
This article was downloaded by: [University of Waterloo]
On: 19 November 2014, At: 07:22
Publisher: Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Quantitative Finance
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/rquf20

Low-bias simulation scheme for the Heston model by
Inverse Gaussian approximation
S. T. Tse a & Justin W. L. Wan a
a David R. Cheriton School of Computer Science , University of Waterloo , Waterloo ,
Ontario N2L 3G1 , Canada
Published online: 03 Aug 2012.

To cite this article: S. T. Tse & Justin W. L. Wan (2013) Low-bias simulation scheme for the Heston model by Inverse
Gaussian approximation, Quantitative Finance, 13:6, 919-937, DOI: 10.1080/14697688.2012.696678

To link to this article:  http://dx.doi.org/10.1080/14697688.2012.696678

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of
the Content. Any opinions and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied
upon and should be independently verified with primary sources of information. Taylor and Francis shall
not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other
liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/rquf20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14697688.2012.696678
http://dx.doi.org/10.1080/14697688.2012.696678
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Low-bias simulation scheme for the Heston model by

Inverse Gaussian approximation

S. T. TSE* and JUSTIN W. L. WAN

David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Received 16 July 2010; in final form 8 May 2012)

Fast and accurate sampling of conditional time-integrated variance in the Heston model is an
important and challenging problem. We proved that this very complicated distribution
converges to the moment-matched Inverse Gaussian distribution as the time interval goes to
infinity. Leveraging on this theoretical result, we develop an efficient and accurate Inverse
Gaussian approximation to sample conditional time-integrated variance. Numerical results
demonstrate that our scheme compares favourably with state-of-the-art methods in accuracy
given the same computational time for moderately path-dependent options.

Keywords: Inverse Gaussian; Asymptotic exactness; Fast moment-matching; Path-dependent
options; Heston model

1. Introduction

The Heston stochastic volatility model (Heston 1993) is
one of the most popular extensions to the Black–Scholes
model in finance. Instead of assuming volatility as a
constant, the Heston model assumes that variance, or the
square of volatility, follows the square root diffusion
process (also known as the CIR process – Cox et al. 1985
– in interest rate modelling), which has the attractive
properties of being non-negative and mean-reverting.

Under the Heston model, vanilla European options can
be computed rapidly by a semi-analytical formula
(Heston 1993). Consequently, calibration to market
prices can be performed quickly. This degree of analytical
tractability of the Heston model partly explains why it has
become popular in practice.

Formulae are unavailable, however, for path-depen-
dent derivatives under the Heston model. As a result,
practical applications of the Heston model often require
the use of Monte Carlo simulation. The Monte Carlo
method has two sources of error in calculating derivatives
prices: variance and bias. Variance comes from the
random nature of Monte Carlo simulation. Bias comes
from non-exact time discretization of the underlying
stochastic differential equations (SDEs). To reduce var-
iance to acceptable levels, big sample sizes are often
needed. To reduce bias, one general approach is to

perform finer time discretization, but this can be time-

consuming. A more desirable approach is to design a

more accurate discretization scheme for the SDEs. On this

note, the square root function in Heston dynamics has

been shown to be a source of big bias for the Euler and

Milstein schemes (Kahl and Jackel 2006, Lord et al.

2010), which are standard discretization methods for

SDEs. First, negative values of variance have to be fixed

heuristically before taking the square root in the next time

step. Second, the square root function violates the

Lipschitz condition typically used to establish conver-

gence results. Although many researchers (Deelstra and

Delbaen 1998, Higham and Mao 2005, Kahl and Jackel

2006, Berkaoui et al. 2007, Bossy and Diop 2007, Lord

et al. 2010) have come up with innovative ways to fix

these standard techniques, discretization biases under all

these schemes are relatively big unless a large number of

time steps is used. We refer readers to Lord et al. (2010)

for a comprehensive comparision of such fixes to

standard Euler and Milstein schemes.
A breakthrough was made by Broadie and Kaya

(2006), who designed an essentially bias-free simulation

scheme based on exact sampling from two distributions:
(1) the conditional transition distribution of variance,
which we will denote by (V(t2)jV(t1)); and (2) the time-

integrated variance conditional on the levels of variance
at the endpoints, which we will denote by Ic. We note that

(V(t1)jV(t2)) is distributed as a non-central chi-square and
thus exact simulation is relatively straightforward.*Corresponding author. Email: sttse@cs.uwaterloo.ca
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The main result in Broadie and Kaya (2006) is an exact
simulation scheme for Ic. Specifically, the paper derives a
formula for the characteristic function of Ic. Based on the
formula, the paper proposes to sample Ic by numerically
Fourier inverting the characteristic function to obtain the
cumulative distribution function (CDF), and then numer-
ically inverting the CDF to obtain the quantile function.
The biases introduced by the numerical inversions are
negligible (Broadie and Kaya 2006) and hence the method
is essentially bias-free. However, numerical results in the
literature have shown that the exact scheme is computa-
tionally very expensive (Broadie and Kaya 2006,
Glasserman and Kim 2011, Lord et al. 2010), and have
worse speed–accuracy tradeoff than simpler schemes
(Lord et al. 2010). The exact scheme, nevertheless, has
encouraged researchers to design discretization schemes
which approximate the exact distributions (Andersen
2007, Smith 2007, Glasserman and Kim 2011, Van
Haastrecht and Pelsser 2008, Zhu 2008). Notably, two
state-of-the-art simulation schemes for the Heston model,
the Quadratic Exponential (QE) scheme (Andersen 2007),
and the Gamma Expansion (GE) scheme
(Glasserman and Kim 2011) employ this approach. QE
focuses on accurate approximation of (V(t2)jV(t1))
whereas GE focuses on accurate approximation of Ic.
We will summarize the key ideas as well as the
speed–accuracy tradeoff of the exact, QE and GE schemes
in section 2.

In this paper, we will demonstrate that although the
accuracy of QE is arguably sufficient when many time
steps are used, the accuracy deteriorates quickly as the
number of time steps is reduced. GE, while having an
accuracy very close to that of the exact scheme, is
relatively expensive and hence its speed–accuracy
tradeoff is less favourable than QE when more than
very few (two to three) time steps are needed in pricing
path-dependent options. Our research tackles the cases in
which pricing of the path-dependent options requires a
moderate number of time steps (from four to around
sixteen).

The contribution of this paper is three-fold. First, we
propose the Inverse Gaussian (IG) approximation to Ic
and prove its asymptotic exactness. Leveraging on the
convergence result, we develop a simple and accurate
method, the IG scheme, for sampling Ic. Second, we
propose an efficient and accurate sampling method for
(V(t2)jV(t1)), the IPZ scheme, based on a sophisticated
balance of speed and accuracy. Using an extensive set of
parametric cases in the literature in our numerical tests for
fair comparison, we show that the speed–accuracy trade-
off of the combined IPZ–IG scheme compares favourably
to QE on pricing European calls and Asian options when
a moderate number of time steps (from one to around
sixteen) is used in the IPZ–IG scheme. Third, we analyse
in detail the efficiency issues in approximate sampling of
Ic and (V(t2)jV(t1)).

The rest of the paper is organized as follows. Section 2
defines the Heston dynamics and summarizes the exact,
QE and GE schemes. Section 3 proposes the Inverse
Gaussian approximation to Ic, proves its asymptotic

exactness, and presents numerical results to demonstrate
its accuracy. Section 4 proposes and details the IPZ
scheme for sampling (V(t2)jV(t1)) and the IG scheme for
sampling Ic. Section 5 presents numerical results.
Section 6 concludes the paper, discusses extensions, and
outlines directions for future research.

2. Heston model and its simulation

2.1. Definition and basic properties

The Heston model is defined by the coupled two-
dimensional stochastic differential equations

dXðtÞ

XðtÞ
¼ r dtþ

ffiffiffiffiffiffiffiffiffi
VðtÞ

p
ð�dWVðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
dWXðtÞÞ, ð1Þ

dVðtÞ ¼ �ð� � VðtÞÞ dtþ �
ffiffiffiffiffiffiffiffiffi
VðtÞ

p
dWVðtÞ, ð2Þ

in which (WV, WX) is a standard two-dimensional
Brownian motion in the time variable t, �, �, � are
positive constants, r is a non-negative constant, and the
correlation � is a constant in [�1, 1]. The initial
conditions X(0) and V(0) are assumed to be strictly
positive. X(t) represents the price of an underlying asset
and V(t) represents the variance of its instantaneous
returns.

