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Abstract—Most cloud providers improve resource utilization
by having multiple tenants share the same resources. However,
this comes at the cost of reduced isolation between tenants,
which can lead to inconsistent and unpredictable performance.
This performance variability is a significant impediment for
tenants running services with strict latency deadlines. Pro-
viding predictable performance is particularly important for
cloud storage systems. The storage system is the performance
bottleneck for many cloud-based services and therefore often
determines their overall performance characteristics.

In this paper, we introduce MicroFuge, a new distributed
caching and scheduling middleware that provides performance
isolation for cloud storage systems. MicroFuge addresses the
performance isolation problem by building an empirically-
driven performance model of the underlying storage system
based on measured data. Using this model, MicroFuge reduces
deadline misses through adaptive deadline-aware cache evic-
tion, scheduling and load-balancing policies. MicroFuge can
also perform early rejection of requests that are unlikely to
make their deadlines. Using workloads from the YCSB bench-
mark on an EC2 deployment, we show that adding MicroFuge
to the storage stack substantially reduces the deadline miss rate
of a distributed storage system compared to using a deadline
oblivious distributed caching middleware such as Memcached.

Keywords-caching; middleware; performance isolation; stor-
age; scheduling

I. INTRODUCTION

Cloud computing has had a transformative effect on

how businesses host their online services and manage their

computational needs. As increasing numbers of users take

advantage of the cloud, the associated rise in resource de-

mands has cloud providers focusing on efficiently monitor-

ing and allocating resources between users. By consolidating

services from different tenants onto the same physical ma-

chines, a cloud provider can significantly increase resource

utilization. This in turn allows cloud providers to offer a

price-competitive hosting service to their tenants.

However, service consolidation can lead to poor perfor-

mance if multiple tenants require the use of their resource

reservations concurrently. For a resource such as memory,

where tenants are generally more concerned about capacity

than throughput and access latency is largely unaffected by

concurrent access, resource sharing does not affect perfor-

mance unless there is capacity oversubscription. Unfortu-

nately, the opposite is true for storage where throughput

and latency are of much greater concern than capacity,

and resource sharing can significantly degrade a storage

system’s performance. This can lead to highly unpredictable

performance for cloud storage clients that is unacceptable

for those that have strict access latency requirements.

Therefore, it is critically important for cloud storage

providers to offer performance isolation in their storage

systems. Perfect isolation ensures that client performance

is completely unaffected by other clients. This generally

requires dedicated disks per client, significantly reducing

resource utilization and inflating operating costs. Many

clients instead prefer to enter into a performance-based

Service-Level Agreement (SLA) with their cloud provider,

in which they specify their performance requirements that

must be met in spite of competing requests [1]. One of

the key elements of an SLA is the response time service

level objective (SLO) which can be naturally represented as

request deadlines. Along with the response time SLO, an

SLA ensures predictable performance for the clients and,

compared to perfect isolation, provides additional resource

sharing opportunities for the cloud storage providers.

In this paper, we introduce MicroFuge, a distributed

middleware that tackles the performance isolation problem

by building a lightweight and accurate performance model

of the underlying storage system using measured data,

and then adding a deadline-conscious, performance model-

driven caching and scheduling layer to the cloud storage

stack. The performance modeling component is crucial for

determining cache eviction, scheduling, and load-balancing

policies that minimize deadline misses for a given storage

system. The MicroFuge middleware layer is similar to the

external caching layer that is commonly used in most web

service deployments.

Using this additional middleware abstraction, we demon-

strate that cloud storage systems are able to effectively

provide much stronger performance isolation for multiple

cloud tenants. We define performance isolation as a property

where a tenant can meet its performance requirements in

spite of concurrent actions from other tenants, which closely
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models real-world, performance-based SLAs. By targeting

the caching and scheduling layers, which only hold soft-

state, and offering the same caching interface as Mem-

cached, we greatly reduce MicroFuge’s barrier to adoption.
Some latency-sensitive requests must be served from the

cache, as they would otherwise miss their deadlines. Unfor-

tunately, popular caching systems, such as Memcached, are

deadline-oblivious and use a single LRU queue to manage

cache eviction. In contrast, MicroFuge’s cache eviction

policy aims to minimize deadline misses. Instead of a

single LRU queue, MicroFuge introduces a separate LRU

queue for each deadline range. To make use of the multiple

LRU queues, MicroFuge builds a performance model of the

storage system using feedback from the clients. This model

determines the likelihood that a particular cache eviction

would lead to a deadline miss and is used to determine a

cache eviction policy across queues.
Working in conjunction with the caching system is a

