
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Automated segmentation of cellular
images using an effective region
force

Mohiuddin, Khadeejah, Wan, Justin W.

Khadeejah Mohiuddin, Justin W. L. Wan, "Automated segmentation of cellular
images using an effective region force," Proc. SPIE 10574, Medical Imaging
2018: Image Processing, 1057437 (2 March 2018); doi: 10.1117/12.2292847

Event: SPIE Medical Imaging, 2018, Houston, Texas, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 22 Jan 2022  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Automated segmentation of cellular images using an effective region
force

Khadeejah Mohiuddina* and Justin W. L. Wana

aUniversity of Waterloo, 200 University Ave W, Waterloo, Canada

ABSTRACT

Understanding the behaviour of cells is an important problem for biologists. Significant research has been done to facilitate
this by automating the segmentation of microscopic cellular images. Bright-field images of cells prove to be particularly
difficult to segment due to features such as low contrast, missing boundaries and broken halos. In this paper, we present two
algorithms for automated segmentation of cellular images. These algorithms are based on a graph-partitioning approach
where each pixel is modelled as a node of a weighted graph. The method combines an effective Region Force with the
Laplacian and the Total Variation boundary forces, respectively, to give the two models. This region force can be interpreted
as a conditional probability of a pixel belonging to a certain class (cell or background) given a small set of already labelled
pixels. For practicality, we use a small set of only background pixels from the border of cell images as the labelled set.
Both algorithms are tested on bright-field images to give good results. Due to faster performance, the Laplacian-based
algorithm is also tested on a variety of other datasets including fluorescent images, phase-contrast images and 2- and 3-D
simulated images. The results show that the algorithm performs well and consistently across a range of various cell image
features such as the cell shape, size, contrast and noise levels.

Keywords: Image segmentation, graphical model, medical imaging, Chan-Vese Model

1. INTRODUCTION

Cells are the fundamental units of life and understanding their behaviour can give valuable information to biologists. The
study of cells is typically done on time-lapse microscopy data sets that contain a large number of image frames. This makes
manual analysis very time consuming and error prone, especially in 3-D[17]. Therefore, automatic segmentation of cellular
images becomes a necessary first stage in analyzing the behaviour of cells.

There are three common imaging techniques used; bright-field, fluorescent, and phase-contrast. Each of them have unique
properties that make them more or less suitable for segmentation. Fluorescent images are typically high contrast which
make them a good choice for segmentation. However, in most cases, only certain organelles such as the nucleus is able
to be captured by this technique[19]. Bright-field images, on the other hand, are able to capture most of the cell structure
but with very poor contrast and inconsistent light halos around cells. This makes segmentation of bright-field images a
challenge[18]. Phase-contrast images are better than bright-field images in terms of contrast but still produce images with
artifacts such a halo and a shadow around the cells [21].

There has been considerable research done on the segmentation of cellular images. The high-contrast feature of fluorescent
imaging makes it a particularly popular choice for experiment. Nevertheless, studies of bright-field image segmentation,
although fewer, have also been done. In[19], Bradbury et al. propose a spectral-k-means clustering algorithm for segmen-
tation of bright-field cell images. However, the algorithm is made to locate the boundaries of a cell images with only one
cell. When multiple cells are present, it requires prior information about the location of each cell. Another approach based
on using active contour methods for bright-field image segmentation is given by Tscherepanow et al. in [20]. The method
is successful but is only tested on one type of cell. In [22], Kang et al. use a graph-partitioning approach combined with
a global-local method that fine-tunes the result by applying segmentation twice. First on the entire image to obtain large
“blobs” of groups of cells, and then again on each blob to obtain a refined segmentation of individual cells. This means
it requires extra information about of the location of each blob. Being tested on only one type of cell, it also leaves some
doubt as to how consistently it performs on other datasets. Finally, a unique cell image segmentation algorithm based on a
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game theoretic approach is given by Dimock et al. in [23]. It is tested on a variety of 2-D datasets to give good results.

The approach to be presented in this paper is based on a graph-partitioning problem which combines a local and a global
metric for segmentation. The goal is to segment an image with multiple cells without user input about the location of each
cell or group of cells. To test consistency and robustness, it will be applied on bright-field images as well as fluorescent,
phase-contrast, and 2- and 3-D simulated images.

In Section 2 we give some useful background knowledge about the models and algorithms that are presented in Sec-
tion 3. The numerical results of applying those models on various cell images are given in Section 4 and the conclusion in
Section 5.