The variance process (2) is a square root diffusion
process whose conditional transition distribution,
(V(t2)jV(t1)), is well known to be that of a scaled non-
central chi-square distribution (Andersen 2007).
Assuming t24t1, the distribution of V(t2) conditional on
V(t1) is given by

Vðt2Þ ¼
e��ðt2�t1Þ

nðt1, t2Þ
�02� ðnðt1, t2ÞVðt1Þ

�
, � ¼

4��

�2
,

nðt1, t2Þ ¼
4�e��ðt2�t1Þ

�2ð1� e��ðt2�t1ÞÞ
, ð3Þ

where �02�ð�Þ denotes a non-central chi-square random
variable with � degrees of freedom and non-centrality
parameter �, and n(t1,t2) is defined for notational
simplicity. As we will explain in detail in section 4.1,
�02� ð�Þ can be sampled by first conditioning on a
Poisson variate and then generating a sample
from a gamma distribution (Van Haastrecht and
Pelsser 2008).

As shown in Broadie and Kaya (2006), the indepen-
dence of WV and WX implies that the distribution of log
(X(t2)/X(t1)) is conditionally normal given V(t1), V(t2) and
I �

R t2
t1
VðsÞ ds:

log
Xðt2Þ

Xðt1Þ
� N

�
rðt2 � t1Þ � 0:5Iþ

�

�
ðVðt2Þ � Vðt1Þ

� ��ðt2 � t1Þ þ �IÞ, ð1� �
2ÞI

�
: ð4Þ

It follows immediately that simulating (X(t2), V(t2))
given (X(t1), V(t1)) reduces to sampling from the joint
distribution of the pair (V(t2)jV(t1), I). Moreover,
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as (V(t2)jV(t1)) can be sampled using (3), the problem
reduces further to that of sampling

Ic �

�Z t2

t1

VðsÞ ds

����Vðt1Þ,Vðt2Þ
�
: ð5Þ

2.2. The exact scheme

In the exact scheme (Broadie and Kaya 2006), both
(V(t2)jV(t1)) and Ic are sampled exactly. As discussed in
Broadie and Kaya (2006) and Glasserman and Kim
(2011), exact sampling of (V(t2)jV(t1)) is relatively
straightforward and inexpensive. Exact sampling of Ic,
on the other hand, is very complicated and time-
consuming (Smith 2007, Van Haastrecht and Pelsser
2008), as we will explain in detail in the following. For
details of the exact scheme please refer to Broadie and
Kaya (2006).

2.2.1. Sampling Ic. The essence of the exact scheme is to
use Fourier inversion to obtain the CDF from the
characteristic function, and then numerically invert the
CDF to obtain the quantile function. The computation is
very expensive since the characteristic functiony of Ic,
’ða;Vðt1Þ,Vðt2ÞÞ � E½eiaIc �, involves the modified
Bessel function of the first kind, which is costly to
compute. The order of I	(z) is denoted by 	¼ �/2� 1 and
the argument z is an expression which involves a, V(t1)
and V(t2). Let FIc ðxÞ � ProbðIc � xÞ be the CDF. The
exact scheme computes the CDF by numerically
integrating

FIc ðx0Þ ¼
2

p

Z 1
0

sin ðx0uÞ

u
Rej’ðu;Vðt1Þ,Vðt2ÞÞj du, ð6Þ

which typically requires many evaluations of u and hence
I	(z). Furthermore, when inverting the CDF numerically,
one would need to solve the equation FIc ðxUÞ ¼ U for xU,
where U is a uniform variate. A root-finding algorithm
would in turn require evaluating FIc multiple times until
convergence.

Implementation of the exact scheme is not straightfor-
ward for two reasons. Accurate numerical integration of
(6) hinges on the non-trivial issue of choosing a fine
enough grid size and wide enough bounded domain for
integration (Broadie and Kaya 2006). Moreover, calcula-
tion of I	(z) requires care in branch counting the complex
number argument z.

Numerical results in Broadie and Kaya (2006) show
that the cost of generating one asset price sample using
the exact method is roughly equal to that of generating
1600 samples using the Euler scheme. Numerical results in
Lord et al. (2010) have shown that the speed–accuracy
tradeoff of the exact scheme is less favourable than that of
many simpler schemes, particularly for path-dependent
options.

One approach to speed up the exact scheme is by
precomputation of u. However, the three-dimensional
dependence of u(a; V(t1), V(t2)) on a, V(t1) and V(t2)
makes direct precomputation and interpolation of it
impractical (Smith 2007), as V(t1) and V(t2) change at
each time step in each simulated path. By using an
approximation to u, which has only two-dimensional
dependence on a, V(t1) and V(t2), the almost exact scheme
(Smith 2007) is able to speed up the exact scheme by
around seven times, while largely maintaining the very
low bias of the exact scheme. Despite the speed up, the
almost exact scheme is still expensive to the extent that its
speed–accuracy tradeoff is also less favourable than many
simpler schemes (Van Haastrecht and Pelsser 2008).

2.3. The quadratic exponential scheme

In QE (Andersen 2007), (V(t2)jV(t1)) is approximated
accurately and Ic is approximated very roughly.

Although we mentioned that the exact sampling of
(V(t2)jV(t1)) is relatively inexpensive compared with that
of Ic, the time needed to generate a non-central chi-square
variate is still more than ten times of that needed to
generate a uniform or Gaussian variate. In QE, two
approximations (quadratic and exponential) to the non-
central chi-square distribution are proposed to speed up
the sampling. Loosely speaking, a quadratic approxima-
tion is used when V(t1) is big and an exponential
approximation is used when V(t1) is small. In both the
quadratic approximation and the exponential approxi-
mation, the first two moments of the approximating
distribution are matched to that of the exact distribution.
The simple QE approximation to (V(t2)jV(t1)) turns out to
be surprisingly accurate. By plotting the exact non-central
chi-square distribution against the QE approximations,
one would see that the approximations closely resemble
the exact distribution for typical parameter values and
variance values encountered in Heston model simulations.

In contrast, QE’s approximation to Ic is very rough.
Although the distribution of Ic is much more complicated
than that of (V(t2)jV(t1)), Ic is approximated by a constant
random variable taking the value 0.5(V(t1)þV(t2)). This
approximation is equivalent to applying the trapezoidal
rule to integrate Ic numerically, an approximation
referred to as Drift Interpolation (DI) in the literature.

In terms of speed–accuracy tradeoff, numerical com-
parisons in the literature (Andersen 2007, Glasserman
and Kim 2011, Van Haastrecht and Pelsser 2008) have
shown that QE is one of the best methods when a
relatively large number of time steps is used. We note that
one main advantage of QE is its speed. More specifically,
sampling from the quadratic/exponential approximation
and moment-matching can be performed quickly. For
details please refer to Andersen (2007).

A drawback of QE is its relatively big bias when the
number of time steps is medium or small; see section 5.
This is mainly due to a significant deterioration in

yWe do not show the full expression for the characteristic function here because it is long and complicated; see Broadie and Kaya
(2006).
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accuracy of the rough approximation to Ic when t2� t1 is
larger. To address this issue, Andersen (2007) suggests
using moment-matching to determine the weights in
numerical integration. However, we are not aware of
any numerical result on moment-matched DI in the
literature.

2.4. The gamma expansion scheme

In GE (Glasserman and Kim 2011), (V(t2)jV(t1)) is
sampled exactly and Ic is approximated accurately.

As discussed in section 2.2.1, exact sampling of Ic is
very expensive. To tackle this, the authors derive an exact
and explicit expression of Ic in terms of an infinite sum of
mixtures of gamma random variables. Using the expan-
sion, a fast and accurate numerical scheme is developed
by truncating the infinite series and approximating the
remainder terms. Numerical results in the paper demon-
strate that GE has very low bias.

For later reference, we quote the following results from
Glasserman and Kim (2011).