distributed deadline-aware request scheduling layer that con-

trols access to the cloud storage system. The scheduler keeps

track of the pending requests of each storage server, directs

client requests to storage replicas with lighter loads, and

creates a latency model of the storage system to perform a

variant of earliest deadline first scheduling while ensuring

requests with unmeetable deadlines only minimally impact

other requests.
Although an effective deadline-aware cache and scheduler

can help meet performance requirements, it is nevertheless

impossible to meet aggressive latency deadlines given an ar-

bitrary request load. We address this problem in MicroFuge

by adding an optional admission control component to our

distributed scheduler. When activated, the scheduler uses

its latency model of the storage system to provide early

rejection of incoming requests that are unlikely to meet

their latency requirements. This protects the storage system

from being overloaded and ensures that a certain number

of requests can still meet their performance requirements

regardless of workload characteristics. The applications issu-

ing these rejected requests can then make informed decisions

on their next course of action.
An alternative to MicroFuge’s middleware approach to

performance isolation is to directly incorporate deadline-

aware caching and scheduling into existing cloud storage

systems. However, the current cloud storage ecosystem is

greatly varied; there are dozens of systems that are widely

in use today. Any effort to design a cache and scheduler for

a specific system would only affect a small fraction of cloud

applications and therefore will likely have minimal impact

on future cloud application design.
The main contributions of this paper are as follows:

• The design and implementation of a deadline-aware,

model-driven distributed caching system.

• A distributed scheduling system that performs a variant

of earliest deadline first scheduling and request admis-

// Retrieve a value from the cache
CacheResult get(String key, double deadline);

// Insert a value into the cache
long put(double deadline, String key, String val,

boolean overwrite, boolean isMissed);

// Remove a value from the cache
void erase(String key);

Listing 1: DLC interface functions.

sion control.

• An evaluation that demonstrates the effectiveness of

MicroFuge in an EC2 deployment using the YCSB [2]

benchmark.

The remainder of this paper begins with a description of

MicroFuge’s system architecture in Section II. Section III

details our experimental setup and workloads, and Sec-

tion IV presents our evaluation results. Section V surveys

related work, and Section VI concludes.

II. SYSTEM ARCHITECTURE

The MicroFuge system is a multi-component middleware

consisting of a distributed caching layer and a distributed

scheduling layer. Both layers share a similar, scalable de-

sign in which coordination between servers is performed

completely through communication between the servers and

clients. This section describes the design of both layers, as

well as the overall MicroFuge protocol.

A. Deadline Cache

MicroFuge’s distributed caching layer, which we have

named Deadline Cache (DLC), exposes a key-value store

interface similar to that of Memcached. This interface is

shown in Listing 1. The get operation fetches a key-

value pair from the cache, and the put operation populates

the cache, usually following a cache miss. Much like in

Memcached, data stored in DLC is partitioned across the

cache servers based on the hash of the key value, and DLC

clients are provided the full list of cache servers at startup,

which enables them to independently determine the cache

server to contact for each request.

DLC’s put operation includes a deadline field, which

is used by the client to specify the maximum acceptable

latency for servicing get requests for this key. It also

includes a deadline missed field, which allows the client

to specify if the put operation was performed in response

to a cache miss which resulted in a deadline violation. This

provides empirical feedback to the cache which is used to

build a performance model of the underlying storage system.

Both fields are used by the cache server to determine an

appropriate eviction policy for a given deployment. DLC’s

get operation also includes a deadline field, which can be

used to update the deadline for the specified data item.
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Figure 1: High-level layout of the DLC architecture.

The DLC server architecture is illustrated in Figure 1

and consists of three main components: a table for fast key

lookups, multiple request queues for performing deadline-

aware LRU eviction, and a performance modeling compo-

nent that collects feedback from the clients to determine a

cross-queue eviction policy in order to minimize deadline

misses. We look at the latter two components in detail in

the next subsections.

1) Multiple LRU Queues: Past work has shown that LRU-

based cache eviction, where items are ordered by their last

access time in a queue, offers near-optimal caching perfor-

mance for general workloads [3]. Although LRU achieves

high cache hit-rate and good performance, it is a deadline-

oblivious eviction policy. In a system with strict performance

requirements, the cost of a cache miss is substantially higher

if it leads to a deadline miss, and the likelihood of a deadline

miss is much higher for requests with short deadlines than

those with long deadlines.

To minimize the cost of cache misses, DLC uses mul-

tiple LRU-ordered queues to manage cache eviction. Each

queue is responsible for maintaining the relative ordering

of key-value pairs with deadlines spanning a particular

deadline range. The i-th queue is responsible for deadlines

[ (i−1)·D
n , i·D

n ) where n is the number of queues in the cache

server and D is the maximum deadline length. Items with

deadlines larger than D are stored in the n-th queue. This

multi-queue organization is illustrated in Figure 1.