2. BACKGROUND

The algorithms presented in this paper rely on a graphical model to represent the image and it’s characteristics. In this
section we first define our objective that is image segmentation, and then move on to give a basic understanding of our
graphical model, some useful graph operators, and the graph partitioning problem. Finally, we present the celebrated
Chan-Vese Model.

2.1 Cell Image Segmentation
Pixels, which are very small boxes of different intensities, are the building blocks of our cell images. Many of them put
together can be recognized by the human eye as a picture of cells. Cell image segmentation is the process of automatically
identifying which of those pixels make up the cells and which of those pixels make up the background. This means we
have two clusters; cell and background, that pixels can be labelled as.

The pixel intensity and location can be used to construct a data vector corresponding to each pixel. These data vectors
can then be used to build our graphical model.

2.2 Graphical Model
A weighted undirected graph G = (V,E,w) consists of a set of nodes or vertices V , edges E that connect those vertices, and
a weight function w : E ! R+ defined on those edges. We say that a graph is undirected if for a pair of nodes x

i

,x
j

2V , the
edges {x

i

,x
j

} and {x

j

,x
i

} are considered to be the same. The nodes in the graph can correspond to the pixel data vectors
and the weight function can be defined in such a way that it assigns larger weights to edges between nodes that are similar
and smaller weights to edges between nodes that are different. This means that for every edge {x

i

,x
j

} 2 E, the weight
w

i j

= w(x
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,x
j

) should measure how “close” the nodes x

i

and x

j

are.

There are many popular choices of weight functions to measure the similarity between a pair of nodes, such as the Radial
Basis Function (RBF)[1]
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where d is a distance metric and w is a constant, the Zelnik-Manor and Perona (ZMP) weight function[2]
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where s is the local variance, and the Cosine Similarity [3]
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which is particularly useful in natural language processing.
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In practice, this weight is not assigned between all pairs of nodes. The weight matrix W = (w
i j

), also called affinity

matrix, can instead be constructed by a k-Nearest Neighbour (k-NN) search. That is, for each node, we assign this weight
only on the edges connecting it to it’s closest k number of neighbours. All other edges connected to this node receive a
zero weight. Therefore, it can be assumed that the graph is sparse and that each node has at most k neighbours.

2.3 Graph Operators
The affinity matrix W is very important and gives rise to many useful graph operators [4]. Suppose D is a diagonal matrix
with the entries on the main diagonal equal to the sum across the rows of W . Then the unnormalized graph Laplacian is
given by

L = D�W, (4)

which is a symmetric matrix since both D and W are symmetric. The Normalized Affinity Matrix is defined by

Ŵ = D

�1/2
WD

�1/2, (5)

which is also symmetric. Similarly, the Normalized graph Laplacian is given by

L

s

= D

�1/2
LD

�1/2 = I �Ŵ . (6)

If u 2 L

2(V ) is a function defined on the node set of a graph, then the gradient operator — : L

2(V )! L

2(V,L2(V )) is given
by[5;8]
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) is a graph function for each x
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2V . Since G is a sparse graph with at most k neighbours for each node x
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can be seen as a vector with at most k non zero elements which are in the neighbourhood of x
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where N (x
i

) is the set of neighbours of x

i

. Furthermore, the divergence operator div : L

2(V,L2(V ))! L

2(V ) is defined by
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2.4 Graph Partitioning Problem
The objective of cell image segmentation is to label each pixel of a cell image as either cell pixel or background pixel.
If each pixel corresponds to a node, then partitioning the node set V of the graph into two disjoint sets is equivalent to
labelling each pixel as either cell or background. However, image segmentation and graph partitioning is not limited to
only two clusters so we will present the generalized case of K clusters. Graph partitioning is the process of dividing the
node set of a graph into disjoint subsets or clusters by removing some edges in such a way that there are no edges that
connect a node from one subset to another. A cut C is the set of edges that were removed in making this partition. The cost
of a cut |C| is the sum of the weights of the edges in C. Therefore, to partition a graph into K clusters V1, ...,VK

, the cost
function is given by
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In Section 2.2, we saw that edges between nodes that are closer together have larger weights than those that are further
apart. So, to partition the graph into nodes of different characteristics or classes, the sum of the weights of the edges that
are removed, or the cost of the cut, should be minimized to obtain an optimal partition. This gives the graph partitioning
problem
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This term is known as the boundary force in the context of image segmentation. It works to separate nodes that are
sufficiently further apart into different clusters and keep nodes that are sufficiently close together in the same cluster.