Proposition 2.1: Let �¼ 4��/�2, 	¼ �/2� 1, it¼ t2� t1,
and Cz¼ 2�[�2 sinh(�it/2)]�1. The random variable Ic
representing the time-integrated variance admits the
representation

Ic �

Z t2

t1

VðsÞ ds
���Vðt1Þ,Vðt2Þ

� �
¼ X1 þ X2 þ

X

j¼1

Zj, ð7Þ

in which X1,X2, 
,Z1,Z2, . . . ,Z
 are mutually independent,
the Zj are independent copies of a random variable Z. 
 is a
Bessel random variable with parameters 	 and
z ¼ Cz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðt1ÞVðt2Þ

p
. The Laplace transforms �1, �2, �Z

of X1, X2 and Z are, for b� 0,

�1ðbÞ ¼ exp
Vðt1Þ þ Vðt2Þ

�2
� coth

�4t

2
� L coth

L4t

2

� �� �
,

ð8Þ

�2ðbÞ ¼
L sinh �4t2
� sinh L4t

2

 !�=2
, ð9Þ

�ZðbÞ ¼
L sinh �4t2
� sinh L4t

2

 !2

, ð10Þ

where L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2bþ �2
p

.

2.5. Comparing QE and GE

Overall, GE is more accurate but slower than QE.
Numerical results in Glasserman and Kim (2011) com-
pare the speed–accuracy tradeoff of GE and QE on
pricing vanilla European options with a relatively short
maturity of one year. In one comparison, the bias of GE
using one time step is approximately equal to that of QE
using 32 time steps, and GE outperforms by a factor of
two to three in terms of speed. However, if one prices a
path-independent option which requires all 32 values,

then ‘generating all 32 values would take approximately
12 times as long using the gamma expansion’ (Glasserman
and Kim 2011).

The performance advantage of GE is thus significantly
diminished by its significantly higher cost per time step
when pricing path-dependent options. Our numerical
results indicate that the accuracy of QE using 48 time
steps is likely to be considered as accurate enough in
practice. Consequently, QE would have better speed–
accuracy tradeoff than GE on pricing path-dependent
options which require more than 48/12¼ 4 time steps.

We note that there is a middle ground between QE and
GE. Because of its low cost per time step, QE’s strength is
most evident when at least dozens of time steps are
required. GE, on the other hand, is accurate and fast
enough when very few time steps (fewer than four) are
required. When a path-dependent option requires a
moderate number of time steps (from four to around
sixteen), GE is not cost effective, and QE may not be
accurate enough unless many more time steps than
required by the path-dependence are used.

3. The Inverse Gaussian approximation

As shown by the GE approach, an accurate approxima-
tion to Ic is key to a low-bias simulation scheme. A very
accurate approximation (e.g. GE), however, may be
expensive. Our idea is to approximate the sampling of Ic
by a faster, simpler and still very accurate scheme.

We propose to approximate Ic by the Inverse Gaussian
(IG) distribution (Chhikara and Folks 1989). The IG
distribution is a family of distributions parameterized by
mean parameter m and shape parameter s, which are
determined by moment matching in our approximation.
We will derive explicit formulae for the first two moments
of Ic and prove that the exact distribution converges to
the moment-matched IG distribution in a certain sense as
the time interval t2� t1 goes to infinity. We will also
illustrate the accuracy of the IG approximation for finite
time intervals.

We note that the more general Normal Inverse
Gaussian (NIG) distribution, of which the Inverse
Gaussian distribution is its mixing density, has been
widely used in stochastic volatility modelling; see for
example Barndorff-Nielsen et al. (2002). The NIG distri-
bution, however, is too complicated for approximating Ic.

3.1. The Inverse Gaussian distribution

Let IG(m, s) denote the Inverse Gaussian distribution
with mean parameter m40 and shape parameter s40.
It has support on (0,1) and its probability density
function f(x; m, s) and logarithm of Laplace transform
log�IG(m,s) are given by

f ðx;m, sÞ ¼

ffiffiffiffiffiffiffiffiffiffi
s

2px3

r
exp
�sðx�mÞ2

2m2x
, ð11Þ

4 S.T. Tse and J.W.L. Wan922
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log�IGðm, sÞðbÞ ¼
s

m
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m2b=s

p	 

: ð12Þ

The mean and variance of IG(m, s) are m and m3/s,

respectively. The ratio �¼ s/m determines the shape of the

distribution. The density is highly skewed for moderate

values of �. As � tends to infinity, the Inverse Gaussian

distribution tends to the normal distribution

(Chhikara and Folks 1989). We remark that the Inverse

Gaussian distribution is so called because its cumulant

generating function (the logarithm of the characteristic

function) is the inverse of the cumulant generating

function of a Gaussian distribution. More details about

the Inverse Gaussian distribution can be found in

Folks and Chhikara (1978) and Chhikara and Folks

(1989). Figure 1 shows two plots of the probability

density functions of the Inverse Gaussian distribution

when either the mean or the shape parameter is fixed

at unity.

3.2. Moments of Ic

One might be tempted to calculate the first two moments

of Ic by directly differentiating the characteristic function.

This brute force approach is not only tedious but also

inefficient since the derivatives of the characteristic

function have very long and complicated expressions.

On the other hand, approximating the characteristic

function may result in large errors. Our approach,

based on the gamma expansion (Glasserman and Kim

2011), is a much simpler means of calculating the

moments.

Proposition 3.1: Let C1¼ coth(�it/2) and C2¼

csch2(�it/2). The mean E[Ic] and the variance Var[Ic] of

Ic are given by

E½Ic� ¼ E½X1� þ E½X2� þ E½
�E½Z�, ð13Þ

Var½Ic� ¼ �
2
X1
þ �2X2

þ E½
��2Z þ E½
2� � E½
�2
� �

E½Z�2,

ð14Þ

where

E½X1� ¼ ðVðt1Þ þ Vðt2ÞÞðC1=��4tC2=2Þ,

�2X1
¼ ðVðt1Þ þ Vðt2ÞÞð�

2C1=�
3 þ �24tC2=ð2�

2Þ

� �2ð4tÞ2C1C2=ð2�ÞÞ,

E½X2� ¼ ��
2ð�2þ �4tC1Þ=ð4�

2Þ,

�2X2
¼ ��4ð�8þ 2�4tC1 þ �

2ð4tÞ2C2Þ=ð8�
4Þ,

E½Z� ¼ 4E½X2�=�,

�2Z ¼ 4�2X2
=�,

E½
� ¼ zI	þ1ðzÞ=ð2I	ðzÞÞ,

E½
2� ¼ z2I	þ2ðzÞ=ð4I	ðzÞÞ þ E½
�:

Proof: The mean and variance of X1, X2 and Z can be
calculated using the Laplace transforms in proposition
2.1. The moments of 
 can be calculated using the
formulae in Yuan and Kalbfleisch (2000). The result then
follows from the representation (7) and the mutual
independence of X1,X2, 
,Z1, . . . ,Z
. œ

3.3. Convergence of Ic to the Inverse Gaussian
distribution

Lemma 3.2: As it!1, we have that for any positive
integer n:

E
X

j¼1

Zj

" #
¼ E½
�E½Z� ¼ oðð4tÞ�nÞ, ð15Þ

Var
X

j¼1

Zj

" #
¼ E½
��2Z þ ðE½


2� � E½
�2ÞE½Z�2 ¼ oðð4tÞ�nÞ,

ð16Þ

E Ic½ �

4
t!

��2

4�
¼ �, ð17Þ

Var½Ic�

4t
!
��4

4�3
¼
��2

�2
: ð18Þ
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Figure 1. Probability density functions of the Inverse Gaussian distribution with (a) mean parameter fixed at unity and varying
shape parameter, (b) shape parameter fixed at unity and varying mean parameter.
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Proof: First of all, note that as it!1, C1¼

coth(�it/2)! 1, C2¼ csch2(�it/2)¼ o[(it)�n] and
z ¼ Cz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðt1ÞVðt2Þ

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðt1ÞVðt2Þ

p
� ½�2 sinhð�4t=2Þ��1 ¼

o½ð4tÞ�n�:
From the above, z! 0 as it!1. Therefore,

limit!1 I	þ1(z)/I	(z)¼ limz!0 I	þ1(z)/I	(z), which is
equal to zero by the results in Yuan and Kalbfleisch
(2000). Similarly, limit!1 I	þ2(z)/I	(z)¼ 0. Hence,
E[
]¼E[
2]¼ o[(it)�n] as z¼ o[(it)�n].