The LRU queues ensure that items in the same queue are

evicted in LRU order. However, determining which LRU

queue to evict from to minimize the deadline miss rate

requires knowing the likelihood that a particular eviction

would eventually lead to a deadline violation. This de-

termination is performed by DLC’s performance modeling

component.

2) Performance Modeling and Cache Eviction: DLC in-

corporates the cost of deadline misses into its eviction policy

by applying a queue-specific multiplier 1
mi

to the difference

between the current time and the last access time of an item.

We call this product the Modified Recency Value (MRV) for

each eviction candidate. The eviction candidates are the least

recently used item from each queue, and the candidate with

the largest MRV is selected for eviction.

An adaptive eviction policy must account for both the

client request rate for each deadline range and the underlying

storage system’s performance. In a workload with requests

that have a uniform deadline distribution, tuning a simple

static multiplier assignment such that mi−1 > mi may be

sufficient. However, such a scheme would perform poorly

if only a very small percentage of requests have short

deadlines. In this type of degenerate case, the short deadline

data items will not be evicted even if they are only accessed

infrequently, resulting in a low overall cache hit rate.

Similarly, an eviction policy that does not account for

the underlying storage system’s performance does not know

whether the storage system can meet a given deadline

under a particular client request load. Statically assigning

a multiplier value that overestimates the performance of the

storage system will lead to small multipliers for deadlines

that the storage system cannot satisfy, resulting in additional

deadline violations. Underestimating the storage system’s

performance will lead to apportioning more memory than

necessary to store long deadline items. This will, in turn,

lower the cache hit rate for short deadline requests (whose

deadline satisfaction is much more cache hit rate-dependent),

resulting in deadline violations. Therefore, it is critically

important that a deadline-aware cache adapts its cache

eviction policy based on deadline violation feedback from

its clients, accounting for both client request rates and the

storage system’s performance.

MicroFuge’s queue multipliers are adaptively computed

using empirical measurements to reflect the likelihood that

a cache eviction would eventually lead to a deadline miss.

Its design follows that of a simple proportional-integral
controller. In this design, the multipliers are initialized to

1 and the system maintains the following invariant:

n∑

i=1

mi = n (1)

where n is the number of queues in the cache server. Upon

receiving a put request with a deadline within the range

of queue i and with the deadline missed flag set to true

(indicating that a deadline violation occurred due to a cache

miss), the multiplier mi is incremented by ε. The value of ε
affects the convergence rate and the amount of perturbation

from new updates at steady state. In order to maintain the

invariant in Equation 1, all of the queue multipliers are

renormalized by multiplying by n
n+ε . The relative increase

in mi reflects the increased number of observed deadline

misses in the deadline range of queue i.

505



Figure 2: High-level layout of the DLS architecture.

B. Deadline Scheduler
The second major component of MicroFuge is its dis-

tributed scheduling layer, the Deadline Scheduler (DLS),

which is typically deployed on the same servers as DLC,

and collectively tracks the outstanding requests of each

storage server. The DLS interface is shown in Listing 2 and

provides a ticket-based approach to perform reservations.

By serving as an intermediary between the clients and the

storage servers, it can perform load-balancing of requests

across replicas, control the ordering of client requests to

reduce the number of deadline violations, and optionally

perform admission control to provide early rejection of

requests that cannot make their deadlines. Three mechanisms

work in unison to provide DLS with its capabilities. These

mechanisms are:

• A ticket-based load-balancing system that directs each

client to the server that is the most likely to be able to

meet the request’s deadline.

• A variant of earliest deadline first scheduling that

uses performance statistics from the underlying storage

system to limit the impact of deadline violations on

other requests.

• A tunable admission control system that uses perfor-

mance statistics to minimize the number of rejections

while meeting a deadline miss rate target.

We describe each of these mechanisms in turn in the fol-

lowing sections. A high-level depiction of clients interacting

with the scheduling layer and the data store can be seen in

Figure 2.

1) Ticket-Based Load-Balancing: Most cloud storage

systems [4], [5], [6] perform data replication to provide

fault tolerance, increase availability and improve read perfor-

mance. The amount of flexibility available in replica selec-

tion for reads depends on the storage system’s consistency

model. Systems that offer strong consistency may require

that the primary replica service all of the read operations.

In contrast, eventually consistent systems, which make up

the majority of current cloud storage systems, can service

reads from any replica, with most of these systems using

some type of randomized selection technique. Unfortunately,

randomized selection can lead to unpredictable hotspots

which may cause deadline violations.

