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Abstract. In this paper, we propose a multigrid algorithm based on the full approxi-
mate scheme for solving the membrane constrained obstacle problems and the minimal
surface obstacle problems in the formulations of HJB equations. A Newton-Gauss-Seidel
(NGS) method is used as smoother. A Galerkin coarse grid operator is proposed for the
membrane constrained obstacle problem. Comparing with standard FAS with the di-
rect discretization coarse grid operator, the FAS with the proposed operator converges
faster. A special prolongation operator is used to interpolate functions accurately from
the coarse grid to the fine grid at the boundary between the active and inactive sets.
We will demonstrate the fast convergence of the proposed multigrid method for solving
two model obstacle problems and compare the results with other multigrid methods.
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1. Introduction

The obstacle problem is to find the equilibrium position of an elastic membrane which
is constrained to lie below and/or above some given obstacles. Due to the obstacle con-
straints, the problem is often posed as a constrained minimization problem [3,19]. Since
the contact location of the membrane and the obstacle is usually unknown, sometimes the
obstacle problem is studied as free boundary problem [5]. Obstacle problem can also be
formulated as elliptic variational inequalities [8], linear complementarity problems [2,17],
and Hamilton-Jacobi-Bellman (HJB) equations [10]. All these formulations result in a non-
linear problem. A finite difference or finite element discretization will yield a nonlinear
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system of discrete equations. This paper considers fast solvers and in particular multigrid
methods for solving the nonlinear discrete equations.

Many methods have been introduced to solve elliptic variational inequality partial dif-
ferential equations (PDEs). Projected relaxation methods are popular techniques to solve
elliptic variational inequalities [6,7]. They are known to be easy to implement and con-
vergent. However, the drawback of this approach is that its convergence depends on the
choice of the relaxation parameter and has a slow asymptotic convergence rate.

Various forms of preconditioned conjugate gradient (PCG) algorithms for solving non-
linear variational inequalities are presented in [16]. They are more efficient than the
projected relaxation method in some cases. However, the rates of convergence still depend
on the size of the problem. For problems with small grid sizes, PCG methods may not be
very efficient.

A multigrid method is introduced in [8] to solve the finite difference discretized PDE
for an obstacle problem. Two phases are used in this method. The aim of the first phase,
in which a sequence of coarse grids is used, is to get a good initial guess for the iterative
phase two. In the second phase, the problem is solved by a W-cycle multigrid method. A
cutting function is applied after the coarse grid correction. The convergence is shown to be
better than PCG. However, the application of the cutting function and the phase one may
lead to more expensive computations overall.

Elliptic variational inequalities can be reformulated as linear complementarity prob-
lems. A multigrid method, namely, projected full approximate scheme (PFAS), is proposed
in [2] to solve linear complementarity problems arising from free boundary problems. The
multigrid method is based on the full approximate scheme (FAS), which is often used for
solving nonlinear PDEs. The multigrid method is built on a generalization of the projected
SOR. Two further algorithms based on PFAS are introduced: PFASMD and PFMG, both of
which are faster than PFAS. These methods show better convergence rates than the method
in [8].

In [17], a PFAS multigrid is applied to solve the American style option problem which is
formulated as a linear complementarity problem. The American style option problem can
be viewed as an obstacle type problem where the obstacle is given by the payoff function.
An F-cycle multigrid method is applied and a Fourier analysis of a smoother is provided. A
comparison between an F-cycle and a V-cycle for solving linear complementarity problems
is shown. In general, F-cycles show faster convergence than V-cycles [17]. However, an
F-cycle requires more computations in each iteration, and so it is relatively more expensive.

Elliptic variational inequalities can also be reformulated as Hamilton-Jacobi-Bellman
(HJB) equations. A multigrid algorithm which involves an outer and an inner iteration is
proposed in [10]. The active and inactive sets of all grid levels are computed and stored
in the outer loop. A W-cycle FAS multigrid method is applied to solve a linearized PDE in
the inner iteration. An iterative step similar to [8] is adopted to compute a good initial
guess using a sequence of coarse grids. The computational complexity largely depends on
the stopping criterion for the inner loop. If the stopping criterion is not chosen wisely, the
total computations can be expensive.

A multilevel domain decomposition and subspace correction algorithm are proposed
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in [20] to solve the nonlinear variational inequalities for obstacle problems. A special
interpolation operator is introduced for decomposing the functions. A proof of the linear
rate of convergence for the proposed algorithms is provided.

A so-called monotone multigrid method and a truncated version are introduced in
[13] to solve the obstacle problem formulated as elliptic variational inequalities. It has
been reported that the convergence rate of the proposed method demonstrates similar
convergence as for the classical multigrid for the unconstrained case.

We also remark that semi-smooth Newton methods have been proposed and analyzed
for solving constrained variational problems in infinite dimensions (or function space);
for example [9,12]. The variational problem is usually written as a primal-dual system.
This approach is similar to the HJB approach in that they both involve the max (or min)
operator. However, in the HJB approach, the dual variable is not considered explicitly.