The lemma follows by applying the asymptotic results
on C1, C2, z, E[
] and E[
2] to (13) and (14). œ

The intuitive meanings of (17) and (18) are interesting in
themselves. The former says that the first moment of Ic
normalized by the time interval tends to � (the mean-
reversion level); the latter says that, in the limit, the
variance of Ic normalized by the time interval is propor-
tional to � (the mean-reversion level) and �2 (the variance
of the variance of the underlying asset’s instantaneous
returns), and inversely proportional to �2 (the square of
the mean-reversion speed). Another observation is that
V(t1) and V(t2) become irrelevant in the limit.

Proposition 3.3: Let �Ic be the Laplace transform of Ic.
We have

lim
4t!1

log�Ic ðbÞ

4t
¼
�ð�� LÞ

4
:

Proof: Let Z� ¼
P


j¼1 Zj in (7). By proposition 2.1 and
the mutual independence of X1,X2, 
,Z1, . . . ,Z
,
log�Ic ¼ log�1 þ log�2 þ log�Z� . Using (15) and (16),
we have lim4t!1 log�Z�=4t ¼ 0. We also have limit!1

log�1/it¼ 0 by (8) and limit!1 coth(it)¼ 1. To prove
limit!1 log�2/it¼ �(��L)/4, use (9) and observe that

lim
4t!1

log sinh �4t2
� �

� log sinh L4t
2

� �
4t

¼
�� L

2
:

œ

We are now ready to show that the exact distribution
converges to the moment-matched IG distribution.

Theorem 3.4: Let log�IGðm, s;IcÞ be the logarithm of the
Laplace transform of the moment-matched IG distribution.
As i t!1, Ic tends to the IG distribution in the sense
that, for any fixed b� 0,

lim
4t!1

log�Ic ðbÞ

log�IGðm, s;IcÞðbÞ
¼ 1:

Proof: In the moment-matched IG distribution,
m¼E[Ic] and s¼E[Ic]

3/Var[Ic] (see section 3.2). By using
the formula for log log�IGðm, sÞðbÞ, i.e. equation (12),

lim
4t!1

log�IGðm, s;IcÞðbÞ

4t
¼ lim
4t!1

1

4t

s

m
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m2b=s

p	 

¼ lim
4t!1

E½Ic�

4t

E½Ic�

Var½Ic�

	 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2b

Var½Ic�

E½Ic�

s !
:

Using the asymptotic results (17) and (18) in Lemma 3.2,

the above is equal to

��2

4�

�2

�2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2b

�2

�2

r !
¼
�ð�� LÞ

4
:

The result now follows from proposition 3.3. œ

3.4. Convergence of Ic in the small time limit

Proposition 3.1 also allows us to determine the conver-

gence behaviour of Ic as i t! 0þ.

Proposition 3.5: Given V(t1) and V(t2), we have

lim
4t!0þ

E
h Ic
4t

i
¼

Vðt1Þ þ Vðt2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðt1ÞVðt2Þ

p
3

, ð19Þ

lim
4t!0þ

Var
h Ic
4t

i
¼ 0: ð20Þ

Proof: We have z!þ1 asi t! 0þ . Therefore, using

the results in Yuan and Kalbfleisc (2000) gives

lim4t!0þ I	þ1ðzÞ=I	ðzÞ ¼ limz!þ1 I	þ1ðzÞ=I	ðzÞ ¼ 1 and

lim4t!0þ I	þ2ðzÞ=I	ðzÞ ¼ 1. The small time limit result

then follows by direct calculation using the formula in

proposition 3.1. œ

The implication of the above proposition is the

intuitively obvious observation that Ic will converge to a

constant as i t! 0þ . Consequently, any moment

matching scheme of Ic, e.g. the Inverse Gaussian approx-

imation, will also converge to the correct constant in the

small time limit.

3.5. Accuracy of the IG approximation

3.5.1. Comparison of probability density

functions. Figure 2 shows that Ic and the Inverse
Gaussian distribution resemble each other very well.y

Four notable similarities are: strictly positive support, an

acute peak, right-skewness, and a long and fat right tail.

We remark that the Log-normal distribution and the

Gamma distribution also share these features. Their

accuracies in approximating Ic, however, are much

worse than that of the Inverse Gaussian distribution, as

found in our numerical tests (not shown in this paper).

The much better accuracy of the IG approximation is not

surprising given our convergence result.
Figure 3 compares graphically the probability density

functions of the IG approximation with the exact distri-

bution using the parametric cases listed in table 1 in

section 5. For plotting purposes, we set V(t1)¼V(t2)¼

V(0) and it¼T. From figure 3, we see that the IG

approximation not only matches the exact distribution

very well in the overall shape, but also at the tails.

yHere we plot the probability density function of Ic to high precision by using the results in Broadie and Kaya (2006).
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Figure 2. Probability density functions of Ic with (a) it¼ 5, V(t1)¼V(t2)¼ 0.09, �¼ 0.2, �¼ 0.09, �¼ 1 (b) it¼ 1,
V(t1)¼ 0.06¼V(t2)¼ 0.06, �¼ 6.21, �¼ 0.019, �¼ 0.61.
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Figure 3. Probability density functions of Ic and the IG approximation.

Table 1. Heston model parameter cases.

Case � � � V(0) � r T X(0) K Exact price

1 1 0.5 0.04 0.04 �0.9 0 10 100 100 13.08467014
2 1 0.5 0.04 0.04 �0.9 0 10 100 140 0.29577444
3 1 0.5 0.04 0.04 �0.9 0 10 100 70 35.84976970
4 0.61 6.21 0.019 0.010201 �0.7 0.0319 1 100 100 6.80611331
5 1 2 0.09 0.09 �0.3 0.05 5 100 100 34.99975835
6 0.5196 1.0407 0.0586 0.0194 �0.6747 0 4 100 100 15.16790670
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3.5.2. Comparison of skewness and excess kurtosis. To
find out how large it has to be for the IG approximation

of Ic to be accurate, we compare the skewness and the
excess kurtosis of the two distributions. The formula for

calculating skewness and kurtosis comes from using the
Laplace transforms (8), (9) and (10) to calculate the

moments of X1, X2 and Z, and using the results in Broadie
and Kaya (2006) to calculate the moments of 
.

Note that the time scale of Ic is determined mainly by

the mean-reversion rate �. All our plots in figures 4 and 5
are therefore scaled by the dimensionless constant � it.

More specifically, we compare the accuracy of the IG
approximation for values of it ranging from 0 to 20/�,
while holding other parameters constant.

The key observation is that the IG approximation
becomes accurate when �it� 6. In figure 4, we can see

that the IG curve becomes close to the exact curve when
it� 6/�. In figure 5, we see that the percentage error in

skewness becomes less than 5% and the percentage error
in excess kurtosis becomes less than 10%. More impor-

tantly, these observations are robust with respect to large
changes to other parameters (�, �, V(t1) and V(t2)), i.e. the

plots in figures 4 and 5 remain largely the same as long as
we keep the scale of �it constant, no matter how we

change the other parameters!

4. Implementation

In this section, we will propose a scheme for fast sampling
of (V(t2)jV(t1)), the IPZ scheme, and develop the IG

scheme for fast sampling of the moment-matched IG

approximation to Ic. The combined IPZ–IG scheme is the
scheme we propose for simulating the Heston model.