MicroFuge leverages the replica selection flexibility in

current cloud storage systems to both improve load bal-

ancing and reduce deadline violations. The basic approach

follows the load balancing algorithm proposed by Mitzen-

macher [7] in which a client that wishes to issue a read

request will randomly choose two of the replicas as potential

read candidates. It will then send ticket requests to the DLS

servers responsible for these storage servers, where each

ticket represents a read reservation. The tickets will include

the deadline for the read request, and the DLS servers will

determine, based on the number of outstanding requests to

the server and the server’s performance model, whether or

not it believes the storage server can service the request

within its deadline. Unlike in Mitzenmacher [7] where the

less loaded of the two servers is always selected, the client

will first select a server that can satisfy its request deadline

while not causing someone else to miss their deadlines

and only use system load to render a decision if both of

the servers are either able or unable to satisfy the request

deadline.

After selecting one of the replicas, the client cancels its

ticket on the other replica, and sends a waitOnTicket
request to the scheduler to wait for its turn to access

the storage system. Upon receiving a response from the

waitOnTicket request, the client can issue its read re-

quest to the storage server. Once the read completes, the

client sends a final releaseTicket request to DLS to

notify the scheduler that the request has completed. DLS

uses the releaseTicket request to both determine when

it can allow the next client to issue its request to the storage

server and build a performance model for the response times

of the read requests.

2) Scheduling Algorithm: DLS uses a variant of earliest

deadline first (EDF) scheduling to determine the ordering

of pending requests (tickets)1. EDF is known to be optimal

for single-resource scheduling with preemption if a schedule

exists where all of the request deadlines can be met [8].

However, in overloaded situations where not all deadlines

can be met, EDF scheduling can lead to additional deadline

violations by attempting to schedule requests that either

cannot meet their deadlines or have already missed their

deadlines.

The DLS variant of EDF examines the response time

performance model of the storage server in order to deter-

mine whether a pending request should be scheduled using

1We would like to point out that DLS provides write monotonicity. In
other words, writes are never reordered by the scheduler.
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// Request a ticket from the scheduler
int getTicket(enum opType, double deadline,

boolean bestEffort);

// Wait on a ticket until it is scheduled to
proceed

boolean waitOnTicket(int ticketId, enum opType,
int dbServerId);

// Cancel a request and remove it from the queue
void cancelTicket(int ticketId, enum opType,

int dbServerId);

// Remove a completed request and update latency
void releaseTicket(int ticketId, double

dbLatencyMs,
enum opType);

// Combine the get and wait actions (best effort)
boolean getTicketAndWait(enum opType,

double deadline);

Listing 2: DLS interface functions.

its specified deadline, or rescheduled using a much larger

artificial deadline in the case where a deadline violation

is inevitable. By rescheduling these requests with a larger

deadline, despite the fact that these requests will miss their

own deadlines, DLS enables other requests to be scheduled

earlier and increases the likelihood of them meeting their

deadlines. To prevent starvation, DLS only allows a request

to be rescheduled once.

DLS’s response time performance model uses request

latencies from a past window of requests to generate a

latency distribution. The request latencies are provided by

the clients as part of the releaseTicket operation. DLS

determines that a request is unable to meet its deadline if

the time remaining to meet its deadline is less than the

α-percentile request latency in the latency distribution of

the response time performance model, where α is a system

parameter. The remaining time is calculated using the dif-

ference between the request deadline and either the current

time if the storage server is idle or the estimated completion

time of the previous request using the performance model.

3) Request Admission Control: MicroFuge is primarily

designed to prevent deadline violations. Deadline-awareness

in the cache eviction policy helps reduce the chance of

misses by increasing the cost of cache evictions that are

likely to cause deadline violations. The ticket-based schedul-

ing algorithm helps distribute load and further reduce dead-

line misses by both scheduling earlier deadline requests

ahead of later deadline requests and rescheduling requests

that will inevitably cause deadline violations to minimize

their impact on other requests’ response times. Despite all

this, as the load on the system increases, deadline misses

are unavoidable, and previous work has shown that out-

standing requests on a data store can significantly impact

an application’s response time [9]. Therefore, to satisfy the

performance requirements of at least a subset of the requests,

a portion of new requests must be rejected by an admission

control system.

