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Abstract
Hot standby techniques are widely used to implement highly

available database systems. These techniques make use of

two separate copies of the database, an active copy and a

backup that is managed by the standby. The two database

copies are stored independently and synchronized by the

database systems that manage them. However, database sys-

tems deployed in computing clouds often have access to reli-

able persistent storage that can be shared by multiple servers.

In this paper we consider how hot standby techniques can be

improved in such settings.

We present SHADOW systems, a novel approach to hot

standby high availability. Like other database systems that

use shared storage, SHADOW systems push the task of man-

aging database replication out of the database system and

into the underlying storage service, simplifying the database

system. Unlike other systems, SHADOW systems also pro-

vide write offloading, which frees the active database system

from the need to update the persistent database. Instead, that

responsibility is placed on the standby system. We present

the results of a performance evaluation using a SHADOW

prototype on Amazon’s cloud, showing that write offload-

ing enables SHADOW to outperform traditional hot standby

replication and even a standalone DBMS that does not pro-

vide high availability.

Categories and Subject Descriptors H.2.2 [DATABASE
MANAGEMENT]: Physical Design; H.2.4 [DATABASE
MANAGEMENT]: Systems

General Terms Design, Performance, Availability

1. Introduction
Hot standby systems are widely used to improve the avail-

ability of database management systems (DBMS). A hot
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Figure 1. A Hot Standby System

standby manages a separate, backup copy of the database. In

case the active, or primary, DBMS fails, the active system’s

workload is shifted to the standby so that there is little or no

downtime. During normal operation, the active system ships

update logs to the standby. The standby re-executes those

updates against its copy of the database so that it remains

closely synchronized with the active (Figure 1).

This hot standby approach is well suited to shared-

nothing environments because there are two independent

copies of the database that can be managed by separate

servers. However, database systems deployed in comput-

ing clouds often have access to reliable persistent storage

that can be shared by multiple servers. For example, Ama-

zon’s Elastic Compute Cloud (EC2) includes the Elastic

Block Store (EBS), which provides network-attached re-

liable persistent storage volumes for server instances run-

ning in EC2. OpenStack and other systems provide reliable

shared storage in private clouds. In some settings, such as

EC2, network-attached persistent storage may be the only
option for persistent storage. Server-attached secondary stor-

age is ephemeral, meaning that it is unrecoverable in the

event of a server failure.

It is possible to use existing DBMS hot standby tech-

niques in cloud environments with shared persistent storage.

One can simply ignore the data sharing capabilities of the

storage system and store the active and standby copies of

the database independently in shared storage. This approach

is used, for example, in Amazon’s RDS managed relational

database service [3]. In this paper, we re-visit DBMS hot

standby techniques for settings where the active and standby

servers are deployed in an environment in which shared per-

sistent storage is available. We address the following ques-
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Figure 2. SHADOW System Architecture

tion: how can we exploit shared persistent storage to build

better highly available database systems?

We propose SHADOW, a DBMS hot standby technique

for computing clouds and other environments in which

shared persistent storage is available. A SHADOW system

includes active and standby database systems, like other hot

standby techniques. However, in a SHADOW system, the di-

vision of responsibilities among system components is very

different from traditional hot standby techniques. At a high

level: (1) The active DBMS interacts with clients and per-

forms database updates on its in-memory cached copy of the

database. The active writes update records to the transaction

log, but is not responsible for updating the database. (2) The

standby DBMS is responsible for updating the database.

The standby reads the log records written by the active, tak-

ing advantage of the fact that the log is in shared storage,

and uses these records to update the database. (3) The stor-

age system replicates the database and the log to ensure that

they are durably stored even in case of failure. The storage

system also ensures that the active and standby DBMS have

shared access to the database and the log. Figure 2 illustrates

the SHADOW architecture. More details (such as the need

for an auxiliary database) will be presented later.

SHADOW offers several advantages over the traditional

hot standby approach to high availability. First, by push-

ing responsibility for data durability into the storage system,

much of the DBMS complexity associated with database

replication is eliminated. DBMS hot standby techniques nor-

mally make use of a log shipping protocol to synchronize

database updates between the active and standby. Such pro-

tocols can be complex, especially when various failure and

recovery scenarios are considered. In contrast, committing a

transaction in a SHADOW system is as easy for the active

DBMS as committing a transaction in a standalone setting in

which there is no high availability.

Second, by assigning the responsibility for updating the

database to the standby, SHADOW systems eliminate all

(or most) of the need for the active DBMS to write to the

database. Relational database systems regularly checkpoint
the database, which involves writing database updates from

the in-memory buffer cache of the DBMS to the underlying

persistent copy of the database. Checkpointing is required

to bound the amount of work needed to recover from fail-

ure since recovery starts from the latest checkpoint. Check-

pointing is also required to bound the amount of history that

needs to be kept in the transaction log, since the space occu-

pied by a log record can be reclaimed only after the update

represented in this record is checkpointed to the database.

Thus, even if the database can completely fit in memory,

there would still be write I/O activity to the database due

to checkpointing. In modern on-line transaction processing

(OLTP) systems, towards which DBMS high availability is

targeted, it is very common for the database to fit in mem-

ory, so little or no database read I/O is required, and most

or all write I/O to the database is due to checkpointing.

SHADOW systems eliminate the need for checkpointing at
the active DBMS, thereby eliminating a significant fraction

of the I/O performed by the active. The active DBMS in

a SHADOW system writes only log records, and the re-

sponsibility for database writes is shifted to the standby

DBMS. We call this write offloading. Our performance eval-

uation in Amazon’s EC2 cloud shows that a PostgreSQL-

based SHADOW prototype has better overall performance,

and more stable performance, than PostgreSQL’s native syn-

chronous hot standby replication. Indeed, in many settings,

a highly-available SHADOW system can outperform even
a standalone PostgreSQL instance, which does not provide
high availability, because of write offloading.