In this paper, we will consider two kinds of obstacle problems. They share the same
boundary conditions and obstacle constraints, but with different partial differential oper-
ators: one is with the Laplacian operator, and the other is related to the minimal surface
operator. We will propose an efficient multigrid method for solving the discrete equations
arising from the obstacle problems.

The contributions of the paper are summarized as follows:

e The proposed multigrid method solves both the elastic membrane and minimal surface
obstacle problems in the HJB formulation.

e We use a modified version of the Newton-Gauss-Seidel (NGS) method, which is based
on a nonsmooth Newton’s method, as smoother for multigrid.

e Instead of linear interpolation, we use a constraint preserving prolongation for interpo-
lating coarse grid functions to the fine grid.

e In standard FAS, the coarse grid operators are typically constructed by direct discretiza-
tion. We use the Galerkin coarse grid operator instead for the elastic membrane con-
strained obstacle problem.

More detailed descriptions of the method will be given in the later sections. Here we briefly
explain the motivation or ideas of the techniques used. The HJB formulation captures the
variational inequalities associated with the obstacle problem by the max or min operators.
On the one hand, the max and min operators are convex functions, which tend to show
nice numerical behaviour. On the other hand, they are not smooth and hence standard
nonlinear solvers such as Newton do not work. A nonsmooth version of the Newton’s
method is required. One challenge of the obstacle problem is the obstacle constraint. Lin-
ear interpolation, in general, does not preserve the obstacle constraint, which may lead
to inaccurate coarse grid correction. It is desirable to preserve the constraint explicitly.
Finally, a Galerkin coarse operator is often used for solving linear problems but seldom
used in nonlinear problems. We explore this idea for the case of the elastic membrane con-
strained obstacle problem, and the resulting multigrid method shows better convergence.
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This paper is organized as follows: the obstacle problems, their mathematical deriva-
tions, and the numerical discretization are given in Section 2. Section 3 presents multigrid
methods based on V-cycle FAS to solve the two kinds of obstacle problems. In Section 4,
numerical experiments are given to demonstrate the efficiency of the proposed multigrid
methods. Finally, concluding remarks are made in Section 5.

2. Obstacle problems

The obstacle problem discussed in the multigrid literature is to find the equilibrium
position of a membrane above (or below) an obstacle, with a fixed boundary. The solution
to the obstacle problem can be separated into two different regions. One region is where
the solution equals the obstacle value, also known as the active set, and the other region is
where the solution is above (or below) the obstacle, the inactive set. The interface between
the two regions is called the free boundary. So the obstacle problem is sometimes referred
as free boundary problem [3]. Figure 1 shows an example of the obstacle (left) and the
solution to the obstacle problem (right).

Figure 1: An obstacle problem example, (left) the obstacle, (right) the solution.

In this paper, we will consider two kinds of obstacle problems, which are commonly
solved in the multigrid literature. One is based on the classical linear elasticity theory and
the other one is based on minimal surface. The two model problems are described in the
following sections.

2.1. Elastic Membrane Constrained by an Obstacle

An elastic membrane considered in classical elasticity theory is a thin plate, which has
no resistance to bending, but responses only to tension [19]. We assume that a membrane
in a domain Q c R? on the 2D plane is equally stretched by a uniform tension, and loaded
with the external force f, which is also uniformly distributed. At each point (x,y) on
the domain (, the displacement is given by u(x, y) which is the unknown function to be
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computed. For simplicity, we assume a Dirichlet boundary condition where u(x,y) =0 on
the boundary 9. The obstacle is given by a function (x, y).

An obstacle problem can be classified into one of the three categories based on the
position of the obstacle: (a) the lower obstacle problem, in which the solution u lies above
the obstacle, (b) the upper obstacle problem, in which the solution u lies below the obsta-
cle, and (c) the two sided obstacle problem, in which the solution u lies in between two
obstacles.

In the literature, there are three major formulations of the obstacle problem: ellip-
tic variational inequality, linear complementarity problem, and Hamilton-Jacobi-Bellman
(HJB) equation, which are explained below.