DLS provides an optional admission control mechanism

that uses the performance model described in Section II-B2

to determine, given the current list of pending requests, if

the new request will likely miss its deadline or cause one

of the pending requests to miss its deadline due to the EDF

scheduling policy. In either case, if the admission control is

enabled, DLS will reject the getTicket operation instead

of returning a ticket. The admission control mechanism

uses the β-percentile latency in the latency distribution to

estimate the completion time of pending requests, where β
is a tunable parameter. A higher β value will lead to fewer

deadline violations and a higher rejection rate, while a lower

β value has the opposite effect.

By allowing applications to define their own deadlines

on storage requests, MicroFuge allows the hosting of appli-

cations to cater to clients with a variety of latency needs.

Performance is bounded by client-defined performance met-

rics, and not the generic (and possibly unhelpful) decisions

of the scheduler inside the data store itself. It furthermore

empowers clients to know almost immediately if a request

will not be serviceable within desired time limits, allowing

clients to react quickly and effectively when I/O deadlines

cannot be met. For example, a web application client can,

upon receiving a rejection from both tickets, serve a static

advertisement, which does not require a read request to the

storage system, instead of displaying a list of recommended

or related items.

C. MicroFuge Protocol

The MicroFuge request protocol combines both sequential

and concurrent requests to DLC, DLS and the underlying

storage system. A MicroFuge read request begins with the

client issuing a key lookup request to the DLC. The request

completes if the key is available in the cache. Otherwise,

the client randomly selects two storage servers with a copy

of the request data item, and issues a getTicket request

to each of the DLS servers that are managing the pending

requests for these storage servers.

The client waits until it has received a response from each

getTicket request. Responses returned may be marked

as successful, which means the scheduler believes that the

storage server will service the request within the request’s

deadline and, if the admission control is enabled, will not

cause other pending requests to miss their deadlines, or

unsuccessful, which means the request will likely miss its

deadline. Responses also include an indication of how long

the scheduler believes it should take to service the request.

If only one of the two responses are marked successful, then

the storage server with the successful response is selected.

If both responses are marked as unsuccessful and admission

control is enabled, then the request is rejected. Otherwise,
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Figure 3: Sample timeline for a read request from a client. For this request, the requested item is not contained in the cache

and both schedulers accept the ensuing ticket requests.

// Retrieve a value from MicroFuge
public String read(String key, double deadline,

boolean bestEffort);

// ... Other code here

String myVal = read("myKey", 12345, true);

Listing 3: MicroFuge read operation interface.

the storage server with the shorter expected service time is

selected.

After selecting a storage server, the client concurrently

cancels the ticket for the unselected server, and issues a

waitOnTicket operation to the scheduler for the selected

server. Once the waitOnTicket operation completes, the

client can then issue a read request to the storage server

to retrieve the requested data item. Finally, upon receiving

the result from the storage server, it concurrently issues a

releaseTicket operation to the scheduler and a put
operation to the cache to populate this data item.

Managing the interactions between DLC, DLS, clients

and storage systems can be complicated. These systems can

be neatly encapsulated into a very simple and easy-to-use

client protocol, exposing only operations such as read and

write to the user. As an example, the MicroFuge interface

that exposes a read operation can be seen in Listing 3. This

interface performs all the necessary operations to retrieve a

value from DLC and DLS.

We illustrate the request protocol in Figure 3, which

outlines the steps taken to perform a read request. This

example assumes that the data is not in the DLC and the data

store is busy processing another request when the sample

request is issued. After contacting the appropriate scheduling

nodes, the client is informed that both scheduling nodes are

successfully able to complete its request. The client selects

the first scheduling node (which reports an earlier comple-

tion time estimate than the second node), cancels its request

to the second node and then waits on notification from the

storage layer before performing its read. Immediately after

the completion of its read, the sample request releases its

ticket, concurrently updates the DLC with the data value

and the scheduler with the latency information.

III. EXPERIMENTAL SETUP

We deployed our system on a twenty-node test cluster on

Amazon Web Services. Each cluster node is an m1.medium

EC2 instance with two elastic compute units, 1 virtual

CPU, 3.7 GB memory, 410 GB of (non-EBS) storage and

moderate network performance. All nodes run 64-bit Ubuntu

Server 12.04.3 and we manually set the memory size for

each node to 2 GB to cut down on the time required to

warm up the cache for the experiments. Four instances

were configured as clients to run YCSB benchmarks. The

rest of the (sixteen) instances were configured as servers,

each running MicroFuge or Memcached on top of our

cloud storage system. All machines are in the same subnet

within AWS’s network which would be representative of a

datacenter setup.

Our data set consists of 80 million records 86.4 GB in

size. The total cache capacity of our system is 19.2 GB,

about 1/5th the size of the data set. The data was stored in

a simple custom data storage system based on leveldb [10].