Third, SHADOW systems decouple replication of the

database server (the DBMS) from replication of the underly-

ing database and log. In SHADOW, the DBMS is replicated

to ensure that the service offered by the DBMS is highly

available. Replication of the database and log, for high avail-

ability and for durability, is the responsibility of the underly-

ing storage system. This provides flexibility in managing the

trade-offs among cost, availability, and durability when de-

ploying a database service. In particular, the degree of repli-

cation of the DBMS need not be the same as the degree of

replication of the database, as is the case in traditional hot

standby systems. For example, in a SHADOW system it is

possible to ensure that committed database updates are 3-
safe (i.e., are replicated at least three times) while deploying

(and paying for) only two database systems.

Finally, SHADOW systems require less I/O bandwidth

between the DBMS and persistent storage than traditional

hot standby systems, since data replication occurs within the

storage system. In environments in which storage system

I/O is metered, such as Amazon’s EC2, this can reduce the

operating cost of a hot standby system.

This paper makes the following research contributions.

• We propose the SHADOW system architecture, and we

present algorithms for system management operations,

such as launching a standby DBMS or failing over to

the standby, in a SHADOW system.
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• We present a SHADOW prototype, based on Post-

greSQL, which is designed to operate in a cloud set-

ting in which there is a persistent block storage service,

such as Amazon’s Elastic Block Store (EBS).

• We present a performance evaluation in which SHADOW

is compared against a variety of baseline systems under

an OLTP workload. Our evaluation shows that when

shared storage is available, a DBMS can be made highly
available (using SHADOW’s hot standby approach)
with no loss in overall system performance. In contrast,

making a DBMS highly available using PostgreSQL’s

native hot standby replication results in significant per-

formance degradation.

The remainder of the paper is structured as follows. Sec-

tion 2 presents a brief overview of existing techniques for

building highly-available database management systems.

Section 3 provides a high-level overview of the SHADOW

approach, and contrasts it with existing techniques. Section 4

describes the operation of a SHADOW system in more de-

tail and explains system operations such as establishment of

a standby system, and failover from the active system to the

standby. Section 5 describes our prototype implementation

of SHADOW, which is based on PostgreSQL and which uses

Amazon’s EBS for persistent storage. Section 6 presents the

results of a performance evaluation that compares the proto-

type against several different baselines.

2. DBMS High Availability
Before presenting the SHADOW approach, we first give an

overview of existing techniques for building highly available

database systems.

2.1 Shared-Nothing Techniques
Many database high availability techniques are shared-
nothing [17]. This means that high availability is achieved

using two or more DBMS instances, each running on a sep-

arate server with its own local storage (no shared network-

accessible storage is assumed). DBMS instances communi-

cate by exchanging messages over a network.

The hot standby technique described in Section 1 is a

shared-nothing technique. It is widely implemented and

used, e.g., in PostgreSQL Replication, MySQL Replication,

DB2 [6], Microsoft SQL Server Always On [19], and Ora-

cle Data Guard [12] where it is known as database mirror-

ing [13]. As illustrated in Figure 1, each DBMS instance

manages its own copy of the database and transaction log.

Clients connect to the active DBMS and execute transactions

on the active. The active DBMS sends the database updates

to the standby DBMS (e.g., using log shipping), which ap-

plies the updates against its own database. Some hot standby

systems also allow clients to run queries (but not updates) at

the standby system. PNUTS [8] uses a more general version

of this approach, in which clusters of servers in different

sites manage multiple copies of a database, one copy per

site. Each update occurs first at one site, which then ships

the update to the other sites.

In hot standby systems, propagation of updates from the

active DBMS to the standby may be synchronous or asyn-
chronous. Typically, synchronous propagation ensures that

the active DBMS will not acknowledge a commit request

to the client until both the active and standby have persis-

tently logged the transaction, ensuring that the effects of this

transaction will survive a failure of the system. However,

synchronous replication can hurt the performance of the ac-

tive DBMS because it must synchronize with the standby on

the critical execution path of every transaction commit. By

propagating updates lazily, asynchronous hot standby sys-

tems avoid this problem, but accept the risk that committed

yet unpropagated transactions will be lost as a result of a

failure of the active.

While hot standby approaches can use as few as two

DBMSs, other shared-nothing systems use quorum-based

replication protocols (e.g., Paxos [14]) to synchronously

replicate updates among three or more separate DBMS in-

stances. For example, Microsoft’s Cloud SQL Server [7]

uses a custom replication protocol to synchronize updates

across three or more DBMS instances, and transactions

are committed only when a majority of the instances ac-

knowledge them. Other examples of such systems include

Granola [10], Spanner [9], and Megastore [5], the last two

of which are designed to support geographically separated

database instances.

Because these systems achieve consensus among DBMS

instances about the commitment of each transaction, com-

mitted updates are not lost as a result of the failure of a sin-

gle DBMS. Furthermore, because they can operate as long

as quorum of replicas are up, the loss of a single DBMS

instance results in little or no downtime. Thus, these sys-

tems provide very high availability. However, since at least

three replicas are required, they are relatively expensive to

operate [7]. In addition, the DBMS-implemented replication

protocol introduces performance overhead and latency dur-

ing normal operation, much like synchronous propagation

does in hot standby systems.

2.2 Shared Storage Techniques
An alternative to the shared-nothing approach is to have

multiple database systems share access to a single, reliably

stored, shared copy of the database. This shared copy can be

stored in a cloud shared storage service such as Amazon’s

EBS, in a cluster file system such as VMFS [20], or in a

reliable NAS system implemented using redundant storage

devices (RAID [16]) and replicated servers.

Example shared-storage systems include Tandem’s Non-

Stop SQL [18], IBM DB2 ICE, IBM DB2 pureScale [1],

and Oracle RAC [2]. These systems all employ an ac-
tive/active architecture, in which multiple DBMS instances

process client transactions against the same shared database.

A downside of this approach is that distributed mechanisms
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for concurrency control and (DBMS) cache coherency are

required to coordinate the database accesses made by the

different database systems, and these mechanisms may be on

the critical path of every transaction. Like SHADOW, these

systems rely on the availability of the shared database to

maintain overall system availability. To maintain availabil-

ity despite the loss of the database, the entire shared-storage

cluster can be mirrored using hot standby techniques (e.g.,

Oracle RAC + Data Guard).