Proc. of SPIE Vol. 10574  1057437-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 22 Jan 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Therefore, it can be said that boundary forces penalize the discontinuity between neighbouring nodes. Equation (11) can
be reformulated in terms of a partition matrix F = (f

ik

) defined by

f
ik

=

(
1 if x

i

2V

k

0 otherwise.

If we have n number of nodes then this matrix has dimensions n⇥K. The partition matrix is a way of representing which
cluster each node in the graph belongs to. That is, column k of row i of the partition matrix takes on the value of 1 if x

i

belongs to cluster k and all other columns of this row take on the value 0. It can also be seen that if nodes x
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to the same cluster k, then f
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= 1 and f
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= 0. If they belong to different clusters, f
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= 1 or�1. Since a
cut edge between two nodes puts those nodes into different clusters, we can simplify (11) to[9;10]:
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This is because the terms |f
ik

�f
jk

| and (f
ik
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)2 simplify to zero if two nodes belong to the same cluster or to one if
they belong to different clusters. The same can be said for (f

ik

� f
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)p where p is any multiple of 2. However, we only
consider the two cases defined above because it will be seen further on that they can be simplified into forms that allow us
to effectively formulate and solve the problems. Moving on, since each node can only belong to one cluster, each row of
F must add up to one. This gives the constraint

F1 = 1. (14)

Simplifying equation (12) gives us:
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where F
k

is the k-th column of F. When combined with the constraint (14) it gives us the Total Variation (TV) formulation
for graph-partitioning,

F = argmin
F

K

Â
k=1

k—F
k

k1

s.t. F1 = 1.
(16)
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The Total Variation of a function is generally defined as the integral of the absolute gradient of the function. We will also
simplify equation (13). Let d

i

denote the elements on the diagonal of matrix D, then
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Similarly, combining it with the constraint gives us the Laplacian-based formulation for graph-partitioning,

F = argmin
F
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s.t. F1 = 1.
(18)

2.5 The Chan-Vese Model
The well known Chan-Vese Model [6] for graph partitioning combines the TV boundary force defined in (16) with another
term called the region force. It is defined as[7]
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where µ is a constant and g

k

(x
i

) is the edge detector function which, for the application considered in this paper, can be
simplified to 1. Here, the elements of the partition matrix can take on values within the range [0,1]. The region force term
uses centroids c

k

that are calculated for each cluster by finding the weighted average of the data points within that cluster.
These centroids are then updated iteratively based on the current labelling. Therefore, the region force term kx

i

� c

k

k2 is
smaller if a node x

i

is closer to the centroid c

k

of a cluster and larger if it is further away. This forces the model to choose
smaller f

ik

if x

i

is far from cluster c

k

or larger f
ik

otherwise. Thereby assigning nodes to clusters whose centroids they are
sufficiently closer to.

However, in some cases, using centroids may not be very successful because the centroid of a cluster of data points
may not always lie near that cluster. For example, the two moons dataset ⇤ in Figure 1 has two clusters, red and blue,
and the centroids of each lie outside their respective clusters. In the next section we outline a different region force term
without defining centroids.

⇤By courtesy of Prof. Ali Ghodsi, University of Waterloo.
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Figure 1: Two-Moons Dataset

3. METHODOLOGY

In this section we present the main models and algorithms that we use to segment cellular images. We follow the approach
given in[8] which defines a new region force term to be combined with the TV and Laplacian graph partitioning problems
to give two versions of the model. This region force term can be interpreted as a conditional probability for a node to
belong to a certain cluster given a small set of labelled nodes. This means the models require a small set of already labelled
nodes. In the end of this section, we show how to use a small set of only background pixels from the border of the cell
images as the labelled nodes.

3.1 Boundary and Region Forces
Our image segmentation model can be expressed as a sum of boundary forces B(F) and region forces R(F)

F = arg min
f

ik

2[0,1]
(1� t)B(F)+ tR(F)

s.t. F1 = 1.
(20)

where 0  t  1 is a constant specifying the relative importance of each term. Since the elements of F can take in values
within the range [0,1], the label for a node x

i

is chosen as the cluster whose column holds the maximum value in row i

of F. A combination of boundary and region forces are often taken because they both work in different ways to partition
a graph. Boundary forces, because they are the weights between neighbouring nodes, penalize the discontinuity between
those neighbouring nodes. That is, they prefer to keep similar nodes within the same cluster and separate dissimilar nodes
into different clusters. Region forces, on the other hand, penalize the inhomogeneity between clusters themselves. They
can be thought of as global metrics whereas boundary forces are local metrics.