4.1. Fast sampling of (V(t2)jV(t1)) – the IPZ scheme

Note that (3) can be rewritten ((Van Haastrecht and
Pelsser 2008) as

Vðt2Þ ¼
2e��ðt2�t1Þ

nðt1, t2Þ
Gamma Poisson

Vðt1Þnðt1, t2Þ

2

� �
þ �=2

� �
,

ð21Þ

where Gamma(s) is a unit-scale gamma variate with shape
parameter s and Poisson(mp) is a Poisson variate with
mean parameter mp. We note that generating Gamma(s)
for s51 is significantly more costly than for s� 1. For
typical Heston parameters, �/251, and hence the case
s51 occurs if and only if Poisson (V(t1)n(t1,t2)/2)¼ 0
since Poisson(mp) takes on integral values. Noting that
the case Poisson(V(t1)n(t1,t2)/2)¼ 0 can occur very often
for realistic Heston parameters, it is particularly advan-
tageous to use precomputation and interpolation to speed
up the computation of the single special case s¼ �/251,
i.e. Gamma(�/2). Since Gamma(�/2) and V(t2) differ by
only a constant, in the following we will discuss primarily
the sampling of V(t2).

We replace the direct sampling of (V(t2)jV(t1)) by
nearest-neighbour interpolation of its quantile function,
Q, as follows.

Algorithm 1:

. Define an equally spaced grid ~u ¼ f0, . . . , 1g
with Nu nodes.
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Figure 4. Skewness and excess kurtosis of Ic and the IG approximation with V(t1)¼V(t2)¼ 0.0194, �¼ 0.0586, �¼ 0.5196 and it
ranging from 0 to 20/�.
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. Precompute a vector ~q ¼ ðqiÞ whose compo-
nents qi are quantile function values on ui, i.e.
qi¼Q(ui).

To sample (V(t2)jV(t1)), do the following.
. Sample mp¼Poisson(V(t1)n(t1,t2)/2). If

V(t1)¼ 0, simply set mp¼ 0 since Poisson(0) is
always zero.

. If mp¼ 0, sample as below. Otherwise, sample
from Gamma(mpþ �/2), i.e. use (21).

. Draw a uniform variate U.

. Find the index i such that ui is closest to U.

. Use qi as the sample.

Since ~u is an equally-spaced grid, nearest interpolation
has a constant cost independent of the number of grid
points Nu. In the above algorithm, we did not explicitly
mention how the quantile function Q, which is unavail-
able in closed-form, is computed. Numerically inverting
the CDF is one possibility, but not an efficient approach.
We approximate Q using nearest-neighbour interpolation
as follows.

Algorithm 2:

. Define another equally spaced grid
~v ¼ fvmin, . . . , vmaxg with the same number of
nodes as ~u, i.e. Nu nodes.

. Compute a vector ~p ¼ ð piÞ whose components
pi are cumulative probabilities on vi, i.e.
pi¼Prob(V(t2)� vi).

To approximate qi, do the following.
. For each index i, if ui5p0, we set qi¼ 0.
. Otherwise, use a binary search to look for the

index j such that pj is closest to ui, and set qi¼ vj.

Our approach of approximating very small

quantile function values qi by zero is similar in spirit to

what is done in the exponential approximation in QE.
Note also that, in our algorithm, if an index i such that

qi¼ 0 is selected, V(t2) would be set to zero. This has the
benefit of allowing us to skip the Poisson variate

generation in the next time step, as described in
algorithm 1.

We do not use precomputation and interpolation for
the case Poisson(V(t1)n(t1,t2)/2)40. This is because the

gamma variate simulation is much faster when the shape
parameter is greater than one (Marsaglia and Tsang

2000b). Indeed, our experience (not shown in this paper)

indicates that using precomputation and interpolation for
the case Poisson(V(t1)n(t1,t2)/2)40 does not yield signif-

icant speedup. We denote our scheme IPZ since we are
Interpolating for the case when the Poisson variate is

equal to Zero.

4.2. Sampling Ic by the Inverse Gaussian approximation

As discussed in section 3, we approximate Ic by the
moment-matched IG distribution. IG variates can be

generated efficiently by an acceptance–rejection type

algorithm (Michael et al. 1976). A recent survey about
generating IG variates can be found in Lai (2009).

Algorithm 3: To generate a random variate from

IG(m, s), do the following.

. Generate a standard normal variate N and a

uniform variate U.
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Figure 5. Percentage error of skewness and excess kurtosis of the IG approximation with V(t1)¼V(t2)¼ 0.0194, �¼ 0.0586,
�¼ 0.5196 and it ranging from 0 to 20/�.
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. Compute x ¼ 1þN2=ð2s=mÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2s=mþ 2s=mÞN2 þ ðN2Þ

2
q

=ð2s=mÞ.
. If U(1þ x)41, return m/x. Otherwise,

return mx.

This algorithm is usually presented in the literature in a
way slightly different from ours. Observing that

IG(m, s)¼mIG(1, s/m), we generate IG(m, s) by first

generating IG(1, s/m) and then multiplying m back, which

is slightly faster than generating IG(m, s) directly.

4.3. Fast moment calculation – the IG scheme

If E[Ic] and Var[Ic] are calculated by direct evaluations of
the formulae in proposition 3.1, the modified Bessel

functions would have to be evaluated many times, which

is very expensive. Here we design an interpolation scheme

to perform fast and accurate moment calculations.
For notational convenience, let us define

E½Ic�Vðt1ÞVðt2Þ ¼ E½X2� þ E½
�E½Z�,

Var½Ic�Vðt1ÞVðt2Þ ¼ �
2
X2
þ E½
��2Z þ E½
2� � E½
�2

� �
E½Z�2,

which depend only on the product V(t1)V(t2) (for fixed

Heston parameters and it). Under this notation, E½Ic� ¼

E½X1� þ E½Ic�Vðt1ÞVðt2Þ and Var½Ic� ¼ �
2
X1
þ Var½Ic�Vðt1ÞVðt2Þ,

where E[X1] and �
2
X1

depend only on (V(t1)þV(t2)). The

rationale behind this notation is that the argument z to
the modified Bessel functions depends only on V(t1)V(t2).

For fast moment calculation, do the following.

Algorithm 4:

. Precompute E½Ic�Vðt1ÞVðt2Þ and Var½Ic�Vðt1ÞVðt2Þ on

an equally spaced grid
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðt1ÞVðt2Þ

p
¼ ~v, where ~v is

as defined in algorithm 2.

During simulation, compute E[Ic] and Var[Ic]

as follows.
. Compute E[X1] and �

2
X1
.

. If V(t1)¼ 0 or V(t2)¼ 0, E[
]¼E[
2]¼ 0, and

hence E[Ic]¼E[X1]þE[X2] and Var½Ic� ¼ �
2
X1
þ

�2X2
, i.e. only two additions are required in this

step as E[X2] and �
2
X2

are constants.
. Otherwise, use nearest neighbour interpolation

to approximate E½Ic�Vðt1ÞVðt2Þ and Var½Ic�Vðt1ÞVðt2Þ.

Add them to E[X1] and �
2
X1

to obtain E[Ic] and
Var[Ic], respectively.

The reason to interpolate on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðt1ÞVðt2Þ

p
is that when

E½Ic�Vðt1ÞVðt2Þ and Var½Ic�Vðt1ÞVðt2Þ are regarded as functions

of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðt1ÞVðt2Þ

p
, their graphs appear very similar to piecewise

linear curves on a log–log scale. Again, since ~v is an

equally spaced grid, nearest interpolation has a constant

cost independent of the number of grid points.

We note that the approximations to E½Ic�Vðt1ÞVðt2Þ and

Var½Ic�Vðt1ÞVðt2Þ need not be very accurate since the terms

E[X1] and �2X1
often have much bigger magnitudes. In

light of the expensive cost in computing the modified

Bessel functions, we do full precomputation only at one-

fourth of the nodes. Values at other nodes are calculated

by linear interpolation. This approximation gives negligi-
ble errors in our numerical tests.

We note that the precomputation for sampling
(V(t2)jV(t1)) is less expensive and therefore we do not
use interpolation there.

4.4. Summary of the IPZ–IG scheme

Before simulation, precompute Q, E½Ic�Vðt1ÞVðt2Þ and
Var½Ic�Vðt1ÞVðt2Þ as specified in algorithm 2 and 3. During
simulation at time t2, when (X(t1),V(t1)) is known, the
IPZ–IG scheme samples (X(t2),V(t2)) as follows.

. Sample V(t2) by algorithm 1.

. Calculate E[Ic] and Var[Ic] using algorithm 4.

