Ears/Eyes – Part II		Not Duplicator
9	4 th Elemynt	Ears/Eyes – Part III		Not Duplicates
10	4 th Elemynt	Ears/Eyes – Part IV		
11	Aaliyah	Are You Ready		Not Duplicates
12	AC DC	Are You Ready	Ш	. tot Baphoates

M. Bilenko. RIDDLE: Repository of information on duplicate detection, record linkage, and identity uncertainty. http://www.cs.utexas.edu/users/ml/riddle/index.html

Introduction - Motives

- Customer Data
 - Prevent unnecessary costs in promotional material
- Company Data
 - Incorrect data analysis, such as counts on product

Machine Learning - Overview

- Leverage a branch of AI, called Machine Learning, to eliminate duplicates
- Use data to train algorithms into performing a task
- Run the algorithms on databases to clean the data

Machine Learning - Overview

1) Supervised Learning

2) Unsupervised Learning

Machine Learning - Supervised

- 1) Supervised Learning
 - Uses well defined training data to teach algorithm
 - May be difficult to obtain training data
 - Needs "domain knowledge"

Machine Learning - Unsupervised

- 2) Unsupervised Learning
 - Relies on distance function detect duplicates
 - Involves clustering of data

Duplicate Elimination Strategy

- Use edit distance to detect fuzzy duplicates
- Edit distance: Quantify similarity between strings, based on:
 - Insertion
 - Deletion
 - Substitution
 - E.g. Yellow -> Jello is 1 substitution and 1 deletion
- Can assign a distance metric between tuples

Duplicate Elimination Strategy

- Baseline: "Global Threshold" to eliminate duplicates
- E.G. tuples are duplicates if: # of changes < X

Example – Media Dataset

ID	ArtistName	TrackName		
1	The Doors	LA Woman		5
2	Doors	LA Woman		Duplicates
3	The Beatles	A Little Help from My Friends	П	Duplicatos
4	Beatles, The	With a Little Help From My Friend		Duplicates
7	4 th Elemynt	Ears/Eyes		
8	4 th Elemynt	Ears/Eyes – Part II		Not Duplicator
9	4 th Elemynt	Ears/Eyes – Part III		Not Duplicates
10	4 th Elemynt	Ears/Eyes – Part IV		
11	Aaliyah	Are You Ready		Not Duplicates
12	AC DC	Are You Ready	Ш	. tot Baphoates

M. Bilenko. RIDDLE: Repository of information on duplicate detection, record linkage, and identity uncertainty. http://www.cs.utexas.edu/users/ml/riddle/index.html

Duplicate Elimination Strategy

Fuzzy Duplicates are:

- 1) Duplicate tuples are 'closer' to each other than to others
 - A "compact set" (CS criteria)
- 2) The local neighborhood of duplicate tuples is sparse
 - A "sparse neighborhood" (SN criteria)

Duplicate Elimination Strategy

Red = Compact Set Criteria **Yellow** = Sparse Neighborhood Criteria

DE Problem

Formal Definitions

CS Criteria:

- Given a set S of tuples from relation R
- Each tuple in S, called v, is closer to tuples v', in S, than any other tuples v'' in R-S

SN Criteria:

- Neighborhood:
 - sphere of radius 2nn(v), (2x distance of closest neighbor)
- Sparse Neighborhood:
 - if # of tuples in Neighborhood < c

DE Problem

Partition R into a minimum number of groups $\{G_1,...,G_m\}$ for all G_i so:

- 1) **G**_i is a compact set
- 2) **G**_i is a sparse neighborhood
- 3) The size of **G**_i ≤ K OR

The diameter of **G**_i ≤ Theta

c: positive threshold value

K: positive integer

Theta: positive real number

DE Algorithm

Sample implementation:

Figure 3: Architecture

DE Algorithm

Phase 1:

- Find the nearest neighbors for each tuple
 - the K nearestOR
 - within certain radius, Theta
- Paper assumes a database indexed for distance between neighbors
 - Index based on Exact Distance is very difficult
 - Index using an approximate / probabilistic method

DE Algorithm

Phase 2:

- Partition input relation into minimum number of compact SN sets
- The resulting partitions are the fuzzy duplicates
- Solution is unique based on parameters:
 - c threshold
 - K value or Theta distance

DE Algorithm - Impact on Database

Phase 1 – NN List Computation:

Database needs to be indexed in a certain way

Phase 2 - Partitioning Phase:

- Most processing is done using SQL queries
- Avoids moving large amounts of data between client & server

Evaluation

RIDDLE Repository:

Internal Datasets:

- Media[artistName, trackName]
- Org[name, address, city, state, zipcode]

Public Datasets:

- Restaurants[Name]
- BirdScott[Name]
- Census[LastName, First name, Middle initial, Number, Street]

Evaluation

1) Recall

- "Fraction of true pairs of duplicates identified by an algorithm"
- How many fuzzy duplicates can be identified?
- Higher the better

2) Precision

- "Fraction of tuple pairs an algorithm returns which are truly duplicates"
- How many of the duplicates tagged, are fuzzy duplicates?
- Higher the better

Results

Performs somewhat better than baseline

Results

Performs the same as baseline

Results

Performs much better than baseline

Thanks

Thanks for Listening!

Appendix

```
Set = {10 50 100 150}
```

Output of Phase 1 (NN_Reln)

Figure 6: Example illustrating the partitioning phase