For our boundary force term, we use the TV expression given in (16)

B(F) =
K

Â
k=1

k—F
k

k. (21)

The gradient operator here uses the normalized affinity matrix Ŵ which is derived from the affinity matrix W (Section 2.3).
We construct W by assigning weights between nodes using a k-Nearest Neighbour search and the Radial Basis Function
defined in equation (1), where the distance metric used is the Euclidean distance.

The region force term given in[8] is also based on the normalized affinity matrix Ŵ and can be written as
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where p

k

(Ŵ ,x
i

) is the conditional probability of node x

i

belonging to cluster k given the labelled nodes. It is based on the
idea that nodes closer to the labelled nodes should have a higher probability of having those labels. When p

k

(Ŵ ,x
i

) is high,
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the first term of the region force becomes larger and in an effort to minimize this, f
ik

takes on a larger value closer to one.
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Combining our region and boundary forces gives our first model, the Total Variation-based model with a region force,
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Applying a quadratic relaxation on (25), that is, squaring the boundary term gives us
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which can also be written in terms of the Laplacian (17) as follows
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This is our second model, the Laplacian-based model with a region force. The graph Laplacian L can also be replaced with
the normalized graph Laplacian L

s

which is what we have used in the algorithms defined in the next section. It can be seen
that the objective function of this problem is differentiable. For convenience, we divide the boundary term by 2 so that it
cancels out when have to calculate it’s derivative in the next section.

3.2 Algorithms for Graph Partitioning with a Region Force
We now outline the algorithms for solving the Laplacian-based and TV-based graph partitioning problems with the region
force.

The objective function of equation (27) is differentiable and has a convex constraint. This can be solved by a projected
gradient method with Barzilai-Borwein type step sizes [12]. We denote the objective function by J(F). Then one iteration
of the projected gradient method is given by

F( j+1) = PD(F( j)�a( j)∂J(F( j))L( j)) (28)
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where a( j) = 1 initially and L( j) is a diagonal matrix with entries on the main diagonal equal to (l( j)
1 , ...,l( j)

K

). These are
the step sizes for the gradient descent directions and they alternate between the two choices
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where s
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k

and y

( j�1)
k

are the kth columns of s

( j�1) = F( j)�F( j�1) and y

( j�1) = ∂J(F( j))� ∂J(F( j�1)), respectively.
The operator PD is a projection onto the feasible domain for F,

D = {F 2 Rn⇥K : F1 = 1}, (31)

and it is implemented by the projection onto a simplex algorithm in[11]. This projected gradient method does not guarantee
the decreasing of the objective function. So to ensure sufficient decreasing, a non-monotone line search is taken by
decreasing the parameter a( j) in equation (28), based on an Armijo-type acceptability test [12]

J(F( j+1)) J(F( j))+qTr(∂J(F( j))T

s

( j)), (32)

for some small constant q > 0. The stopping criterion is chosen such that two consecutive objective function values are
close enough

|J(F( j+1))� J(F( j))| eJ(F( j)), (33)

where e > 0 is a small constant. A summary of the algorithm, called LapRF, is provided in Algorithm 1. It is to be noted
that we use the normalized graph Laplacian L

s

in the computation.

Algorithm 1 Laplacian-based multi-class graph partitioning with a region force (LapRF)

Require: L

s

,P = (p

ik

),t
Ensure: F

1: procedure LAPRF
2: while (33) is not satisfied do
3: a = 1;
4: calculate F by (28)
5: while (32) is not satisfied do
6: a = 0.8a;
7: recalculate F by (28)
8: end while
9: end while

10: return F
11: end procedure

Next we outline the algorithm for solving equation (25). By noting the variational formulation for total variation

kF
k

k1 = max
q

k

2Rn⇥n,kq

k

k•1
hF

k

,divq

k

i, (34)

the minimization problem can be expressed as a saddle-point problem,

min
F2D

max
kq

k

k•1

K

Â
k=1

(1� t)hF
k

,divq

k

i+ t(P
k

(1�F
k

)+(1�P

k

)F
k

). (35)