Elliptic variational inequality formulation

For now, we consider the lower obstacle problem; i.e. we look for solution u that
belongs to the set
K={ueH':u>y},

where H! is the standard Sobolev space. The membrane constrained obstacle problem is
to find u € K such that it minimizes the potential energy,

mvin E(v)= J

1
—|Vv|2dxdy—J fvdxdy, 2.1)
Q2 Q

where f is an external force. Let u be the solution of (2.1); i.e.
E(u) < E(v), Vv eK. (2.2)

Since K is a convex set, u+ A(v —u) € K for A € [0,1]. Define h(A) = E(u + A(v — u)).
When A = 0, h(A) is minimized and hence h’(0) > 0. It follows that

1
h'(0)= lim —{E(u+ A(v —u))—E(u)} > 0. (2.3)
2—0* A
Substituting (2.1) into (2.3), the solution u € K satisfies the elliptic variational inequality
J VuV(v —u)dxdy ZJ flv—u)dxdy, Vv €K. 2.4)
Q Q

Conversely, suppose u satisfies (2.4). Then for Vv € K,
E(v) = Eu+(—u))

= E(u)—i—f VuV(v—u)dxdy—f f(v—u)dxdy+lf V(v —u)]?
Q Q 2 Jo

Y

B+~ f VO — W > B,
2 Q

and hence u is also a solution of (2.1) (or (2.2)).
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Linear complementarity formulation

Define two disjoint subsets of K such that K = K; UK, where
Ki={ueK:u=1},

and
Ky={ueK:u>}.

Take an arbitrary ¢ € K,. There exists €y > 0 such that v=u®e¢p € K for 0 < € < €.
Substituting v = u £ €¢ into (2.4), we have

J Vu-V(xep)dxdy — f f(xep)dxdy = 0. (2.5)
Q Q

Rearranging (2.5) and integrating by parts, we obtain
ief(—Au—f)qﬁZO, V¢ €Ky,
Q

assuming u € C2(2). Since the inequality holds for both +€ and —e, it follows that

—Au=f, u(x,y) > P(x,y). (2.6)

For the case in which u(x, y) is not strictly greater than 1(x, y), let ¢ € K, and ¢ > 0.
Let v=u+ ¢ € K. Then (2.4) becomes

f Vu-qudX—f fédx >o.
Q Q

Following a similar argument, we have

f(—Au—f)ﬁb >0,
Q

for any ¢ > 0. This implies that
—Au—f 20, u(x,y) ZP(x,y). 2.7)

Combining the two cases (2.6) and (2.7), the obstacle problem can be written as a
linear complementarity problem:

u_w 2 O’
—Au—f >0, (2.8)
(u—y)(=Au—-f)=0.

HJB equation formulation
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Equation (2.8) implies that if u — 1) > 0, then —Au — f = 0. Otherwise, ifu —¢ =0,
then —Au — f > 0. Hence, the linear complementarity problem (2.8) can be written as

min(—Au— f,u—y) =0, on €, (2.9)

which is an HJB equation.

The above formulation is for the lower obstacle problem. For the upper obstacle prob-
lem, the equations can be derived similarly. In particular, the corresponding HJB equation
is given by,

max(—Au— f,u—1)=0, on Q. (2.10)
Here, u € KYPP¢" where K“PP¢" = {u € H'|u >+ }. For the two sided obstacle problem, the
solution u € K"° = {u € H'|3p! < u < 1)?}. The HJB equation is then given by

max [—L*u— f*] =0, (2.11)

1<u<4
where

— LMu=[sgn(u—y")](-Aw), f"=I[sgn(u—y")]f, u=12,

2.12
CPu= (=1, fH = (—1) u=34 2

2.2. Minimal Surfaces with Obstacles

In the literature, another commonly studied obstacle problem is related to minimal
surfaces. This model assumes that the potential energy due to the deformation of the
membrane is proportional to the increase in the surface area, which is given by

f 1+ |Vul?2dX, u€eKk. (2.13)
Q

The obstacle problem, similar to the minimal surface problem, is to find a solution u € K
that minimizes the above potential energy:

f V14 |Vul? dxdySJ V1+|Vv|]2dxdy, Vv eK. (2.14)
Q Q

We remark that the minimal surface obstacle problem is related to the previous model
based on the linear theory of elasticity. Taking the Taylor’s expansion of the integrand in
(2.13), we have

1
V14 |Vul2= 1—|—§|Vu|2—l—0(|Vu|4). (2.15)

For small |Vu|, by dropping the higher order terms O(|Vu|*), the minimal surface obstacle
problem becomes the elastic membrane constrained obstacle problem in (2.1).
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Similar to the derivation in Section 2.1 which we have omitted here, (2.14) can be
formulated as a variational inequality:

Vu-V(v—u)
a /14 |Vul?

With a similar argument as in (2.6) and (2.7), one can show that u satisfies the follow-
ing equations:

dxdy—ff(v—u)dxdyZO, Vv eK. (2.16)
Q

Vu
Au:_v.(—1+|vu|2)=f for u(x,y) > (x,y),
v - (2.17)
Au= -V - (—=)>f for u(x, y) = (x,y).

V14 |Vul?

This is similar to the linear complementarity formulation of the problem in (2.8).

The HJB equations for the minimal surface obstacle problem can be obtained by re-
placing the Au and L* operators in (2.9), (2.10) and (2.11). More precisely, the equations
for the lower and upper minimal surface obstacle problems are

min(Au — f,u—1)=0, on €,

max(Au — f,u—1) =0, on Q, (2.18)

respectively. For the two sided minimal surface obstacle problem, the corresponding HJB
equation is given by
max [GHu— f*]=0 (2.19)
1<u<4

where
G'u=[sgn(u—¢")](Au), f¥=[sgnu—y")]If, wun=12,
Glu=(-1u, fH=(-1"yY* 2 u=34.