We used YCSB [2] to generate our workloads. Each

request generated by YCSB was for a 13-byte key associated

with a 1 KB value. We modified YCSB to generate a

deadline for each request. Deadlines are generated using

the hash of the key so requests for the same key will

always have the same deadline. This represents the scenario

where each key is associated with a particular application,

and, for a given key, the application uses the same request

deadline. The generated deadlines fall into one of 3 ranges of

deadlines: [10-30) milliseconds, [30-100) milliseconds and

[100-1000] milliseconds with a distribution ratio of 2:3:5

respectively. These ranges essentially represent classes of

clients where each class has a fixed range of response time

requirements.
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Figure 4: Deadline miss rate for 192 concurrent clients with

DLC and Memcached.

Each data point on the performance graphs in the next

section is the average value of 5 independent runs after the

system has warmed up with the system parameters α and β
set to default values of 15 and 88 respectively. Both values

are determined by empirical experimentation. A small α
value enables the underlying storage system to aggressively

schedule client requests so it can utilize the system resources

at full capacity while a large β value will minimize the

deadline miss rate in order to satisfy requests with very

strict service level objectives. The 95th percentile confidence

intervals on the relevant graphs are shown as error bars

around the data points.

IV. PERFORMANCE EVALUATION

The first goal of our experiments is to compare the

deadline miss rates of our adaptive deadline-aware caching

and scheduling layer running on top of our simple data

storage system against Memcached running with the same

storage system. The second goal is to show that our cache is

deadline-aware, retaining data items with shorter deadlines

in the cache by evicting data items with longer deadlines.

The third goal is to illustrate the tunable admission control

mechanism, which can further bound the deadline miss

rate of the underlying storage system to a desired upper

limit. Lastly, we want to show a comparison of the overall

deadline miss rates and overall cache hit rates of the different

components described in this paper while running the YCSB

workload. Where appropriate, we include measurements for

our storage system as a baseline comparison. Note that the

baseline storage system refers to simply using the storage

layer without any caching, scheduling or admission control

components.

Figures 4, 5 and 6 show the deadline miss rates for

requests with varying deadlines. Figure 4 shows that Mi-

croFuge’s caching layer does better than Memcached in

reducing deadline misses for requests with shorter deadlines.

Our caching layer favours requests with shorter deadlines

since longer deadline requests are unlikely to be missed. Our

Figure 5: Deadline miss rate for 192 concurrent clients with

DLC + DLS and Memcached.

Figure 6: Deadline miss rate for 192 concurrent clients with

DLC + DLS + AC and Memcached.

scheduler, which adds adaptivity to MicroFuge, balances the

load of the storage system so that the deadline miss rate for

requests with long deadlines is also reduced as seen in Fig.

5. If we turn on our admission control inside MicroFuge’s

scheduling layer, we can further reduce overall deadline miss

rates to less than 5%, which is almost a 74% improvement

over Memcached’s overall deadline miss rate for 192 clients.

(This deadline miss rate does not include the 7.14% rejection

rate.) As seen in Figure 6, the scheduler rejects any requests

with short deadlines that are unlikely to be met. This is

part of our design, as we would like to inform the client

without any further delay that we are unlikely to meet its

deadline, thereby allowing the client to decide on the next

most desirable course of action.

Figures 7, 8 and 9 show the cache hit rates for both

MicroFuge and Memcached. MicroFuge’s overall cache hit

rate is marginally lower than that of Memcached. However,

our results also demonstrate that our system is deadline-

aware, as we tend to keep items with lower deadlines in the

cache. Memcached, which has no deadline-awareness, has

an almost uniform cache hit rate across different request

deadlines. By using both DLC and DLS, additional requests
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Figure 7: Cache hit rate for 192 concurrent clients with DLC

and Memcached.

Figure 8: Cache hit rate for 192 concurrent clients with DLC

+ DLS and Memcached.

with long deadlines can be satisfied from the disk compared

to just using DLC. Therefore, there is a reduced need

to cache items with long deadlines, which leads to more

resources being available to cache items with short deadlines

and a higher cache hit rate for requests with deadlines less

than 30 ms as shown in Figure 8. In Figure 9, with admission

control enabled, there is a lower cache hit rate for deadlines

less than 30 ms. This is because short deadline items are

often rejected and therefore are less likely to be inserted

into the cache. Requests with deadlines between 30 ms and

100 ms have a higher cache hit rate as they are less likely

to be rejected and there are more resources available due to

the low occupancy of short deadline items. Lastly, Figure 10

shows a snapshot of DLC’s underlying performance model

where there is a multiplier associated with each queue, as

described in Section II-A2. Our performance model favours

requests with shorter deadlines as they are given much larger

multipliers, increasing the likelihood that these requests

are kept in the cache. Although we omit some adaptive

multipliers due to space constraints, these omitted values

follow the same trends shown in Figure 10.