Another class of shared-storage systems is cold standby
systems, which do not have the complexity of active/active

systems. A single active DBMS manages a database in

shared, network-accessible storage. If the active DBMS

fails, a standby DBMS is launched on a different server, and

it accesses the same database and log that was used by the

active. The standby DBMS must bring the shared database to

a consistent state (e.g., by using a log-based recovery proto-

col such as ARIES [15]) before availability can be restored.

Since the cold standby approach requires only a single active

DBMS instance at any time, the standby DBMS uses little

or no resources (e.g. CPU and memory) during standing by.

However, because the system is down while the standby is

launched and the database is recovered, the cold standby

technique does not provide true high availability. Instead, it

reduces downtime by eliminating the need to wait for the

active system to be repaired. Cold standby techniques are

similar to SHADOW in that only one DBMS instance at a

time can update the active database and the shared database

log. However, SHADOW standby systems are hot to mini-

mize the downtime that results from a failure of the active.

Because each of these systems has its own advantages (in

cost, performance, durability or availability), all are used in

practical settings, with the choice made according to applica-

tion requirements. SHADOW systems, which we introduce

in Section 3, belong to the same part of this design space

as hot standby systems. However, SHADOW is intended to

be a superior alternative to hot standby approaches in cloud

environments where shared, network-accessible, persistent

storage is available.

3. SHADOW Overview
Figure 2 illustrates a SHADOW system in the normal, pro-

tected operational state. Clients connect to the active DBMS,

which processes all client transactions. Both the active and

the standby DBMS instances have access to a shared reli-

able persistent storage system. We assume that the shared

persistent storage system is itself highly available. For the

purposes of this section, we are not concerned with the spe-

cific implementation of the shared storage system. Section 5

presents the SHADOW-EBS prototype, which uses Ama-

zon’s Elastic Block Store (EBS) for persistent storage.

The SHADOW architecture shown in Figure 2 shows two

databases stored in shared storage: a primary database man-

aged by the standby DBMS, and an auxiliary database man-

aged by the active DBMS. When a SHADOW system starts

operation, only the (unprotected) active DBMS is running

and there is only one database. A standby DBMS is created

by taking a snapshot of the active’s database, and that snap-

shot becomes the primary database managed by the standby.

The active retains its database, which now becomes the aux-

iliary database. Throughout the operation of a SHADOW

system, there is one copy of the transaction log that is shared

by the active and the standby.

The active DBMS performs transactional updates on its

local cached copy of the database, and uses write-ahead log-

ging to push update and transaction commit records to the

shared persistent log. A transaction is committed once its

log records are safe in the persistent storage system. The

standby DBMS reads the log records generated by the ac-

tive instance from shared storage and replays the logged up-

dates against its local cached copy of the database. In ad-

dition, the standby periodically performs database check-

points, which push database changes from its local database

cache to the primary database in persistent storage. The

standby’s checkpoints also allow older log records to be

purged from the shared persistent log. In a SHADOW sys-

tem, only the standby DBMS reads and updates the primary

database. The standby’s checkpointing operations ensure at

all times that the persistent primary database and log to-

gether include the effects of all committed transactions.

The active DBMS does not checkpoint, and writes to

the auxiliary database only if the limited capacity of its

database cache forces it to “spill” changed pages. We refer

to this transfer of checkpointing responsibility from the ac-

tive DBMS to the standby as write offloading. The active

DBMS reads from the auxiliary database if it needs to bring

database pages into its cache. In the special case that the en-

tire database can fit in the active DBMS’s cache (which is a

common case in modern OLTP systems), the active DBMS

never needs to write database pages, and never needs to read

a database page except when this page is touched for the

first time. If the database is larger than the active’s cache,

then there may be some read and write I/O to the auxilliary

database. However, we expect the amount of write I/O to be

much less than in a normal hot standby system, since there

is no checkpointing at the active DBMS.

SHADOW systems are similar to hot standby systems

(Figure 1), and this similarity allowed us to build our

SHADOW prototype (Section 5) by adapting an existing

synchronous hot standby system without too much diffi-

culty. Nonetheless, there are several key differences between

SHADOW systems and other hot standby systems which

we summarize here, before presenting the operation of the

SHADOW system in more detail. First, SHADOW systems

require a single persistent log that can be shared by both the

active and standby DBMS. Second, in a SHADOW system,

only one of the two databases (the primary), together with

the log, is guaranteed to include the effects of all committed
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Figure 3. Operational States of a SHADOW System

transactions. Third, in a SHADOW system, the active DBMS
does little or no database I/O, because of write offloading.

Fourth, in a SHADOW system a transaction is committed
once its commit record is present in the persistent log. There

is no need for coordination between the active and standby

instances during transaction commit.

4. System Operation
Figure 3 shows the operational states of a SHADOW system,

and the transitions among those states. Transitions shown

with dashed lines are failure transitions, which occur when

either the active instance or the standby instance fails. Tran-

sitions shown with solid lines are SHADOW system opera-

tions, which move the system from one operational state to

another. Other active/standby database systems would have

a state diagram similar to the one shown in Figure 3. How-

ever, because a SHADOW system divides responsibility for

updating persistent storage between the active and standby

DBMS instances, the behavior of a SHADOW system in the

various states differs from that of other systems. Similarly,

SHADOW system operations, such as PROTECT, differ from

those in other active/standby systems.

As described in Section 5, we have implemented our

SHADOW prototype using PostgreSQL. However, the

SHADOW architecture should also be implementable using

other database systems. Thus, in this section we describe the

SHADOW operations in terms of a more generic DBMS,

and we defer discussion of PostgreSQL specifics until Sec-

tion 5. Before presenting the SHADOW operations, we be-

gin by describing our assumptions about the behavior of the

generic DBMS.

We assume that the DBMS uses physiological [11] or

physical write-ahead logging (WAL) to ensure the durability

of committed transactions and their updates. Thus, each log

record describes an update to a single page, which is identi-

fied in the log record. We assume that replaying a logged up-

date will result in changes to a database page that are equiv-

disable log truncation

make DB snapshot

disable checkpointing

ACTIVE DBMS

 launch standby DBMS 

 mark new DB as primary 

  enable checkpointing

  enable log truncation

STANDBY DBMS

Figure 4. PROTECT Operation Timeline

alent to the changes that resulted from the original update.