The term Au is defined in (2.17) for all these three HJB equations.

Remark: The minimal surface obstacle problem is similar to the elastic membrane
constrained obstacle problem as shown above. The main difference lies on the operators
in the model equations. In the elastic membrane obstacle problem, the Laplace operator A
is linear and does not depend on the solution u. On the other hand, in the minimal surface
obstacle problem, the operator A defined in (2.17) depends on u and is hence nonlinear.
Nevertheless, we should also remark that both obstacle problems are nonlinear regardless
of the differential operators due to the obstacle constraint.

(2.20)

2.3. Discretization of the Model HJB Equations

In this paper, we will primarily focus on the HJB formulation of the two obstacle prob-
lems defined on a unit square; i.e. 2 =(0,1) x (0,1). We apply standard finite difference
approximation to discretize the HJB equation in (2.9). Denote the grid points by (x;, y;),



MG for Obstacle Problems 9

where x; = iAx, y; = jAy, 0 < i,j < m+ 1 with grid size Ax = Ay =h = m+r1 Let

u; ; be an approximation to u(x;, y;). Then a finite difference discretization of the Laplace
operator can be written as

ui+1] 2u +ul 1] i,j+1 2u +ul] 1 .o
- h2 h2 _fi,ja 1< L] < m, (221)

which will be denoted by the matrix of size n x n, n = m2. The superscript “EM" here
refers to the elastic membrane constrained obstacle problem.

Similarly, we apply a finite difference method to discretize the operator in (2.17), which
results in the following finite difference equations:

EM
Ah

Ay =ACu; j+ AWy j +AEu;q ; +ASu; jy + AN j11. (2.22)

The superscript “MS" in here refers to the minimal surface obstacle problem, and the
weights AC, AW, AE, AS, AN are given by

MS
Ah

1 1 1
AW:——2 + s

2\/(111‘,1'—:1'—1,1' )2+(ui,j_:i,j—1)2+1 2\/(ui,j_:i—1,j)2+(ui—l,j+;l_ui—l,j )2+1

( A
1 1 1
AE = — — + ,

\2\/( ui+1,}}'l_ui,j )2+ (ui+1,j—:i+1,j—1 241 2\/( “i+1,2_“i,j )2 + (”i,fﬂh_“i:f )2+ 1)
( )

1 1 1
AS =— — + ,

2
h 2\/( 11])2+( 1) 1)2+1 2\/( l+1]1hul) 1)2+( 1] 1)2_’_1)

1 1 1
AN:_ﬁ + S

2\/(ui+1,;"l_ui,j)2+(ui,j+1h_lii,j)2+1 2\/(Ui,j+1_:i—1,j+1 )2+(Ui,j+1h—ui,j)2+1

and AC = —(AW + AE +AS +AN) + 1.

Let u" = [uy1,Up1,...,Upn,,] be the solution vector in the lexicographical ordering.
The forcing vector f" is defined similarly. Depending on the type of constraints, we divide
the discrete obstacle problem into three types: (1) the lower obstacle, the set KL {v €
R"|v" > 4™}, (2) the upper obstacle, the set K/ = {yv" € R"|[v" < U1}, (3) the two sided
obstacle, K["° = {y" € R"[)p"" < v, < yUh}. Here 4™ and yUM are the vectors of the
discrete obstacle functions, and the inequalities are understood as componentwise. The
discrete HJB equations are given as

min[Ah(uh) — fh, ut— wL’h] =0, (2.23)
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for the lower obstacle K}, = K}f,
max[A, ") - f,u" =y =0,

for the upper obstacle K, = Kf , and

max [A}(u") - f*"] =0,

1<su<4

for the two sided obstacle problem K}, = K,:W", where

Aty = [sgn(u" — M)Ay, fH" = [sgn(" —y*DIf", p=1,2,
A = (DR, = (CDRR R =34,

For the above equations, A, = AﬁM , as defined in (2.21) for the elastic membrane con-
strained obstacle problem and Ay, =A’}‘I/IS , given by (2.22), for the minimal surface obstacle
problem. We note again that the HJB equations should be understood componentwise.

In this paper, we will consider solving the discrete HIJB equation with lower obstacle; i.e
(2.23). As such, we simply denote the discrete obstacle function as 1" instead of %", The
discrete HJB equation is difficult to solve numerically because of its nonlinearity. Whether
a grid point is active or inactive depends on both A, (u"); — f* and u? — 1,0?. However, we do
not know that a priori. It in turn depends on the solution u" and the obstacle function )"
The minimal surface obstacle problem further complicates the problem where the operator
AMS jtself is also nonlinear.