Figure 11 shows that our tunable admission control mech-

Figure 9: Cache hit for 192 concurrent clients with DLC +

DLS + AC and Memcached.

Figure 10: A snapshot of the converged adaptive multipliers

for 192 concurrent clients with DLC only.

anism can reduce overall system deadline miss rates to as

low as 3%-4%. By varying the system parameter β, the sum

of the rejection rate and deadline miss rate is approximately

the same as the deadline miss rate for DLC and DLS without

admission control. This gives the cloud service provider a

useful knob that can be varied to protect servers against

overloading.

The graphs in Figures 12 and 13 demonstrate the overall

deadline miss and cache hit rates for various system setups.

They show that each of MicroFuge’s components contribute

to reducing deadline misses. The overall cache hit rate is

only marginally lower than Memcached’s cache hit rate

due to the non-uniform cache eviction policy of MicroFuge

which shows that MicroFuge’s cache is as effective as

Memcached’s. Figures 12 and 13 also show that a 10% write

and 90% read workload has minimal impact on the overall

deadline miss rate and overall cache hit rate. The deadline

miss rate of our simple cloud storage layer included as a

baseline is over 20% at just 96 clients. This depicts the

significant performance degradation that a storage system

can suffer from if a concerted effort is not made to provide

deadline-aware mechanisms such as caching, scheduling and
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Figure 11: Deadline miss vs. rejection rates with respect to

various values of system parameter β for 192 clients.

Figure 12: Overall deadline miss rate with various system

setups for 96 and 192 concurrent clients.

admission control.

Based on our experimental results, MicroFuge’s caching

layer outperforms Memcached by 22.6% for 192 clients. If

we combine our scheduling layer with our caching layer,

we can further decrease the deadline miss rate by 43.3%. If

we turn on our admission control, we can keep the overall

deadline miss rate below 5%.

V. RELATED WORK

Previous work has examined cache sharing and scheduling

for multi-tenant systems. The Argon storage system [11]

shares some similarities with MicroFuge. It introduces a

storage server that provides intelligent cache sharing be-

tween multi-tenant workloads, in addition to explicit work-

load isolation guaranteed by disk-head time slicing. The

focus of Argon was not on meeting deadlines in the system,

however, but rather on how to use isolation to provide

improved throughput and accurate exertion-based billing,

where every user of the system is charged based on their

usage patterns (ensuring that users with poor access patterns

pay more than users who are efficiently using the disk).

Argon focuses on disk-head time slicing and simple cache

Figure 13: Overall cache hit rates with various system setups

for 92 and 192 concurrent clients

sharing, whereas MicroFuge makes explicit considerations

for deadline-based requests when scheduling through the

use of latency metadata collection. Furthermore MicroFuge

directly addresses performance isolation through its multiple

deadline-oriented LRU queues, and its eviction policy that

favours data with shorter deadlines.

Work similar to our own is the Frosting system [12],

which proposes a request scheduling layer on top of a

distributed storage system. Like MicroFuge, Frosting allows

applications to specify high-level Service Level Objectives

(SLOs), which are in turn automatically mapped into sched-

uler decisions. A feedback controller is employed to make

scheduling decisions more predictable, and Frosting attempts

to bound outstanding requests while minimizing queuing

at the data store layer (in an effort to reduce response

times). In a manner more similar to Argon than MicroFuge,

however, Frosting focuses primarily on system throughput

and fairness, not on strict performance isolation.

The Sparrow system acts as a decentralized, stateless

scheduler and is geared towards workloads with high degrees

of parallelization in addition to workloads that require low

latencies [13]. Sparrow demonstrates that high volumes

of low priority tasks can have detrimental effects on the

scheduling response times of high priority tasks, and that

their system can greatly improve median scheduling re-

sponse times. Sparrow differs from MicroFuge, however, in

that it focuses on minimizing overall scheduling response

time in a system, and is not concerned with accommodating

and meeting user-imposed scheduling deadlines per request.

Memcached [14] is designed to provide a scalable

memory-based caching layer for data stores, thereby improv-

ing access latencies. As a simple external cache application,

however, Memcached does not provide performance isola-

tion. Additionally, unlike MicroFuge, Memcached does not

perform deadline-aware caching and scheduling. As a result

it also provides no admission control.