. Sample Ic using the moment-matched IG dis-
tribution by algorithm 3.

. Conditional on V(t1), V(t2) and Ic, sample X(t2)
using equation (4).

Note that the last step is actually irrelevant to the IPZ–
IG scheme, but nevertheless necessary for getting a
sample of X(t2).

We remark that the implementation of the IPZ–IG
scheme may seem more complicated than it actually is.
Most of the complexity in fact comes from using
precomputation for better efficiency. Without precompu-
tation, the sampling of (V(t2)jV(t1)) is as simple as
equation (21), and the sampling of Ic involves only
direct calculation of E[Ic] and Var[Ic] in equations (13)
and (14), and implementing algorithm 3 to generate an
Inverse Gaussian variate. In this perspective, the imple-
mentation difficulty of the IPZ–IG scheme (without
precomputation techniques) is therefore similar to that
of the QE scheme. Interested readers may implement the
IPZ–IG scheme without the precomputation techniques
at first, and then proceed to full-efficiency
implementation.

5. Numerical results

In our numerical tests, we compare the IPZ–IG scheme
and the QE scheme. To emphasize that the QE scheme
comprises the quadratic/exponential approximation and
the drift–interpolation approximation, we denote QE by
QE–DI in this section.

Although we do not compare the IPZ–IG scheme with
the GE scheme directly, indirect comparisons can be
made based on the efficiency comparison between QE–DI
and GE. As discussed in section 2.5, GE has no practical
advantage over QE–DI except when very few time steps
(one to three) are required. Since our numerical results
will show that IPZ–IG has better speed–accuracy trade
off than QE on pricing path-dependent options which
require a moderate number of time steps (four to around
sixteen), IPZ–IG would also outperform GE in such
cases. Our numerical results will also show that IPZ–IG
has better speed–accuracy trade off than QE on pricing
path-dependent options which require very few time steps

10 S.T. Tse and J.W.L. Wan928
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(one to three). The speed–accuracy trade off of IPZ–IG,
however, will be less favourable than GE in such cases.

In the first part of our numerical results, we compare
the schemes on pricing European call options.
Comparison using European call options is convenient
and standard practice in the literature since semi-
analytical prices are available (Heston 1993). We empha-
size here that such comparisons based on European calls
are intended to be regarded as approximations to com-
parisons based on genuinely path-dependent options.
In our comparison of speed–accuracy trade off, we follow
the literature and pretend that a European call has path-
dependency that requires time stepping. (Otherwise, the
semi-analytical method in Heston (1993) always wins.)

In the second part of our numerical results, we compare
the schemes on pricing Asian call options. In the third
part, we analyse in detail the relative computational time
in approximated sampling of (V(t2)jV(t1)) and Ic.

Our timing results are obtained by running our C
program (compiled using Visual Cþþ express 2008) on an
HP laptop with a 2.0GHz Intel Core 2 Quad Q9000
processor and 4GB RAM. For fair comparisons, all
expressions in the two schemes that depend only on the
Heston parameters and thus do not change across
simulations are computed only once at the initialization
of the simulations.

We compare the performance of the schemes using an
extensive collection of realistic and challenging paramet-
ric cases in the literature, as shown in table 1. Cases 1 to 3
are from Andersen (2007), cases 4 and 5 are from Broadie
and Kaya (2006), and case 6 is from Smith (2007). Cases 1
to 3 have a big �¼ 1, a big T¼ 10, a very negative
�¼� 0.9, and cover at-the-money, out-of-the-money and
in-the-money options. Case 4 has a relatively short
maturity T¼ 1 and large �¼ 6.21. Case 5 has a big �
and a mildly negative �¼� 0.3. Case 6, which is used in
Smith (2007) for pricing Asian options, has moderate
parameter values. This variety of parametric cases allow
us to perform a fair and comprehensive comparison of the
two schemes.

Unless otherwise stated, all numerical results shown are
obtained using a sample size of M¼ 223 in standard
Monte Carlo simulation, i.e. no variance reduction
technique is applied. For convenience, we use constant
time steps to compare the two schemes. We note that
either scheme can be adapted to variable time stepping
without additional computational cost.

In all numerical tests, the interpolation parameters for
the IPZ–IG scheme are set as follows: vmin¼ 0.0001,
vmax¼ 8� and Nu ¼ 215þceil½log2ðNÞ� þ 1, where N is the total
number of time steps and ceil is the ceiling function. The
dependence of Nu on N is designed to keep the
precomputation time proportional to the total simulation
time as N varies. We note that a similar adaptation should
be applied if M is to vary. Numerical results for the IPZ–
IG scheme is insensitive to reasonable changes to these
interpolation parameters.

The generation of uniform and normal variates is
provided by the routines in Marsagliaand Tsang (2000a);
generation of gamma variates (algorithm 1) is provided by

the routines in Marsaglia and Tsang (2000b). Generation
of Poisson variates (algorithm 1) is performed as in Van
Haastrecht and Pelsser (2008). These are the fastest
generators of which the authors are aware. The modified
Bessel function (algorithm 4), the gamma function, and
the incomplete gamma function (both in algorithm 2), are
calculated by the routines provided in Press et al. (1992).
The inverse cumulative normal function (quadratic
approximation in QE) is implemented as in Acklam
(2000). In our experience, the gamma variate generator in
Best (1983) is slower than our choice of Marsaglia and
Tsang (2000b). The Beasley–Springer–Moro algorithm
(Glasserman 2004) for the inverse cumulative normal
function is slower than our choice of (Acklam 2000).

5.1. Bias comparison for European option

Let � be the exact price of a European call option and �0

the estimator returned by a simulation scheme. Then the
bias of the estimator is given by (E[�0]� �) and the
standard deviation is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ð�0 � E½�0�Þ2�

q
. These perfor-

mance metrics can be estimated by using Monte Carlo
simulations to estimate E[�0] and calculating the sample
standard deviation. The sample standard deviation
divided by the square root of the sample size (simply
called ‘stdv’ henceforth) sheds light on how statistically
significant the bias estimate is. In our numerical results we
will report the absolute value of the percentage bias, i.e.
(jE[�0]� �j/�)	 100%, as well as the percentage stdv, i.e.
%stdv ¼ (stdv/�)	 100%.

For each parametric case, we run the IPZ–IG scheme
using N¼ 1 to N¼ 16 and run the QE–DI scheme using
N¼ 1 to N¼ 50. Bigger values of N are used in QE–DI to
match the computational times of IPZ–IG since QE–DI
requires less computational time per time step.

In figure 6 we plot the absolute value of the percentage
bias of IPZ–IG (line with marker ‘x’) and that of QE–DI
(line with marker ‘
’) on a log–log scale. To illustrate the
statistical significance of the bias estimations, we draw
horizontal lines to show the levels of one, three and five
%stdv’s, where %stdv refers to that in the IPZ–IG
scheme when N¼ 1. Within each parametric case, the
%stdv’s vary very little between the two schemes and the
choice of N.

From figure 6, we observe the following. Overall, IPZ–
IG has lower bias than QE–DI for the same computa-
tional time. The difference is significant when smaller
values of N are used. The accuracy of IPZ–IG is quite
good even for very small values of N, whereas QE–DI can
have big biases in such cases. When we compare the two
schemes for larger values of N, the comparison becomes
more tricky as the true biases become so low that Monte
Carlo variance defies precise bias estimation. Graphically,
this phenomenon happens when the curves of IPZ–IG or
QE–DI become close to or go below the horizontal lines,
which represent various levels of statistical significance.
The curves look very oscillatory as they get near the
horizontal lines because Monte Carlo variance has
become dominant. Fortunately, these cases represent
bias levels so low (less than 0.1%) that they are likely to
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be considered as accurate enough in practice.

