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ABSTRACT
Streaking artifacts caused by metallic objects severely af-

fect the visual quality of CT images, resulting in medical mis-
diagnosis. Commonly used approaches for metal artifact re-
duction usually consist of interpolation and iterative methods.
The former one tends to lose image quality by introducing ex-
tra artifacts, while the latter is more computational expensive.
This paper proposes a new approach based on the Euler’s elas-
tica inpainting technique, which can preserve sharp edges and
curvature when reconstructing the sinogram image, resulting
in better quality in the restored CT image. Results of quantita-
tive and qualitative experiments on both simulated phantoms
and clinical CT images demonstrate that our method can sup-
press metal artifacts significantly.

Index Terms— Metal artifact reduction, CT image, Eu-
ler’s elastica inpainting, numerical interpolation methods.

1. INTRODUCTION

Streaking artifacts caused by unavoidable metallic objects in-
side the scanning body largely degrade the quality of com-
puted tomography (CT) images, causing challenges to medi-
cal diagnosis. They commonly appear in the dental fillings,
cardiac pacemakers and knee prostheses. The formation of
artifacts has multiple mechanisms, including beam harden-
ing, scatter, noise, motion and edge effects [1]. Among those,
beam hardening is one of the most prominent sources. High-
attenuating metallic materials disturb the propagation of poly-
chromatic X-ray beams when passing through the examining
materials, and few photons can be detected. After the fil-
tered backprojection (FBP) reconstruction, these missing data
result in severe artifacts around metal regions on the recon-
structed image as shown in Fig. 1.

There are two main categories for metal artifact reduc-
tion (MAR): projection completion methods, and statistical
iterative methods. The main idea of projection completion
methods is to replace the corrupted pixels in the raw data
with proper values calculated from the surrounding informa-
tion. The specific approaches used for prediction are various,

Fig. 1. Examples of streaking artifacts in CT images

such as linear interpolation [2], cubic interpolation [3], poly-
nomial interpolation [4], and wavelet interpolation [5]. More-
over, image preprocessing techniques have been introduced.
One of the successful methods, called normalized MAR, is to
make use of a prior image acquired from a segmentation of
the tissues [6]. Conventional projection completion methods
are straightforward and fast; however, one of the significant
drawbacks is that the inconsistency and inaccurate interpola-
tion values could result in new artifacts after reconstruction.
Statistical iterative approaches achieve better restoration per-
formance [7]. However, due to their extremely high compu-
tational cost [1], most MAR methods belong to the first cate-
gory.

In this paper, we present a novel approach using Euler’s
elastica inpainting for metal artifacts reduction. The proposed
method belongs to the projection correction MAR category.
However, instead of using conventional 1-D interpolation, our
key idea is to use Euler’s elastica inpainting which is essen-
tially a 2-D interpolation that better preserves sharp edges and
curvature features of the sinogram image, thus making the
restoration results more continuous and smooth. Experiments
in this paper show that Euler’s elastica inpainting yields better
results than 1-D interpolation in filling the corrupted regions
of the sinogram and largely improves the visual quality of the
artifact-polluted CT images.

2. METHODOLOGY

The main cause of the streak artifact is due to incomplete
data of the sinogram as a result of the metal obstruction in-
side the body. When examining the sinogram image, the in-
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complete data forms traces due to the metal object that typi-
cally have very different (and incorrect) values compared to
the surrounding areas. Our proposed method is to identify the
corrupted regions (metal trace) and then fix the values by an
image inpainting technique.

More specifically, the method consists of the following
steps. First, the metal is segmented from the initial artifact im-
age, followed by a forward projection. The metal sinogram is
then compared with the original sinogram to locate the metal
trace. Before implementing the inpainting algorithm, a con-
trast enhancement technique is applied. Then the inpainted
sinogram is reconstructed back into a 2-D image. If neces-
sary, an iterative correction is applied until convergence. A
flowchart of the whole procedure is as shown in Fig. 2. Each

Fig. 2. Flowchart of the whole methodology

step of the method is described in more details in the follow-
ing sections.