One approach to solve HJB equations in general is the policy iteration [1,11,14]. The
policy iteration consists of an outer and inner loop. In the outer loop, it determines the
active and inactive sets from the current approximate solution. In the inner loop, the active
and inactive sets are held fixed which results in a linear system for the elastic membrane
obstacle problem and a nonlinear system for the minimal surface obstacle problem. An
iterative method may be used to solve the discrete problem in the inner loop. Since it
involves outer and inner iterations, the total computational cost may be expensive in some
cases.

3. Multigrid methods

In this paper, we will propose efficient multigrid methods based on the full approxi-
mate scheme (FAS) to solve nonlinear obstacle problems. Similar to the standard linear
multigrid method, the FAS algorithm also consists of three major steps: pre-smoothing,
coarse grid correction, and post-smoothing. Similar to a V-cycle, we only perform one
coarse grid correction on each grid in our FAS. The problem on the coarsest grid is solved
by the smoother. The components needed to be defined are the smoother, the interpolation
and restriction operators, and the coarse grid operator.
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3.1. Pre-Smoothing and Post-Smoothing

For the smoothing operator of the FAS, we propose the use of a modified version of the
Newton-Gauss-Seidel (NGS) method. The Newton’s method is a well known method for
solving Z(x) = 0 [15] where & : R" — R" is a continuously differentiable operator; i.e.,
a smooth operator and x is a vector in R". The operator & may depend on the vector x.

One step of the standard Newton’s method is given by

K = 5k — /(X)L (0. (3.1

However, if & is not a smooth operator but a locally Lipschitz operator, then (3.1) cannot
be used anymore.
Let 8.7 (x*) be the generalized Jacobian of F at x* as defined in [4]. One can write
(3.1) as
X =xk — g (), (3.2)

where ¥, € Z(x*). The Newton’s method extends to a non-smooth case by using the
generalized Jacobian ¥ instead of the derivative Z’(x*) [18]. We can rewrite (3.2) as

Yk = yxk — F(x0). (3.3)

It is shown that the local and global convergence results hold for (3.3) in [18] when & is
semismooth.

Solving the linear system (3.3) can be expensive. The NGS method that we are using as
a smoother for our multigrid is to solve (3.3) approximately by Gauss-Seidel. In general,
the NGS method we used here can be viewed as a non-smooth version of the standard
NGS.

We first consider the case of the elastic membrane constrained obstacle problem. One
iteration of the NGS smoother for the model problem consists of the following steps. Sup-
pose the approximation ﬁ}’; after the k'" iteration of the NGS is known. Then we determine
the active and inactive sets based on ﬂ}’i. More specifically, we construct the linearized
equation for (2.23), which can be written as

Nuu = b". (3.4)

The matrix N, can be considered as the merging of the rows of two matrices. One matrix
is A;, and the other is the identity matrix I with the same size as A;,. If a grid point with
ordering i is active, which means A, (u"); — fih > u? - 1/)?, we take the i'" row from I,.
Meanwhile, we define the right hand side b? = 1/)’17. Otherwise, we take the i'" row from
Ay and let b? = fl.h. To be more precise, the matrix Nj, and the right hand side b" are
defined as

_ Ay(i, ), if the i" grid point is inactive,
Ny, ) =1 snep (3.5
(i), otherwise,
h . 'th . o « . .
N if the i*" grid point is inactive,
bl — flh - sndp (3.6)
Vi, otherwise,
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where (i,:) means the i'" row of a matrix. Finally, we apply one iteration of the Gauss-
Seidel method to (3.4) to obtain a,’j*l.

For the case of the minimal surface obstacle problem, the operator A; depends on the
solution u". We further linearize it by fixing the entries of A;, by ﬁ,’:.

3.2. Restriction and Prolongation Operators

In standard FAS, the restriction operator is either injection and full weighting. We
found that they both work well with full weighting performing slightly better. We will use
full weighting for restricting both the residual and the solution to the coarse grid.

0 + * X
Xi Xit1 Xit2

Figure 2: An illustration of the constraint preserving interpolation. The obstacle is rep-
resented by the solid (red) line. The constraint preserving interpolation gives a value of
1 (point a) while the standard linear interpolation would give a value between 0 and 1
(point ¢) at the noncoarse grid point x;, ;.

The bilinear interpolation operator is typically used as the prolongation operator in
standard FAS. However, this operator is not working well for the obstacle problem. Figure
2 shows a 1D obstacle problem example which explains the drawback of the linear interpo-
lation. In the figure, the grid points x; and x;, are coarse grid points, and all x;, x;,; and
X;yo are points on the fine grid. The rectangle denotes the obstacle we are considering. Let
il and " be the approximate solutions on the coarse grid and the fine grid, respectively.
Suppose x;,1 and x;, are active points on the fine grid. So ﬂ? ,, and ﬁ? o Should be equal
to the obstacle value, which is 1 in our example. We also assume i’ = 0 at x;. Using linear
interpolation, we will have ﬁ? 1 equal to the value of ¢ instead of 1, which is not accurate.