It can be solved by a primal-dual hybrid gradient method which alternates between gradient ascent for the dual variable q

k

and gradient descent for the primal variable F
k

[13]. The steps are defined as

q

( j)
k

= Pkq

k

k•1(q
( j�1)
k

�b( j�1)—F( j�1)
k

) for k = 1, ...,K, (36)
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F( j) = PD(F( j�1)� g( j�1)((1� t)divQ

( j) + t(1�2P))), (37)

where b and g are step sizes following the theoretical analysis in [14] and Q = [q1, ...,qK

]. The projection Pkq

k

k•1 onto
kq

k

k•  1 is done by hard thresholding and PD is the projection onto a simplex given in[11]. The stopping criterion is the
same as (33). A summary of the algorithm, TVRF, is given in Algorithm 2.

Algorithm 2 TV-based multi-class graph partitioning with a region force (TVRF)

Require: P = (p

ik

),W,{b
l

= 0.2l},{g
l

= 0.1l

(1+0.1l)},t
Ensure: F

1: procedure TVRF
2: l = 0
3: while (33) is not satisfied do
4: for k=1,..., K do
5: calculate —F

k

,
6: q

k

= Pkq

k

k•1(qk

�b
l

—F
k

),
7: end for
8: calculate divQ,
9: F = PD(F� g

l

((1� t)divQ+ t(1�2P))),
10: l = l +1,
11: end while
12: return F
13: end procedure

As discussed earlier, the probability matrix P requires a set of labelled nodes from all clusters. In the case of cell images,
it is usually not practical to have a set of labelled cell and background pixels to start off with. However, it is possible to
have only the background on a thin border around the image. This can be done taking the image of a sample of cells in
such a way that the cells are positioned within a thin border of only the background substance they are suspended in. This
border can be taken as our labelled set of pixels S

B

. Since the labelled set is only on the border of the image, we choose
to first calculate W by only taking the pixel intensities in the data vectors, not locations. We then calculate Â

j2S

B

q

i j

for
each node. If it is zero, we label the node as cell and if it’s not, we label it as background. This gives us an “extreme”
labelling in which only those pixels that are very different in intensity from the labelled background pixels are labelled as
cell. Now that we have a set of labelled background and cell pixels, we use half of these to calculate P, this time with W

constructed by taking both pixel intensities and locations. We use half because experimentally we found it produced best
result. Finally, this P and W is used for graph-partitioning.

It can be seen from (28) and (30) that for initialization of F, LapRF requires two initial partition matrices. We choose
F0 to be all background nodes and F1 to be all cell nodes. TVRF requires a single initial partition matrix ((36), (37))
which we chose to be all background nodes.

4. NUMERICAL RESULTS

In this section, we illustrate the numerical results of the algorithms discussed in section 3. We apply those algorithms to
various cell images including bright-field images and 2- and 3-D fluorescent cell images. Labelled pixels were obtained
from the border of the images and in cases when the borders contained cell pixels, they were manually removed.

While there are a number of parameters, not all of them were required to change for different types of images. We
fixed e = 10�6 (33) for the stopping criteria and q = 10�6 (32). The remaining parameters w (1), t (20), and the number of
neighbours k used to construct W (Section 2.2), will be given with the results. After obtaining the initial segmentation re-
sults, we post-process them by bridging unconnected cell pixels [15], filling in holes within the cells and removing small cell
fragments from the background. The results were obtained using MATLAB on a MAC machine with a 2.5GHz processor.
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Figure 2: A bright-field image of C2C12 cells.

4.1 Bright-Field Images
The bright-field images are 512 ⇥ 512 pixel frames of C2C12 (muscle) cells obtained from the Department of Medicine
and Human Genetics at McGill University. Our parameters here are w = 50, k = 40, t = 0.1 for LapRF, and t = 0.3 for
TVRF. Figure 2 shows the original bright-field image and Figure 3 shows the segmentation results using our Laplacian and
TV-based algorithms with Region Force. The first column of Figure 3 shows the raw results before any post-processing is
applied. The second column shows the final results after post-processing and the third column is a visualization of the final
segmentation result on the original image. The segmentation results given by the Laplacian and TV models are shown on
the left and right columns, respectively. We can see from the raw segmentation results that the TV model captures more
of the cells as compared to the Laplacian model. However, it also under segments in some areas, for instance, the left leg
of the bottom left cell. The Laplacian-based model, on the other hand, captures more of the fine details in the shape of
the cell, as can be seen in the top right cell. It produces results with more “holes” but they can be easily filled in by a
simple post-processing step. Therefore, in the final segmentation results, Laplacian slightly over-segments and TV slightly
under-segments but both results are very much comparable.