In the case of physiological logging, the physical page state

resulting from log replay may differ from the physical page

state resulting from the original update. However, the two

states are assumed to be logically equivalent from the per-

spective of the DBMS. We also assume that each log record

has an associated log sequence number (LSN), and that each

database page includes a record of the LSN of the most re-

cent update that has been applied to that page. These tech-

niques are used by well-known logging algorithms, such as

ARIES [15], to ensure that updates are applied exactly once

to each database page.

Finally, we assume that the DBMS can perform periodic

checkpoint operations, and that as part of a checkpoint op-

eration the DBMS will identify a new log recovery point,
which is the LSN from which log replay should start in the

event of a DBMS failure after the checkpoint. As part of its

checkpoint operation, the DBMS is assumed to record the

new log recovery point in a recovery file in the same per-

sistent storage volume as the log itself. We assume that the

DBMS is free to discard, at any time, log records with LSNs

earlier than the current log recovery point, since such log

records would not be needed to recover the database in the

event of a failure. We refer to this process as log truncation.

In the following, we describe the states and operations

shown in Figure 3 in more detail.

4.1 Protection
The STANDALONE ACTIVE state represents the normal un-
protected state, in which a single active DBMS handles

client requests, and there is no standby. Failure of the ac-

tive DBMS in this state results in loss of availability. The

PROTECT operation is used to create a standby DBMS, mov-

ing the system into the ACTIVE+STANDBY state. The AC-

TIVE+STANDBY state is the normal protected operational

state of the SHADOW system.

A typical approach to creating a standby instance is to

create a snapshot of the standalone database and then deploy

the standby instance. The snapshot serves as the initial state

of the database managed by the standby instance. As part of

the process of creating the snapshot, the active DBMS iden-

tifies a replay start LSN, from which the standby will begin
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replaying the log. The reply start LSN is simply the log re-

covery point of the active system’s most recently completed

checkpoint. This ensures that any database updates that may

not be present in the snapshot database will be replayed from

the log.

Figure 4 illustrates how the PROTECT operation is per-

formed in a SHADOW system. It differs in several ways

from this typical procedure. First, the active DBMS dis-

ables log truncation before creating the database snapshot,

to ensure that the shared log will contain all committed

database updates that may not be present in the snapshot.

Second, the active system switches the role of its copy of the

database from primary to auxiliary, since the new standby

system is to manage the primary database. We assume that

the SHADOW system records which database is the primary

using a file stored in the same persistent volume as the log.

The new standby DBMS operates in log replay mode, as

is the case in other log-shipping hot standby systems. This

means that the standby continuously reads log entries written

by the active instance (starting from the replay start LSN),

and re-executes the logged updates against its copy of the

database. As the standby DBMS performs checkpoints, it

pushes updated database pages from its database cache to

persistent storage, and truncates old records from the shared

log once the updates they describe are known to be in the

persistent copy of the database.

4.2 Failover
In case of a failure of the active instance during protected

operation, the standby instance becomes active and takes

over the processing of client requests. This FAILOVER op-

eration (Figure 5(a)) in a SHADOW system is very simi-

lar to failover in other active/standby systems. The standby

instance finishes replaying all log records generated by the

active instance before it failed, aborts active transactions,

and then switches from log replay mode to normal execu-

tion mode in which it can accept new transaction requests

from clients.

4.3 Deprotection
When the standby DBMS fails, the DE-PROTECT operation

is used to put the active DBMS back into STANDALONE AC-

TIVE state. This operation, shown in Figure 5(b), involves

changing the role of the active system’s database from aux-

iliary to primary. To do this, the DE-PROTECT operation

re-enables checkpointing in the active system and forces a

checkpoint operation to ensure that all committed updates

prior to the checkpoint are present in the persistent auxil-

iary database. The active DBMS then marks its copy of the

database as the primary copy and proceeds as a standalone

system. From there, a PROTECT operation can be used to

create a new standby DBMS if desired.

4.4 Discussion
In this section we present a set of invariant properties that are

preserved during the operation of a SHADOW system. For

each property, we present an informal argument to explain

why the property is preserved.

PROPERTY 1. At most one DBMS instance at a time is re-
sponsible for updating the primary database and for trun-
cating the log.

Property 1 follows immediately from the PROTECT op-

eration, which disables log truncation in the active DBMS

before switching the primary database to the standby and re-

enabling log truncation there. In all other states there is only

a single DBMS. �

PROPERTY 2. All client transactions see the current state of
the database, including the effects of all committed transac-
tions.

During STANDALONE ACTIVE operation, this is ensured by

the normal operation of the active DBMS. During a PRO-

TECT operation, the active assumes management of the

auxiliary database rather than the primary. However, the

PROTECT operation does not affect the contents of the ac-

tive DBMS’s cache, and the initial state of the auxiliary

database is identical to that of the new primary database.

Property 2 holds after a FAILOVER operation because the

standby DBMS replays all outstanding log records before

switching to normal operation and assuming the role of the

active database. This failover mechanism is used by other

hot standby systems that are based on log shipping. �

PROPERTY 3. All committed updates are present in persis-
tent storage in the primary database, in the log, or both.

In a SHADOW system, write-ahead logging by the ac-

tive DBMS ensures that the updates of committed transac-

tions are in the persistent log before a transaction commits.

However, one threat to Property 3 is the possibility that log

truncation will remove persistent logged updates before they

have been applied to the primary copy of the database. Prop-

erty 1 ensures that only one DBMS at a time is respon-

sible for updating the primary database and for log trun-

cation, so correct operation of that DBMS’s checkpointing

and log truncation mechanism will preserve Property 3, pro-
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vided that it holds when that DBMS initially takes respon-

sibility for the primary database. In a SHADOW system,

the standby DBMS assumes responsibility for the primary

database during a PROTECT operation. Because the active

DBMS disables log truncation before switching control of

the primary database to the standby system (Figure 4), Prop-

erty 3 will hold when the standby DBMS assumes respon-

sibility for the primary database. The other threat to Prop-

erty 3 in a SHADOW system occurs when the active sys-

tem’s auxiliary database becomes the primary database dur-

ing a DE-PROTECT operation. By performing a checkpoint

of the auxiliary database before enabling log truncation, the

active DBMS ensures that Property 3 will hold in the auxil-

iary database before it assumes the role of the primary. �

A consequence of Property 3 is that if both active and

standby database systems fail, normal DBMS log-based re-

covery using the primary database and log will correctly re-

store the database, with no loss of committed transactions.