To address this issue, we modify the linear interpolation as follows. In the coarse grid
correction step, when we update the fine grid solution using the interpolated error from
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the coarse grid, we only do so at the inactive points; i.e. at the grid points where the
solution is not constrained by the obstacle. We do not update the fine grid solution at the
active points, thus preserving the obstacle values (assuming the initial guess satisfies the
obstacle constraint). In this way, the modified interpolation will not create the problem as
shown in Figure 2.

3.3. Nonlinear Operator N, on Coarse Grid
3.3.1. Ny for Elastic Membrane Constrained Obstacle Problem

Direct discretization is typically used for the coarse grid operator in standard FAS. However,
we observed that this coarse grid operator results in slow convergence. For linear PDE
problems, the Galerkin coarse grid operator is also used which often yields fast multigrid
convergence. Since the Laplacian operator in the elastic membrane constrained problem,
ie. AﬁM in (2.23), is also linear, we can make use of the Galerkin coarse grid operator in
the nonlinear problem here. This choice results in a faster convergence rate than the direct
discretization.
We write the coarse grid HJB equation as

min(Agu?, u? — ) = B + Ny =", (3.7)

where Z is the restriction operator, i is the approximate solution after pre-smoothing,

and 7" is the residual of @i". The right hand side of the coarse grid HJB equation comes
from the standard FAS algorithm. For simplicity, the problem can be written as

NHuH == bH, (3-8)

where Ny is the matrix on the coarse grid. Ny is obtained from the merging of Ay and Iy
(the identity matrix) in the same way as (3.5).

In order to compute the matrix Ny, we need to have Ay. Motivated by the Galerkin
approach, we define the matrix Ay = ZN,&?, where & is the prolongation operator and
Ny, is the matrix on the fine grid. Note that we use Nj, instead of A;, in order to define Ay.
Thus we are applying the Galerkin method to the fine grid nonlinear operator.

The active and inactive points are the same as those on the fine grid. If an i*" point is
active on the fine grid, then the left hand side of (3.8) becomes Ny (u"'); = I;(u"); = ul!
and the corresponding b = (7 + R 4+ Ny ®ii");. Thus the equation becomes ufl =
(YH + 7" + Ny i), at the i'" point. If the point is inactive, then the left hand side
of (3.8) is Ay(uf);, and we let bf’ = (R + Ny Zi");. The equation reads Ay (uy); =
(7" + Ny i),.

We can get a hierarchy of coarse grid operators by repeating the above process re-
cursively. This forms a multigrid method. We remark that the operator we introduced
is quite different from the direct discretization operator since the matrix A;; in the direct
discretization is independent of Ny, but Ay in our method depends on Nj,.

Since the Galerkin operator results in fast convergence for the elastic membrane con-
strained obstacle problem, it is natural to apply it to the minimal surface obstacle problem.
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However, the Galerkin approach does not work well for the minimal surface obstacle prob-
lem.

The Galerkin process defines the coarse grid operator based merely on the fine grid
operator. This does not cause any problem with the elastic membrane obstacle problem as
the Laplacian operator AﬁM in (2.21) is independent of the solution u". The coarse grid
operator computed using the Galerkin approach will be just given by AﬂM =ZN,P.

For the minimal surface obstacle problem, the fine grid operator A’X’S in (2.22) de-
pends on the solution u”. It is desirable that the operator A]‘Ifs on the coarse grid would
also depend on u!!. However, the Galerkin approach would give AIPVI[S = ZN, &, which is
independent of u'! (at least not directly). Thus the Galerkin coarse grid operator may not
be effective for the minimal surface obstacle problem.

Instead, we utilize the direct discretization operator as the coarse grid operator. This
operator on the coarse grid depends on u explicitly and it results in faster convergence.

4. Numerical Results

We will demonstrate the proposed V-cycle FAS scheme by solving 1D and 2D obstacle
problems. Two pre-smoothing and post-smoothing steps are used. The stopping criterion
for all the obstacle problems is that the norm of the residual of the problem at the inactive
grid point is less than 107°. The obstacles considered in the numerical examples are a
square obstacle (or block obstacle) and a circle obstacle (or dome obstacle); see Figure 3.

4.1. 1D Block Obstacle Problem with Laplacian Operator

We consider a 1D lower obstacle problem subject to a lower block obstacle:

1, S Sx<Z,
u(x) = y(x) = 32 7 T 32 (4.1)
0, otherwise.

Note that the obstacle is defined such that its boundary does not align with the coarse
grids. In other words, the obstacle boundary on the coarse grids is off from the fine grid.
Also, we note that the free boundary is actually known in this case (the given obstacle
boundary) but our multigrid solver does not take advantage of this fact.