2.1. Metal Segmentation

In the first step, metal parts are separated from the original
image by either thresholding, or other image segmentation
methods. When artifacts are intense, simple threshold does
not perform well. Here, we apply K-means clustering algo-
rithm to separate the initial image into different parts accord-
ing to their density. K-means clustering is an algorithm to
classify the objects into K clusters by minimizing their dis-
tance to the centroid point. In general, K can be selected
manually or randomly. Since we just separate the image into

metal and non-metal regions,K = 2 would be the first choice.
However, when the image is more complicated, we often use
larger K to classify the image into several clusters accord-
ing to the tissue’s density and then manually choose the metal
one.

2.2. Forward Projection and Metal Trace Identification

After segmentation, a forward projection is applied to the seg-
mented metal pieces to obtain a metal mask. Comparing the
metal mask with the original sinogram, we can locate the
metal trace, which is needed to determine the inpainting do-
main in following steps. Normally, the inpainting domain is
set slightly larger than the computed metal trace. We use a σ
parameter to control the thresholding, and S(i, j) is the value
at pixel (i, j):

Maskmetal =

{
1, if S(i, j) ≥ σ,
0, if S(i, j) < σ.

(1)

2.3. Contrast Enhancement

Since sinograms are normally low-contrast gray-scale im-
ages, a preprocessing step is added to increase the contrast
before inpainting. Higher contrast corresponds to larger
gradient values, so that curvature can be captured more accu-
rately. Accordingly, when inpainting is completed, an inverse
correction is applied to restore the original contrast. The
standard Gamma Correction method is used, which is defined
as:

Vout = A · V γin (2)

where A is a constant, Vin is the input, and Vout is after-
processing output.

2.4. Sinogram Inpainting

The objective of the image inpainting problem is to fill in
the missing regions of an image with proper values, so that
the whole image looks natural to human eyes [7]. In con-
trast to the standard interpolation methods where only one-
dimensional information is used, inpainting allows informa-
tion from neighborhoods of all directions to recover intensity
values in the missing regions, often referred to as the inpaint-
ing domain. In this paper, we will apply the Euler’s elastica
inpainting [8] to restore values in the corrupted metal trace.

The elastica function originally describes the energy
stored in a flexible rod when it is clamped in two direc-
tions. This inpainting model tries to find a curve, Γ, that
minimizes the elastica function defined as follows:

E[Γ] =

∫
Γ

(a+ bκ(s)2)ds, (3)

where κ(s) is the curvature of the curve, a, b are two positive
constants, and the ratio of b/a determines the elastica of the
curve.
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Referring to Fig. 3, the entire region is Ω. The original
image is u(x), x ∈ Ω and x ∈ D are the missing pixels to be
inpainted based on the available value in the extended region
E.

Fig. 3. The inpainting domain and the extended domain are
denoted by D and E, respectively.

The curvature of u can be computed by the divergence of
the normal, i.e. ∇ · ∇u

|∇u| , and ds = ∇udx. Thus the elastica
energy function in the inpainting domain can be written as

E[u] =

∫
D

(a+ b(∇ · ∇u
|∇u|

)2)|∇u|dx. (4)

In order to avoid dramatic changes in intensity, a second
fitting term is added to penalize any changes from the orig-
inal image outside the inpainting domain. Also in practice,
we apply the energy function on E ∪ D instead of only D
to ensure smoother inpainting. The final energy function of
Euler’s elastica inpainting is

J [u] =

∫
E∪D

(a+b(∇· ∇u
|∇u|

)2)|∇u|dx+
λ

2

∫
E

(u−u0)2dx,

(5)
where u0 is the given image, λ is the Lagrangian multiplier
which controls the weight between the inpainting term and the
fitting term. In [9], the authors show that solving (5) is equiv-
alent to computing the steady state solution of the following
equation:

∂u

∂t
= |∇u|∇ · ~V − |∇u|λE(u− u0), (6)

where

~V = (a+ bκ2)~n− 2b

|∇u|
∂(κ|∇u|)

∂~t
~t, λE =

{
λ, u ∈ E,
0, u ∈ D.

Here, ~t is the tangential direction and ~n is the normal
direction. We then use an unconditionally stable implicit
scheme [10] to discretize the equation above and compute the
solution numerically.

We note that since Euler’s elastica inpainting incorpo-
rates curvature in the model, it prefers inpainting solutions to
have small curvature, thus eliminating solutions with discon-
tinuities and corners. Consequently, the model can produce
smooth, continuous, and natural looking inpainting results.
Moreover, results given by Euler’s elastica inpainting sat-
isfy the “connectivity principle”, which enables the occluded
edges and junctions to be connected smoothly even over a
large gap [9].