5. Prototype Implementation
We have implemented a SHADOW prototype, which we re-

fer to as SHADOW-EBS, using PostgreSQL (version 9.3)

as the DBMS and Amazon’s Elastic Block Store (EBS) for

reliable persistent storage. EBS provides raw persistent stor-

age volumes that can be attached in virtual machines run-

ning within Amazon’s Elastic Compute Cloud (EC2). EBS

volumes are replicated to provide both durability and high

availability. Currently, Amazon’s service level agreement

for EBS volumes promises a minimum availability level of

99.95%. EBS volumes can be provisioned with a variety

of performance characteristics to suit the application. EBS

also provides snapshotting and other volume-level opera-

tions that are common in modern storage systems.

The SHADOW-EBS prototype is illustrated in Figure 6. It

consists of active and standby instances of PostgreSQL, each

running in an EC2 virtual machine, plus three EBS volumes,

one each for the log, the primary database, and the auxiliary

database. Next, we present details of SHADOW-EBS’s use

of EBS volumes (Section 5.1) and PostgreSQL (Section 5.2).

5.1 Using EBS for SHADOW
Although an EBS volume can be attached to different EC2

virtual machines over its lifetime, at any particular time an

EBS volume can be attached to at most one virtual machine.

This is a challenge for a SHADOW system, which expects

the active and standby to share access to the log volume. To

work around this issue, SHADOW-EBS uses PostgreSQL’s

native log-shipping facility to ship log records from the ac-

tive DBMS directly to the standby. During normal operation,

the EBS log volume is attached to the active PostgreSQL

instance. The active instance commits transactions by writ-

ing their commit records to the EBS log volume, and asyn-
chronously streams copies of all log records directly to the

standby via a network connection. This adds a small amount

of overhead to the active DBMS. However, no DBMS-level

synchronization is required to commit transactions. Once the

active DBMS has written a transaction’s commit record to

the log, it can immediately acknowledge the commit to the

client application, and need not wait for any kind of ac-

knowledgment of receiving log records from the standby

system.

If the active DBMS fails, it is possible that some log

records will have been written to the log volume but not

sent to the standby. As part of the FAILOVER operation,

after consuming all streamed log records, the standby DBMS

attaches itself to the EBS log volume (which is possible since

the active system has failed) and reads and applies any log

records that were written by the active but not shipped. This

ensures that committed updates will not be lost during the

failover operation.

One final challenge related to the log volume is that dur-

ing normal operation, the SHADOW standby system is re-

sponsible for log truncation, which requires access to the log

volume. In SHADOW-EBS, the standby DBMS does this in-

directly, by sending log truncation requests to a SHADOW-

EBS log truncation service that runs on the same virtual ma-

chine as the active DBMS. The truncation service simply

acts as a proxy for the standby DBMS, truncating the log at

the LSN specified by the standby.

SHADOW-EBS’s need for log streaming and the log

truncation proxy arise directly from EBS’s limitation that

only a single virtual machine can connect to a volume. Nei-

ther would be necessary if SHADOW were implemented on

a storage service that supports simultaneous access to the

log, e.g., a reliable network-attached file system or a cluster

file system.

One positive feature of EBS is that SHADOW-EBS can

directly exploit EBS’s volume snapshot mechanism during

PROTECT operations. In STANDALONE ACTIVE state, there

is only one database volume, to which the active DBMS is

connected. During a PROTECT operation, SHADOW-EBS

uses EBS’s native snapshot facility to create a snapshot of

the database volume. This snapshot occurs as part of the

“make DB snapshot” step shown in Figure 4. This snapshot
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is used to initialize a second database EBS volume, which

is attached to the newly-created standby DBMS server. The

new volume holds the primary copy of the database, and the

database stored in volume originally attached to the active

DBMS becomes the auxiliary copy. In case of a failure of the

active DBMS, the auxiliary database’s volume, to which the

active was attached, can simply be deleted after transaction

processing has been failed over to the standby DBMS.

5.2 PostgreSQL Details
SHADOW-EBS makes use of a pair of PostgreSQL in-

stances, with the standby instance operating in continuous

recovery mode. This means that it continuously replays log

records streamed to it by the active instance.

In a SHADOW system, the standby DBMS is expected

to push updates to the persistent primary database by per-

forming checkpoint operations, and the active system does

not checkpoint at all. However, a PostgreSQL instance op-

erating in continuous recovery mode cannot checkpoint in-

dependently of the active instance. This is because check-

pointing requires creation of a checkpoint record in the log.

Since a PostgreSQL standby system replays log records but

does not generate log records of its own, the standby system

essentially re-uses the active’s checkpoint records to imple-

ment its own checkpoints.

To address this issue, we modified the active PostgreSQL

server so that it will perform periodic pseudo-checkpoint
operations. During a pseudo-checkpoint, the active DBMS

writes a normal checkpoint record to the log, but does not

flush any dirty pages to the auxiliary database and does

not update its log recovery point. Using the checkpoint log

records generated by the active’s pseudo-checkpoints, the

standby can checkpoint its database as usual. It is necessary

for the frequency of pseudo-checkpoints at the active system

to be at least as high as the frequency of true checkpoints at

the standby. However, the overhead of a pseudo-checkpoint

at the active system is very low.

After checkpointing, the standby DBMS can truncate log

records that are no longer needed for recovery. As described

in Section 5.1, we modified PostgreSQL so that the standby

instance will use the active’s log truncation service to ac-

complish this since it cannot access the log volume directly.