We apply the proposed V-cycle FAS to solve the HJB equation for the lower obstacle
problem. Table 1 shows the FAS iteration numbers for different grid sizes and levels. We
can see that the convergence is fast and is essentially independent of the grid size. Figure
4 shows the obstacle and the numerical solution of this 1D obstacle problem. We note that
the free boundary coincides with the obstacle boundary.

4.2. 1D Dome Obstacle Problem with Laplacian Operator

The HJB equation of the 1D dome obstacle problem is similar to the 1D block obstacle
except for the obstacle function. For the block obstacle, the elastic membrane will contact
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(a) 1D block obstacle (b) 1D dome obstacle

(¢) 2D block obstacle (d) 2D dome obstacle

Figure 3: Pictures of different obstacles.

with the obstacle exactly on the surface of the obstacle. For the dome obstacle, it is not
the case. Figure 5 (right) shows the difference between the numerical solution and the
obstacle. We can see that the free boundary does not coincide with the obstacle boundary.
Since the active set and inactive set depend on not only the shape of the dome obstacle but
also the numerical solution, the obstacle problem with the dome obstacle is more difficult
than the one with the block obstacle.

The problem we consider here is with the constraints:

1—6(x —0.5) 2 <x< 2,
w0z yoo={ 7Y 128 =% = 129 4.2)
0, otherwise.

Grid Size (h) | Levels | FAS Iterations
1 2 3
i
¥ 3 4
? 4 5
? 5 4
o5 6 5

Table 1: Iterations of the FAS for the 1D block problem
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1 1 1

09 09 09
03 08 08
07 07 07
06 06 06
05 05 05
04 04 04
03 03 03

02 02 02

o1 01 01

o [t} [t}
0 0z 04 06 08 1 o 02 04 06 o8 1 o 02 04 06 o8 1

Figure 4: 1D block obstacle problem. (Left) obstacle, (middle) numerical solution, (right)

difference between the obstacle and the numerical solution, with grid size 6i4 and 5 levels.

Grid Size(h) | Levels | FAS Iterations
1 2 1
§
¥ 3 5
? 4 7
? 5 5
o3 6 6

Table 2: Iterations of the FAS for the 1D dome problem.

The dome obstacle problem shares the same HJB equation with the previous example ex-
cept that the obstacle function ) is now given by (4.2). Using the V-cycle FAS, the iterations
are given in Table 2. The obstacle, numerical solution, and the difference between the two
are shown in Figure 5. The difference between the numerical solution and the obstacle
indicates the contact parts between the obstacle and the solution.

Similar to Table 1, Table 2 shows that the iteration numbers of the FAS for solving
the dome obstacle problem are independent of the grid size and the iteration numbers are
about 5 to 6.

4.3. 2D Dome Obstacle Problem with Laplacian Operator

The 2D obstacle problem in this example is similar to the 1D dome obstacle. The
obstacle function is given by:

u(x,y) >(x,y) =max{0,0.6 — 8|(x — 0.5)* + (y — 0.5)?|}. (4.3)

The FAS iteration numbers are shown in Table 3. Figure 6 shows the obstacle, the solution
and the difference for the 2D dome obstacle problem.

We will compare our method with the methods proposed in [13] and [17]. They both
solve the elasto-plasto torsion problem which is similar to our numerical example here. The
main difference is the shape of the obstacle. The obstacle considered in [13,17] leaves the
inactive set a small region with a cross shape aligned with two diagonals.
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[t} 02 0.4 0B [iR=) 1 [t} 02 0.4 0B [ik=) 1 ) 0.2 04 i3 0.e 1

Figure 5: 1D Dome obstacle result. (Left) obstacle, (middle) numerical solution, (right)

difference between the obstacle and the numerical solution, with grid size 6i4 and 5 levels.

Grid Size(h) | Levels | FAS Iterations
1 2 5
¥
@ 3 5
? 4 6
% 5 7
s 6 9

Table 3: Iterations of the FAS for the 2D dome problem.

n [13], finite element methods are used as the discretization method and monotone
multigrid methods are applied. To compare our method with the results reported in [13],
we consider the iteration error computed as eilj =i — ﬂilj, where ﬁﬁ is the approximate
solution after k iterations and i, is the “exact" numerical solution computed with a small
tolerance of 10™°. The iteration numbers to achieve the same errors by our method and
the TRCKH method in [13] are shown in Table 4. Our FAS method takes about half of the
iterations of the TRCKH method to achieve the same errors. Since V-cycle is used by both
the TRCKH and our FAS methods, the work per iteration is equivalent. It shows that our
multigrid method has faster convergence.

In [17], a F-cycle multigrid is used to solve the obstacle problem. In order to compare
the results in [17], we show here the rate of convergence for their F-cycle multigrid and our
FAS multigrid in Table 5. For the two grid sizes reported, our proposed multigrid method
has a faster convergence rate than the F-cycle multigrid. In addition, since the V-cycle is
used in our FAS method, the work is less per iteration than the F-cycle multigrid.