For larger values of N, IPZ–IG clearly has lower bias

for the same computational time in cases 1 and 2. In the

other cases, it is more difficult to say which scheme is

better. For both schemes, accuracies are the worst in

case 2, in which � and T are big and the option is out-

of-the-money.
In order to compare more precisely the performance of

the two schemes, we also tabulate absolute values of the

percentage bias and computational time of the two

schemes for selected values of N. For the IPZ–IG

scheme, we always choose N¼ 1, 2, 4, 8, 16. For the

QE–DI scheme, we choose values of N to match the

computational times needed in IPZ–IG. In table 2,

‘j%biasj’ stands for the absolute value of percentage

bias. ‘Time’ stands for the combined time required for

precomputation (needed only in IPZ–IG), sampling

(V(t2)jV(t1)) and sampling Ic. Note that the time required

for generating X(t2) is excluded as it is irrelevant to the

comparison.
From table 2, we observe the following. The better

accuracy of IPZ–IG is evident when smaller values of N

are used. IPZ–IG maintains a better speed–accuracy

tradeoff at least up to N¼ 16. Even though QE–DI uses
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Figure 6. Absolute value of percentage bias against computational time on pricing European options.
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an N which is double to triple that used by IPZ–IG,
QE–DI still has bigger bias than IPZ–IG overall.y

5.2. Asian option prices

The motivation for simulating the Heston dynamics is to
price and hedge derivatives for which closed-form solu-
tions are unavailable. Numerical comparisons in the
literature, however, have largely focused on European
vanilla options. In this paper, we calculate high-precision
Asian option prices for our parametric cases and use these
as reference prices to compare IPZ–IG and QE–DI.

Specifically, we compute fixed-strike Asian call option
prices whose average value is taken over the points ti¼ iT/
NA, 1� i�NA, where T is the maturity and NA2 {2, 4, 8,
16}. Our reference Asian option prices are calculated
using the IPZ–IG and the QE–DI schemes with N¼ 128
and M¼ 230 to obtain low bias and low stdv. The
reference price differences between the two schemes are

within 0.3% of each other and thus it makes no practical
difference to use either as reference prices. In our
numerical comparison, we will use the reference prices
from the QE–DI scheme.

We list the reference Asian option prices in table 3, in
which IPZ–IG–128 represents the IPZ–IG scheme with
N¼ 128 time steps and QE–DI–128 represents the QE–DI
scheme with N¼ 128 time steps.

5.3. Bias comparison for Asian options

When pricing vanilla European options, we are free to
choose a small N as long as the bias is low enough.
This flexibility, however, vanishes when pricing path-
dependent options. For example, when pricing an Asia
option with maturity T that depends on the asset prices
{X(iT/16): i¼ 1, 2, 3, . . . , 16}, one must simulate all the
asset prices. Consequently, if two schemes have the same
bias and require the same amount of time to compute, the
scheme which uses a bigger N would be more flexible in
pricing path-dependent options.

For each parametric case and each value of NA2 {1, 2,
4, 8, 16}, we price the Asian option using the IPZ–IG
scheme with N¼NA and using the QE–DI scheme with
N¼NA, 2NA, 3NA and 4NA. Using various values of
N in the QE–DI scheme allows us to compare the

Table 3. Reference prices for Asian calls computed using 128
time steps and 230 samples.

Case NA IPZ–IG–128 stdv QE–DI–128 stdv

1 2 10.297189 3.18E� 04 10.288824 3.18E� 04
4 8.963870 2.74E� 04 8.955930 2.75E� 04
8 8.322643 2.53E� 04 8.314791 2.53E� 04
16 8.000178 2.42E� 04 7.992200 2.42E� 04

2 2 0.083577 4.06E� 05 0.083820 4.06E� 05
4 0.040602 2.80E� 05 0.040638 2.80E� 05
8 0.026770 2.24E� 05 0.026762 2.24E� 05
16 0.020761 1.95E� 05 0.020740 1.95E� 05

3 2 33.837538 5.82E� 04 33.828765 5.82E� 04
4 33.067611 5.26E� 04 33.059649 5.26E� 04
8 32.694753 5.00E� 04 32.687229 5.00E� 04
16 32.500390 4.87E� 04 32.493066 4.86E� 04

4 2 5.187462 1.71E� 04 5.184144 1.71E� 04
4 4.389704 1.44E� 04 4.386984 1.44E� 04
8 3.996457 1.31E� 04 3.994062 1.31E� 04
16 3.801746 1.25E� 04 3.799473 1.25E� 04

5 2 26.378587 1.26E� 03 26.379998 1.26E� 03
4 22.245779 1.04E� 03 22.247118 1.04E� 03
8 20.214603 9.37E� 04 20.215747 9.37E� 04
16 19.203531 8.87E� 04 19.204680 8.87E� 04

6 2 11.469086 5.00E� 04 11.468053 5.00E� 04
4 9.708003 4.16E� 04 9.707256 4.16E� 04
8 8.857739 3.76E� 04 8.857091 3.76E� 04
16 8.441458 3.57E� 04 8.440885 3.57E� 04

Table 2. Comparison of the absolute value of percentage bias
and computational time on pricing European options.

IPZ–IG QE–DI

Case N j%biasj Time N j%biasj Time

1 1 1.2320 1.014 2 1.4227 1.012
2 0.4520 2.169 4 12.7518 2.107
4 1.0358 4.65 10 7.6547 4.835
8 0.4907 9.406 20 2.5452 9.529
16 0.0811 19.224 40 0.4901 20.269

2 1 4.0352 1.311 3 6.8368 1.419
2 0.3914 2.386 5 30.2459 2.542
4 3.1003 4.352 10 26.0417 4.867
8 2.3760 9.188 19 8.1873 9.236
16 0.0706 19.766 41 0.7034 19.892

3 1 0.4932 1.295 3 9.0445 1.372
2 0.5312 2.417 5 6.7136 2.466
4 0.6011 4.508 10 2.3331 4.993
8 0.0710 9.267 20 0.4270 9.485
16 0.0241 19.687 42 0.0279 20.909

4 1 0.1144 1.544 2 16.2061 1.548
2 0.1394 3.012 4 5.6084 3.285
4 0.0685 6.894 9 1.2046 7.307
8 0.0150 15.757 20 0.2383 15.861
16 0.0947 39.278 49 0.0583 40.189

5 1 0.0884 1.545 3 3.0149 2.099
2 0.0291 3.042 4 2.1334 3.312
4 0.0177 6.458 9 0.5140 6.629
8 0.0092 15.804 20 0.1489 15.304
16 0.0660 36.517 50 0.1067 35.988

6 1 0.0353 1.61 3 10.3657 1.887
2 0.2199 2.997 5 4.1738 3.276
4 0.0406 8.078 12 0.7249 8.567
8 0.0279 16.457 23 0.1647 16.288
16 0.0214 37.623 50 0.0469 35.399

yOne may notice that the bias behaves rather erratically at very few time steps for the QE–DI scheme, particularly in cases 1 and 2,
as opposed to the smoother convergence behaviour tabulated in Andersen (2007). This is due to the fact that the coarsest time step
size considered in Andersen (2007) is one year, which translates to N¼ 10 (ten time steps) in our convergence analysis. Erratic
behaviour is observed for N510.
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speed–accuracy tradeoff between the two schemes. As in
section 5.1, we plot the absolute value of percentage bias
against the computational time on a log–log scale in
figures 7–12. In the figures, the speed–accuracy tradeoff
of IPZ–IG for N¼NA is represented by a diamond; that
of QE–DI for N¼NA, 2NA, 3NA and 4NA is represented
by a solid line. We also draw horizontal lines to represent
levels of statistical significance, as previously done in
figure 6. We also tabulate our results in tables 4–9.

From the figures and the tables, we have similar
observations as for European options. Overall, IPZ–IG
has lower bias than QE–DI for the same computational
time. The difference is significant when smaller values of
N are used. When we compare the two schemes for
NA¼ 16, the biases of both schemes have become so low
that they are statistically insignificant, and we can only
say that the two schemes are equally good.

5.4. Efficiency analysis

To analyse the efficiencies of IPZ–IG and QE–DI, we
break down the computational times into precomputation
(required only in IPZ–IG), sampling (V(t2)jV(t1)) and
sampling Ic. Again, the time required in sampling X(t2)
from the lognormal distribution is excluded from our
analysis. We choose to analyse the timing results for cases
1 and 4 because they are, respectively, the least expensive
and the most expensive to compute (per time step), for
both IPZ–IG and QE–DI. In table 10, ‘Pre.’ refers to the
time required for precomputation, ‘Sum’ refers to the sum

of the components, and ‘j%biasj’ stands for absolute
value of percentage bias.