Finally, we made a number of changes to PostgreSQL

to implement write-offloading by ensuring that the active

DBMS will perform as few writes to the auxiliary database

as possible during protected operation. PostgreSQL’s buffer

manager flushes dirty database pages from its buffer cache

to persistent storage for three reasons. First, all dirty buffers

are flushed when a checkpoint is performed. Second, when

there are many dirty pages in the buffer pool, they can be

flushed to persistent storage by PostgreSQL’s background

writer threads. Finally, a dirty page may be flushed to disk

during page replacement if the replacement victim is dirty,

or when a new page is first allocated.

We added two new parameters to PostgreSQL to control

these writes. The first can be used used to enable or disable

writes caused by checkpoints. The second can be used to

enable or disable PostgreSQL’s background writer threads.

During a PROTECT operation, these flags are used to disable

both types of writes in the active instance (at the “disable

checkpointing” step in Figure 4), meaning that PostgreSQL

will write to the persistent database only when necessary

during page replacement. When the active’s buffer cache is

large, this occurs very rarely. During a DE-PROTECT opera-

tion, these parameters are used to re-enable database writes.

6. Evaluation
In this section we evaluate our SHADOW-EBS prototype,

comparing it to other hot standby DBMS configurations, and

to standalone DBMS configurations which are not highly

available. We evaluate the transaction processing perfor-

mance of these systems during normal protected operation

as well as the time required for failover after failure of the

active DBMS.

6.1 Experimental Methodology
We have implemented the SHADOW-EBS prototype system

described in Section 5 using PostgreSQL version 9.3. We

use this same version of PostgreSQL for the standalone and

hot standby baseline systems against which we compare

SHADOW-EBS.

For the standalone baseline, the frequency with which

the DBMS initiates checkpoints controls a tradeoff between

performance during normal operation and recovery time.

Checkpointing more frequently reduces recovery time but

adds overhead during normal operation because checkpoints

consume I/O and may cause buffer cache contention. Thus,

we use several different standalone configurations with dif-

ferent checkpointing frequencies in our evaluation:

• SAD: This is the default PostgreSQL configuration,

checkpointing every five minutes or when three 1GB log

segments fill up (whichever happens earlier). This con-

figuration represents an extreme tradeoff of performance

in favor of fast recovery time.

• SA: This configuration checkpoints minimally (every 30

minutes), regardless of the total number of log segments.

It represents the opposite extreme on the performance vs.

recovery time tradeoff for standalone systems.

• SA10: This configuration checkpoints every 10 minutes.

Thus, it represents a balance between the extremes of SA

and SAD.

In addition to these standalone configurations, we use

PostgreSQL’s native hot standby mechanism to provide two

highly available baselines (Table 1):

• SR: This baseline includes two database systems, one ac-

tive and one hot standby, configured to use synchronous

 216



checkpoint highly transaction

system description interval available? loss?

SAD standalone PostgreSQL 5 min no n/a

SA10 standalone PostgreSQL 10 min no n/a

SA standalone PostgreSQL 30 min no n/a

ASR PostgreSQL native asynchronous hot standby 30 min yes possible

SR PostgreSQL native synchronous hot standby 30 min yes no

SH SHADOW-EBS 30 min yes no

Table 1. Tested Systems. The transaction loss column indicates whether committed transactions might be lost during failover.

replication. Each DBMS manages its own persistent copy

of the database and its own log. The active system uses

PostgreSQL’s log shipping mechanism to stream logged

updates to the standby, which replays them against its

copy of the database. With synchronous replication, the

active system does not acknowledge transaction commits

to the client until the standby has received and persis-

tently stored the transaction’s commit record. In our SR

configuration, both the active and the standby are config-

ured to checkpoint minimally, like the SA baseline.

• ASR: This baseline is identical to SR, except that the ac-

tive and hot standby systems are configured to use asyn-
chronous replication. This means that the active system

may acknowledge transaction commits to the client as

soon as the transactions are committed locally, without

waiting for acknowledgment from the standby [4]. Since

the active system does not need to coordinate transac-

tion commits with the standby, some recently committed

transactions may be lost during a failover. As in the SR

baseline, both the active and the standby are configured

to checkpoint minimally.

All of our experiments were run in Amazon’s EC2 cloud

using c3.4xlarge instances, which have 16 virtual CPUs

and 30 GB of memory, for all of our baselines and the

SHADOW-EBS prototype. Linux kernel 3.2.0-56-virtual is

used for all EC2 instances.

Each standalone baseline used two EBS volumes, one for

the log and one for the database. The SR and ASR highly

available baselines used four volumes, a database volume

and a log volume for the active instance, and a second pair of

volumes for the standby. As shown in Figure 6, SHADOW-

EBS used a total of three volumes, one for the log and one

each for the auxiliary and primary databases. Unless other-

wise noted, all EBS volumes used Amazon’s provisioned I/O

feature to guarantee a minimum performance of 600 I/Os per

second (IOPS).

Our experiments used the TPC-C benchmark workload,

with clients (terminals) configured to submit transactions

without think time. We used 30 TPC-C clients for all ex-

periments, enough to ensure that the tested systems ran at,

or near, their peak throughput. Each experiment was run us-

ing a 100-warehouse TPC-C database, which had an initial

size of approximately 11GB. The original database was re-

stored and the DBMS was restarted prior to each new run.

Each experimental run lasted for 100 minutes, during which

the database size grew as large as 24GB, depending on sys-

tem performance. We ignored the first 30 minutes and the

last 10 minutes of each run so that our reported measure-

ments represent steady state execution. We performed three

independent runs for each configuration tested.

On all DBMS servers, we flushed the operating system’s

page cache (including cached file data) every ten seconds to

minimize the impact of file system caching on our results.

We also made two adjustments to the default PostgreSQL

configuration for all of our tests. First, we disabled full page

logging (PostgreSQL parameter full page writes), since

it led to very high log volumes that severely impacted per-

formance and hindered measurement. Second, we config-

ured PostgreSQL to spread out checkpoint-related I/O over

most of the checkpoint interval (parameter checkpoint

completion target = 0.9) to reduce the burstiness of

checkpoint I/O. These configuration adjustments were ap-

plied to SHADOW-EBS as well as to the baseline configu-

rations.