4.4. 2D Dome Obstacle Problem with Minimal Surface Operator

Now, we consider an obstacle problem with the minimal surface operator. The obstacle
considered here is the same as the 2D obstacle problem with the Laplacian operator (4.3).
Convergence results for solving the corresponding HJB equations with the V-cycle FAS
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Figure 6: 2D dome obstacle result. (Left) obstacle, (middle) numerical solution, (right)
difference between numerical solution and obstacle, with grid size = and 5 levels.

64
Iteration Errors 1072 ]10*[10®] 1077 | 1078
Number of Iterations for TRCKH 10 19 23 25 28
Number of Iterations for FAS 8 10 11 12 13

Table 4: Convergence of the TRCKH [13] and the proposed FAS multigrid methods.

algorithm are given in Table 6. Figure 7 shows the obstacle, the numerical solution, and
the difference between them.

Table 7 shows the residuals for grid sizes h = % and h = BLZ in each iteration computed
by our FAS. For comparison, we have listed the residuals reported in [8] and [10]. It is
noticed that the residuals given by the multigrid methods in [8] and [10] seem to converge
faster to zero than the residuals given by the FAS method. However, a W-cycle is used in
both methods. Considering the work in each W-cycle is about 1.5 times of that in one
V-cycle, the total computational work of 9 iterations of our FAS, for instance, is about the
same as 6 iterations of the W-cycle. From the table, we see that at the 9" iteration of our
method, the residual is reduced to 8 x 10~ (for the grid size %6). However, for the other

two methods, the residual after the 6" iteration is reduced to 2.2 x 1077 and 5.9 x 1077,
respectively.

A multigrid-type method based on subspace correction is proposed in [20] to solve
a minimal surface obstacle problem. We note that the numerical experiment given in
[20] is not exactly the same. A slightly different obstacle on the domain Q = (—2,2)? is

F-cycle | FAS
- L
h= I2s 0.20 | 0.098
h=_-1| 037 |0.186

Table 5: Convergence of the F-cycle [17] and the proposed FAS multigrid methods.
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0o

Figure 7: 2D dome obstacle with minimal surface operator. (Left) obstacle, (middle) nu-
merical solution, (right) difference between the numerical solution and the obstacle, with
grid size X and 5 levels.

64
Grid Size(h) | Levels | FAS Iterations

1 2 4
§

? 3 6

? 4 11

? 5 10

o8 6 15

Table 6: Iterations of the FAS for 2D dome problem with the minimal surface operator.

considered, but with a quite similar shape. Table 8 presents the convergence rates for the
proposed FAS method and the subspace correction method. In the table, J is the number
of coarse levels. The proposed FAS shows faster convergence.

5. Conclusion

In this paper, we have proposed a multigrid method based on the full approximate
scheme for solving two types of obstacle problems using the HJB equation formulation.
The Galerkin operator was often used as a coarse grid operator for linear problems. Here,
we have proposed a special coarse grid operator based on the Galerkin approach for solving
the elastic membrane constrained obstacle problem. This choice of coarse grid operator has
improved the convergence of the FAS. For the minimal surface obstacle problem, we ap-
plied the direct discretization as the coarse grid operator. In addition, we have proposed a
modified linear interpolation operator to address the issue of inaccurate prolongation near
the boundary between the active and inactive sets. Numerical results show that our FAS
converges in small numbers of iterations for the two model obstacle problems in 1D and
2D. Also, the proposed FAS multigrid compares favourably with other multigrid methods
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Iteration FAS FAS vimlII vimlI mgm mgm

h=1/16 | h=1/32 | h=1/16 | h=1/32 | h=1/16 | h=1/32
1 1.6E-2 | 3.7E-2
2 1.7E-3 | 4.1E-3 1.9E-2
3 24E-4 | 82E-4 | 24E-4 1.3E -3 1.1E-3
4 3.7E-5 | 3.1E-4 | 23E-5 1.1E-3 | 94E-5 | 3.6E-4
5 SOE-6 | 1.2E-4 | 22E-6 | 42E-4 | 72E-6 | 14E-4
6 97E-7 | 49E-5 | 22E-7 | 1.5E-4 | 59E-7 | 5.6E-5
7 1.7E-7 | 20E-5 | 20E-8 | 53E-5 | 53E-8 | 23E-5
8 36E-8 | 81E-6 | 5.0E-9 | 19E-5
9 80E-9 | 33E-6 | 1.3E-9 | 6.7E-6
10 19E-9 | 14E-6 | 3.2E-10 | 24E-6

Table 7: Norms of residuals at each iteration given by the proposed FAS, vimII [10], and
mgm [8] methods.

J=6
0.8

J=5
0.78

J=7
0.81

J=28
0.85

FAS
0.40

Convergence Rate

Table 8: Convergence rates for the subspace correction method in [20] (columns 2 to 5)
and the FAS (last column).
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