From table 10, we observe the following. For both IPZ
and QE, case 4 takes significantly more time than case 1.
For IPZ, it is because Poisson(V(t1)n(t1,t2)/2)¼ 0 occurs
much less often in case 4. For QE, it is because the slower
quadratic approximation is used much more often than
the faster exponential approximation. For IG, case 4
takes more time than case 1. This is because V(t1)V(t2) 6¼ 0
happens more often and hence the computations of
E½Ic�Vðt1ÞVðt2Þ and Var½Ic�Vðt1ÞVðt2Þ cannot be skipped. The
difference is much less dramatic than that between IPZ
and QE as the time required for IG variate generation,
which stays roughly constant, dominates the time
required for moment calculation. For DI, cases 1 and 4
make little difference, as expected. Precomputation in
IPZ–IG takes between 3 and 6% of the total time. We
remark that one main reason why QE is faster than IPZ is
that QE avoids the Poisson variate generation altogether.
The performance difference between IPZ and QE is bigger
since V(t1)n(t1,t2)/2 is often bigger in case 4 and thus it
takes more time to generate the Poisson variate.

6. Conclusion

In this paper, we proposed the Inverse Gaussian approx-
imation to Ic and proved that the moment-matched IG
approximation is asymptotically exact. Numerical results
verified that the IG approximation is very accurate.
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Figure 7. Absolute value of percentage bias against computational time on pricing Asian options in case 1.
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Figure 8. Absolute value of percentage bias against computational time on pricing Asian options in case 2.
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Figure 9. Absolute value of percentage bias against computational time on pricing Asian options in case 3.
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Figure 10. Absolute value of percentage bias against computational time on pricing Asian options in case 4.
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Figure 11. Absolute value of percentage bias against computational time on pricing Asian options in case 5.
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Figure 12. Absolute value of percentage bias against computational time on pricing Asian options in case 6.

Table 5. Comparison of the absolute value of percentage bias
and computational time on pricing Asian options in case 2.

Method N NA j%biasj Time N NA j%biasj Time

IPZ–IG 2 2 1.146 2.293 8 8 1.251 7.019
QE–DI 2 2 146.829 0.998 8 8 36.515 2.793

4 2 11.283 1.966 16 8 6.921 5.677
6 2 34.845 3.042 24 8 0.764 8.736
8 2 29.681 3.571 32 8 1.800 12.489

IPZ–IG 4 4 4.202 4.165 16 16 3.782 19.935
QE–DI 4 4 9.991 1.796 16 16 9.427 8.407

8 4 31.019 3.667 32 16 0.444 17.659
12 4 13.244 6.319 48 16 0.287 23.669
16 4 5.865 7.801 64 16 0.350 27.802

Table 6. Comparison of the absolute value of percentage bias
and computational time on pricing Asian options in case 3.

Method N NA j%biasj Time N NA j%biasj Time

IPZ–IG 2 2 0.444 2.309 8 8 0.020 7.083
QE–DI 2 2 1.784 1.015 8 8 1.483 2.778

4 2 4.884 1.841 16 8 0.354 6.335
6 2 3.516 2.887 24 8 0.067 8.846
8 2 2.364 3.587 32 8 0.027 12.417

IPZ–IG 4 4 0.452 4.179 16 16 0.034 20.155
QE–DI 4 4 3.349 1.841 16 16 0.344 7.94

8 4 1.801 4.198 32 16 0.012 17.506
12 4 0.859 6.07 48 16 0.024 21.106
16 4 0.407 7.472 64 16 0.018 27.953

Table 7. Comparison of the absolute value of percentage bias
and computational time on pricing Asian options in case 4.

Method N NA j%biasj Time N NA j%biasj Time

IPZ–IG 2 2 0.125 3.01 8 8 0.026 12.059
QE–DI 2 2 16.277 1.762 8 8 1.783 5.741

4 2 5.859 3.542 16 8 0.458 11.791
6 2 2.814 5.568 24 8 0.237 18.484
8 2 1.681 7.3 32 8 0.162 23.391

IPZ–IG 4 4 0.039 6.194 16 16 0.003 38.343
QE–DI 4 4 5.998 3.385 16 16 0.437 14.382

8 4 1.780 7.16 32 16 0.138 29.97
12 4 0.782 10.296 48 16 0.033 36.707
16 4 0.453 14.397 64 16 0.036 48.467

Table 4. Comparison of the absolute value of percentage bias
and computational time on pricing Asian options in case 1.

Method N NA j%biasj Time N NA j%biasj Time

IPZ–IG 2 2 0.357 2.449 8 8 0.362 7.489
QE–DI 2 2 3.920 1.061 8 8 4.790 2.746

4 2 7.594 1.856 16 8 2.386 5.74
6 2 8.281 3.042 24 8 1.166 8.922
8 2 7.133 3.667 32 8 0.683 12.325

IPZ–IG 4 4 0.844 4.244 16 16 0.057 18.886
QE–DI 4 4 5.148 1.809 16 16 2.274 8.379

8 4 5.626 3.697 32 16 0.639 15.084
12 4 3.883 5.634 48 16 0.189 24.31
16 4 2.653 7.705 64 16 0.103 27.988
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To facilitate moment-matching, we derived simple for-

mulae for the moments of Ic and designed a very fast and
accurate algorithm for calculating the moments. We also

developed the IPZ scheme, which is simple, efficient and
accurate, for sampling (V(t2)jV(t1)). Our numerical results

showed that the combined IPZ–IG scheme has lower bias
for the same computational time compared with QE and

GE on pricing both European and Asian options when a
moderate number of time steps is used. Throughout the

paper, we discussed in detail the speed–accuracy tradeoff
of different approaches to approximate the sampling of Ic
and (V(t2)jV(t1)). In particular, we presented a detailed
efficiency analysis for IPZ–IG and QE–DI under different

parameter settings.

Although our discussion focused primarily on the

Heston model, we note that our schemes can also be used
to simulate more general affine jump diffusion processes.

More specifically, the extensions considered in Broadie

and Kaya (2006) and Andersen (2007) are directly
applicable to the IPZ–IG scheme. We also note that

proposition 3.3 can be translated into a convergence

result for a squared Ornstein–Uhlenbeck (OU) bridge
with endpoints equal to zero. Readers are referred to

Glasserman and Kim (2011) for a detailed discussion on

the connection between Ic and the OU bridge. Another

potential application of our convergence result would be
on large-maturity asymptotics of implied volatility in the

Heston model (Tehranchi 2009, Forde et al. 2011, 2010).
Better schemes may be developed based on the ideas in

this paper. One direction would be in finding an approx-
imation to Ic that is accurate, has moments that can be

calculated quickly, and has a fast sampling algorithm.

Another direction is to develop faster algorithms to
generate IG variates. Modifications to the IPZ scheme

may also be considered. For example, one may compute

the quantile function of the gamma distribution by
numerical inversion or interpolating for the cases where

the Poisson variate is small but non-zero. It would also be

interesting to combine the IG scheme with the very recent

work of Halley et al. (2008) on the efficient and exact
sampling of (V(t2)jV(t1)).

References

Acklam, P., An algorithm for computing the inverse normal
cumulative distribution function. Statistics Division,
University of Oslo, 2000.

Andersen, L., Simple and efficient simulation of the Heston
stochastic volatility model. J. Comput. Finan., 2007, 11, 1–42.

Barndorff-Nielsen, O., Nicolato, E. and Shephard, N., Some
recent developments in stochastic volatility modelling. Quant.
Finan., 2002, 2, 11–23.

Berkaoui, A., Bossy, M. and Diop, A., Euler scheme for SDEs
with non-Lipschitz diffusion coefficient: Strong convergence.
ESAIM: Probab. Stat., 2007, 12, 1–11.

Best, D., A note on gamma variate generators with shape
parameter less than unity. Computing, 1983, 30, 185–188.

Bossy, M. and Diop, A., An efficient discretisation scheme for
one dimensional SDEs with a diffusion coefficient function of
the form jxja, a in [1/2, 1). RR-5396, INRIA, Décembre 2007.
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