2.5. Reconstruction

The inpainted sinogram is then reconstructed into a 2-D im-
age by the filtered backprojection (FBP) algorithm, or inverse
Radon transformation, after applying the inverse Gamma Cor-
rection.

2.6. Iterative Correction

The iterative correction is applied when there are severe ar-
tifacts on the initial image, and we expect the image quality
to get better after each iteration. Basically, the idea is to re-
peat the previous procedures until a stopping criteria has been
reached. The details are omitted here.

3. RESULTS

In this section, we demonstrate the effectiveness of the pro-
posed method by numerical experiments on different types of
image data, and provide qualitative and quantitative compar-
isons with other methods.

Fig. 4 shows how Euler’s elastica inpainting works on the
sinogram image. The metal trace is the region outlined by the
red lines. The inpainting result is shown on the upper right
image. We can see that sharp edges and the curvature of the
original bands are well-preserved; see e.g. the locations indi-
cated by the red arrows. The bottom four images are zoomed
out regions from a head phantom. The comparison with the
linear interpolation metal artifact reduction method, LIMAR
(denoted by LI), and the cubic interpolation metal artifact re-
duction method, CIMAR (denoted by Cubic), clearly shows
that Euler’s elastica inpainting produces a much smoother re-
sult, while the other two methods create inconsistent lines
within the inpainting region. Fig. 5 shows the performance

Fig. 4. Interpolation results on the sinogram given by the lin-
ear interpolation metal artifact (LIMAR), cubic interpolation
metal artifact (CIMAR), and Euler’s elastica inpainting.
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between different MAR methods. In order for a fair compar-
ison, we simulated similar artifact jaw images as in [11], and
compare LIMAR and Inpainting results with the NMAR re-
sults in the original paper which are not shown here. All three
methods are able to noticeably reduce streaking artifacts sur-
rounding the tooth area. LIMAR reduces artifacts at the cost
of introducing new artifacts at other locations. Both Inpaint-
ing and NMAR in the paper perform well in suppressing arti-
facts without creating new artifacts in other regions. NMAR
works better when metal objects are smaller, while Inpainting
performs well in all three cases.

Fig. 5. Restoration results on jaw phantom images given by
the LIMAR and Inpainting methods.

A quantitative evaluation (Table 1) is conducted with two
measures: root-mean-square error (RMSE) and peak signal-
to-noise ratio (PSNR). Small values of RMSE and large val-
ues of PSNR indicate better restoration results. We can see
that Inpainting method consistently produces better quality
results for all three phantom images. We have also compared

LIMAR Inpainting

Phantom1 PSNR 12.9329 16.2534
RMSE 0.0234 0.0112

Phantom2 PSNR 7.2342 12.3523
RMSE 0.0454 0.02865

Phantom3 PSNR 8.3563 12.6358
RMSE 0.0314 0.02665

Table 1. Quantitative comparison of the LIMAR and Inpaint-
ing methods.

the different methods on clinical CT phantom images. Fig.
6 shows the artifact images of hip endoprosthesis, head im-
plant, and dental fillings in column 1 and the restored image
results given by the LIMAR, CMAR and Inpainting methods

in columns 2-4, respectively. From the comparison, it is ap-
parent that the inpainting method yields the best restoration
results among the three. Most of the streaking artifacts are
suppressed, and the tissue structures of the background are
preserved.

Fig. 6. Clinical CT phantom image comparison with the LI-
MAR, CIMAR, and Inpainting methods.

4. CONCLUSION

In this paper, we have proposed a novel method for metal ar-
tifact reduction based on Euler’s elastica inpainting. We ob-
served a significant reduction of streak artifacts without in-
troducing new artifacts in other regions; thereby, effectively
improving the visual quality of CT images. A remarkable ad-
vantage of this approach is that it preserves sharp edges and
curvature features of the sinogram image, thus resulting in
much less artifact on the restored CT image. The Inpainting
method has been compared favorably with the standard lin-
ear and cubic interpolation artifact reduction methods quali-
tatively and quantitatively on simulated and clinical images.
The Euler’s elastica inpainting method consistently provides
smoother and more accurate restoration results.

Future work includes improved segmentation, more accu-
rate and efficient solution methods for solving the inpainting
equation, and more extensive evaluation of the algorithms.
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