MemC3 [15] proposes the use of optimistic hashing

with CLOCK-based cache management to improve access
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latencies in Memcached. Despite further improvements to

access times for items resulting from the more advanced

cache eviction algorithm, the system still does not provide

the performance isolation that MicroFuge offers through

the use of deadline-based caching and scheduling. Nahanni

similarly modifies Memcached to provide inter-VM shared

memory [16], with a good degree of success and the po-

tential for complementary usage of its presented techniques

with other caching systems. Unlike MicroFuge, however,

Nahanni is limited to VMs running on a physical host and

provides almost no performance isolation guarantees.

Pisces [17] proposes a group of mechanisms for parti-

tioning resources between users. The paper suggests that by

considering partition placement, weight allocation, replica

selection and fair queuing for resources, the system can

split aggregate throughput in the system between clients.

Although Pisces does provide throughput isolation for per-

formance, its scope does not extend to the deadline and

latency-aware mechanisms that MicroFuge uses to provide

performance isolation.

The FAST system [18] introduces a block-level replicated

storage service that helps provide performance predictability

by overlapping similar operations (sequential reads versus

random writes, for example) on the same machines, which

minimizes interference. Unlike MicroFuge, FAST’s primary

focus is on system fairness, and it additionally does not

consider explicitly-defined request deadlines.

In the BASIL system, a scheduler automatically manages

virtual disk placement and performs load balancing across

physical devices, without assuming any underlying storage

array support. Load-balancing in the system is based around

I/O load, and not simply data volume. While this emphasizes

the need to control access to data stores, it does not focus

on cloud data stores and cloud-like access patterns. Further-

more, BASIL does not provide the type of client-specified,

deadline-oriented service that MicroFuge does.

Similar to the ticket-based reservation system used by

MicroFuge’s scheduling layer, SQLVM [19] proposes using

both resource reservations and metering techniques to help

share resources between clients in a multi-tenant database

environment. SQLVM is not implemented as middleware

for distributed storage systems, but rather as an environment

for multiple DBMS systems running on the same physical

machine. It also does not allow client-specified deadline

requirements for requests.

As the popularity of cloud-based applications has in-

creased, several key-value stores have been proposed to pro-

vide enhanced performance over relational database systems

by relaxing ACID properties [4], [20], [21]. These key-value

stores, designed with the cloud in mind, can often suffer

from poor performance isolation.

Performance modeling in datacenters is increasingly com-

mon as more applications move into the cloud. Data Center

TCP [22] presented a model of underlying network traffic

patterns inside datacenters, and proposed a new datacenter-

oriented version of TCP communication to help deal with the

problems typically associated with these patterns. iCBS [23]

presents a method for quickly determining effective order-

ings for generic requests given arbitrary SLA cost functions,

but does not deal with deadline-specific concerns within the

context of a distributed key value store.

There are many approaches to performing both external

and internal scheduling for admission control. Schroeder et

al. [24] considers optimizing concurrency levels in database

systems through admission control. Abbott and Garcia-

Molina [25] propose models for performing admission con-

trol aimed at real-time database systems using deadlines.

They use simulations to understand the performance trade-

offs of utilizing transactional commit behaviors for admis-

sion control. MicroFuge makes use of admission control and

scheduling in order to provide multiple tenants using the

same storage system with performance isolation. Our system

ensures that a certain subset of all requests with client-

provided access deadlines can still be completed regardless

of system load.

VI. CONCLUSION

In this paper we introduced MicroFuge, a new middle-

ware layer that provides distributed scheduling and caching

services to cloud storage systems. MicroFuge focuses on

deadline-awareness across all of its layers to help provide

performance isolation that is typically difficult to obtain in-

side multi-tenant systems. MicroFuge is built with a similar

API as Memcached, and is easy to layer on top of cloud

storage systems.

MicroFuge’s distributed caching layer, DLC, uses an

adaptive and deadline-aware cache eviction policy to isolate

performance and ensure that additional caching memory is

allocated towards requests which are more likely to miss

their deadlines. This is performed with the use of multiple

LRU queues based on deadline ranges in combination with

adaptive policies.

MicroFuge’s distributed scheduling layer, DLS, uses a

ticket-based scheduling system that helps to not only balance

load, but also to service requests according to their deadline

requirements. Additionally, the scheduling layer collects

latency metadata from completed requests, and uses this

data to generate latency estimates for future requests. These

estimates are, in turn, used to provide admission control,

rejecting requests with deadlines that are unlikely to be met

(based on the underlying performance model).

Through experimentation, we have demonstrated that

MicroFuge offers significantly better performance isolation

than Memcached, the current industry standard. With admis-

sion control enabled, MicroFuge can limit overall deadline

miss percentages to less than 5%.
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