6.2 Large Memory Scenario
Our first set of experiments considers system performance

during normal operation, in a setting in which there is suf-

ficient memory to hold the entire database locally in each

DBMS buffer pool. Specifically, the PostgreSQL database

buffer cache size is set to 26GB, which is large enough to

hold the whole database, even after it grows with transaction

processing. It is common for database systems that support

transactional workloads to be configured with enough mem-

ory to hold the entire database, or at least the hot part of the

database. However, we also consider a configuration with a

smaller buffer pool in Section 6.3.

Figure 7 compares the average TPC-C throughput of the

standalone baselines (SA, SA10, SAD) and the hot standby

baselines with that of the SHADOW-EBS prototype, which

is denoted by SH in the figure. We report throughput in

terms of TPC-C New Order transactions per minute (tpmC),

which is the standard measure of throughput for the TPC-C

benchmark. We make several observations:

• First, SHADOW’s throughput is slightly higher than that

of the standalone SA baseline, which checkpoints infre-
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Figure 7. TPC-C Throughput, Large Memory Case. Bar

height shows the mean throughput over three independent

runs, while the error bars show the range between the fastest

and slowest runs.

quently, and significantly higher than that of the other

two standalone configurations that checkpoint more ag-

gressively. Both SHADOW and SA commit transactions

the same way – by writing a commit record to the log.

SHADOW achieves slightly better average throughput

than SA because of write offloading, which eliminates

checkpointing at the active DBMS. Thus, SHADOW can

be used to turn a standalone DBMS configuration into

a high availability configuration without negatively im-
pacting performance. In fact, as the figure shows, write

offloading can actually boost performance.

• Second, SHADOW’s performance is also slightly higher

than that of ASR, which provides high availability but

which (unlike SHADOW) may lose committed transac-

tions during failover. ASR’s performance is about the

same as that of SA, which is not surprising since both

work the same way except that the ASR active asyn-

chronously ships log records to the standby. This has little

impact on performance.

• Finally, SHADOW’s throughput is nearly 70% higher

than that of SR, which is the only baseline that provides

availability and durability guarantees like SHADOW’s.

To explain the performance of SHADOW and the base-

lines, we first look more closely at transaction throughput.

During each run, we measured transaction throughput dur-

ing each ten-second interval. Figure 8 presents a box-and-

whiskers plot that shows the distribution of these through-

put measurements over all three runs for each system. As

can be seen in the figure, SHADOW normally has perfor-

mance that is comparable to that of ASR and SA. However,

both ASR and SA suffer occasional periods of severe per-

formance degradation, including brief periods during which

throughput dropped to less than 1000 tpmC. We have ob-

served that these periods are correlated with checkpointing.

In contrast, SHADOW’s performance is much more stable
due to write offloading, which eliminates checkpoint I/O

in the active system. SHADOW’s throughput remained at
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Figure 8. Variability of TPC-C Throughput, Large Mem-

ory Case. The ends of the whiskers show the minimum and

maximum throughput observed during any 10 second inter-

val, the boxes show the two middle quartiles, and the line in

each box represents the mean throughput.

45000 tpmC or above at all times. The performance of the

SR baseline is not only lower than that of SHADOW and

ASR, but also more variable (bigger box in the plot).

In our experiments, we also measured transaction re-

sponse times (details omitted for lack of space). SHADOW-

EBS and the two high availability baselines had similar me-

dian response times, near 10ms. However, the mean response

times were 14.2ms for SHADOW-EBS, 16.5ms for ASR,

and 22.9ms for SR. ASR and SR have higher mean response

times than SHADOW-EBS because a larger fraction of their

transactions have a high response time (i.e., their response

time distributions have heavier tails than SHADOW’s).

6.2.1 Database I/O
In addition to reducing performance variability, SHADOW

also reduces the amount of I/O performed by the database

systems. Figure 9 shows the total amount of I/O to the

database volume(s) for SHADOW and the baselines. For

those systems (SHADOW, SR, and ASR) that have two

database volumes, Figure 9 shows the total amount of I/O

to each volume. In all cases, write I/O dominates, since all

of the database systems have sufficient memory to cache the

entire database.

Two things are evident from Figure 9. First, the

SHADOW active performs much less I/O than the ASR and

SR systems, despite the fact that its throughput is higher.

The SHADOW active also performs less I/O than any of

the standby systems. Almost all of the database writes per-

formed by the SHADOW active are due to the growth of

the database over each experimental run since PostgreSQL

pushes each newly-created database page to persistent stor-

age (an implementation detail of PostgreSQL). Without

database growth, a SHADOW active system with sufficient

memory to hold the entire database will perform no database
I/O at all once the database has been loaded into memory.

Second, all of the standby database systems perform a sim-

ilar amount of I/O. (SR performs slightly less, but only be-
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Figure 9. Total Volume of Database I/O

cause its throughput is lower.) The baseline systems (SR and

ASR) perform the same amount of I/O at the active and the

standby, while SHADOW’s I/O pattern is asymmetric, with

most of the I/O occurring at the standby.

6.3 Small Memory Scenario
In this section we present the results of an experiment that is

identical to the one presented in Section 6.2, except that size

of the DBMS buffer cache is reduced from 26GB to 8GB.

As noted in Section 6.1, the TPC-C database starts at 11GB

in size, and grows significantly larger over the course of the

experiment. Because the DBMS buffer cache cannot hold

the entire database, we expect that all systems will have to

perform more I/O to the database volume(s). Our objective is

to see how this change affects the performance of SHADOW

relative to the baseline systems.

Figure 10 shows the mean throughput of SHADOW and

the baselines in the small memory configuration. Unsurpris-

ingly, all of the configurations achieve lower throughput in

the small memory configuration than in the large memory

configuration (Figure 7). However, SHADOW-EBS is af-

fected the least by this change. As a result, the through-

put of SHADOW-EBS is about 20% better than that of the

best standalone baseline (SA). Because of write offloading,

SHADOW places less I/O load than the baselines on the

database volume of the active DBMS. For example, about

75% of the database I/O bandwidth used by the SA baseline

is devoted to writes, leaving only 25% for reads. In contrast,

SHADOW is able to devote about 40% of its I/O bandwidth

to reads. This number is grows to more than 50% if we ig-

nore writes that are attributable to database growth. Thus,
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Figure 10. TPC-C Throughput, Small Memory Case

in addition to avoiding checkpointing-induced performance

fluctuations, SHADOW’s write offloading frees more of the

available I/O bandwidth for database reads in scenarios in

which the entire database does not fit in memory.

6.4 Direct-attached Storage Scenario
In all of the experiments reported so far, both SHADOW and

the baseline systems make use of EBS volumes to hold the

database and logs. This is common in cloud settings, and

in particular in Amazon’s EC2 environment, since storage

devices that are directly attached to EC2 virtual machine

instances (known as instance storage) are ephemeral. This

means that if the instance fails or is shut down, the contents

of instance storage are permanently lost. Nonetheless, there

are other settings in which it is possible for a highly available

database system to use directly attached persistent storage,

e.g., locally attached disks or SSDs, for database and log

volumes. In contrast, SHADOW must use reliable, network-

attached shared storage for its log and database volumes.

Since directly attached storage may have better perfor-

mance than network-attached storage, SHADOW’s require-

ment for network-attached storage may place it at a perfor-

mance disadvantage. In this section, we present an additional

experiment that explores how significant this effect is. For

this experiment, we configured the SR and ASR baseline

systems to use instance storage, rather than EBS volumes,

for both the database and the log. We refer to these new

configurations as ASR-EP and SR-EP. In the EC2 environ-

ment, these new configurations have no persistent copy of

the database or the log, since instance storage is ephemeral.

Nonetheless, we tested these configurations as representa-

tives of a non-cloud setting in which directly attached stor-

age is persistent, rather than ephemeral.

Both the instance storage used by ASR-EP and SR-EP

and the EBS volumes used by SHADOW and the original

baselines are SSD-based. However, the instance storage of-

fers better I/O performance than the network-attached EBS

volumes we used. For example, for a single-threaded se-

quential write workload, our benchmarking measured over

1200 IOPS for instance storage (about 0.8 ms per request),
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Figure 11. TPC-C Throughput, Ephemeral Volumes

versus approximately 750 IOPS (about 1.3 ms per request)

for the EBS volumes.

We ran our TPC-C workload using the new SR-EP and

ASR-EP baselines, with all of the database servers config-

ured as in our large memory scenario. Figure 11 shows the

throughput achieved by both of these baselines. For compar-

ison, the figure also shows the throughput achieved by SR,

ASR, and SHADOW with large memory, from Figure 7.

Switching from ASR to ASR-EP eliminated the small

performance gap that existed between SHADOW and ASR.

This gap was due primarily to interference from checkpoint-

ing, which hurt ASR. By moving the database to instance

storage, which offers greater I/O throughput than our provi-

sioned EBS volumes, the performance impact from check-

pointing is greatly reduced. Unfortunately, ASR can lose

committed transactions during failover.

Comparing SHADOW to SR and SR-EP, we see that

SR-EP outperforms SR, but it is still outperformed by

SHADOW. The performance gap between SR-EP and

SHADOW is interesting, and can be attributed to the way

these two systems commit transactions. At first glance, one

might expect that committing a transaction would be slower

in SHADOW than in SR-EP because SHADOW’s network-

attached EBS log volume has higher latency than SR-EP’s

directly attached log volume. However, for SR and SR-EP,

committing a transaction involves two log writes, one at the

active and one at the standby, as well as a network round trip

between the two systems. Furthermore, the two log writes

happen sequentially, i.e., the transaction first commits at the

active, and it is then hardened by writing the commit record

again at the standby. For SHADOW, committing a transac-

tion involves only a single EBS write. Although EBS writes

are slower than writes to instance storage, they are still faster

than performing two instance writes in sequence, even if

we ignore the network latency between the active and the

standby. Thus, transactions have higher commit latencies in

SR-EP than in SHADOW, which translates to lower through-

put in our closed-loop testing environment.

6.5 Failover
We also compared the time required for failover in a

SHADOW-EBS system to the failover time under Post-

greSQL’s native synchronous replication (SR). In this ex-

periment, we first ran the system under load in AC-

TIVE+STANDBY state for ten minutes before killing the ac-

tive DBMS process (active failure) and initiating an imme-

diate failover to the standby. The ten minute warmup time

was chosen to be large enough to allow the DBMS caches to

warm up in both systems.

The FAILOVER operation in the SR system took about

3 seconds. FAILOVER in the SHADOW system required

about 16 seconds. In both cases, replaying the remaining

log at the standby required about 2 seconds. However, the

SHADOW system required additional time to detach the log

volume from the active instance (about 9 seconds) and attach

it to the standby (about 4 seconds). Had failover resulted

from a failure of the active virtual machine (rather than

just the DBMS), re-attaching the log to the standby would

be much faster (about 5 seconds total, rather than 13), and

so the FAILOVER operation would be faster. In summary,

failover times for both SR and SHADOW-EBS are short, but

SHADOW-EBS is somewhat slower because of the need to

re-attach the SHADOW log volume. We note that this extra

delay is a consequence of the EBS limitation that a volume

can attach to at most one server instance at a time. With a

persistent storage tier that does not have this limitation, we

expect this difference to disappear.

7. Conclusions
We have presented SHADOW, a novel hot standby architec-

ture that exploits shared persistent storage, which is com-

monly available in cloud settings. In SHADOW, the active

and standby database systems share access to a single copy

of the database and log. The active DBMS writes to the log

to commit transactions, but does not update the database. In-

stead, database updates are the responsibility of the standby

DBMS.

SHADOW is a novel and effective way to build a highly

available database service in cloud settings. SHADOW re-

duces complexity at the DBMS level by pushing respon-

sibility for replication out of the DBMS and into the un-

derlying storage tier. SHADOW also decouples database

replication from DBMS replication. Our experiments with

TPC-C workloads show that these advantages do not come at

the expense of performance. Our SHADOW-EBS prototype

significantly outperforms PostgreSQL’s native synchronous

replication. Because of write offloading, SHADOW-EBS

can even outperform a standalone (not highly available)

DBMS, even one that is aggressively tuned to favor per-

formance over recovery time.
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