Their running times, however, differ considerably. When applied on our bright-field image, LapRF took 23.8 seconds
and TVRF 25110.3 seconds, about a thousand times longer than LapRF. This is due to the computational complexity of
calculating the gradient and divergence in (36) and (37), respectively.

4.2 ISBI 2013 Cell Tracking Challenge Datasets
The IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge[16] was established to evaluate
different automated cell tracking and segmentation algorithms. In this section, we apply our algorithm on their datasets
and compare our results with the other algorithms given in[16]. The evaluation metric used for segmentation is the Jaccard
Similarity Index given by

J(A,B) =
|A\B|
|A[B| , (38)

where A is the set of pixels in the ground truth and B is the set of pixels in the segmented result. We can see that if the
segmentation matches the ground truth exactly then |A\B| = |A[B| and J(A,B) = 1. Similarly, if there is no overlap
between them, |A\B|= 0, and J(A,B) = 0.

The datasets are cell videos made up of a number of still images. Due to faster performance, we tested only the Laplacian-
based algorithm on six videos of the N2DH-SIM simulated fluorescent images. Table 1 shows the comparison of LapRF
with the algorithms/teams of the ISBI 2013 Cell Tracking Challenge. It can be seen that LapRF performs better than or
as well as others on videos 02, 04 and 05 and has comparable results on the other videos as well. Sample images and our
segmentation results of each video are also shown in Figures 4 to 9.
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(a) Laplacian-based Segmentation Result

(b) TV-based Segmentation Result

Figure 3: Bright-field image segmentation given by Laplacian-based model and TV-based model. The first column shows
the raw results before any post-processing is applied, the second column shows the final results after post-processing and
the third column is a visualization of the final segmentation result on the original image.

Figure 4: Segmentation on an image from N2DH-SIM dataset – video 01. From left to right: original image, final
segmentation, visualization, ground truth. w = 10, k = 40, t = 0.1.

Proc. of SPIE Vol. 10574  1057437-11
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 22 Jan 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



%
4111,

lk
doP

% b fi

Figure 5: Segmentation on an image from N2DH-SIM dataset – video 02. From left to right: original image, final
segmentation, visualization, ground truth. w = 10, k = 40, t = 0.1.

Figure 6: Segmentation on an image from N2DH-SIM dataset – video 03. From left to right: original image, final
segmentation, visualization, ground truth. w = 10, k = 40, t = 0.1.

Figure 7: Segmentation on an image from N2DH-SIM dataset – video 04. From left to right: original image, final
segmentation, visualization, ground truth. w = 10, k = 40, t = 0.3.

Figure 8: Segmentation on an image from N2DH-SIM dataset, – video 05. From left to right: original image, final
segmentation, visualization, ground truth. w = 10, k = 40, t = 0.1.
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Video 01 02 03 04 05 06

COM-US 0.75 0.77 0.65 0.64 0.64 0.75
HEID-GE 0.91 0.9 0.82 0.83 0.81 0.89
KTH-SE 0.91 0.89 0.84 0.83 0.8 0.83
LEID-NL 0.93 0.91 0.83 0.84 0.84 0.91
PRAG-CZ 0.8 0.8 0.75 0.78 0.76 0.79
UPM-ES 0.91 0.89 0.81 0.82 0.77 0.86
LapRF 0.90 0.91 0.83 0.86 0.89 0.88

Table 1: A comparison of the segmentation scores of ISBI 2013 Cell Tracking Challenge algorithms and LapRF. Bolded
entries are the highest scores for that video.

Figure 9: Segmentation on an image from N2DH-SIM dataset – video 06. From left to right: original image, final
segmentation, visualization, ground truth. w = 10, k = 20, t = 0.3.

4.3 Cell Tracking Challenge 2017 Datasets
Finally, we test our Laplacian-based algorithm on two and three-dimensional images from the 2017 Cell Tracking Chal-
lenge†. We perform tests on various cell datasets with different properties to evaluate the strengths and weaknesses of the
algorithm.

The first image we test our algorithm on is a 839⇥ 992 pixel image from the Fluo-C2DL-MSC dataset. These are flu-
orescent images of rat mesenchymal stem cells. The original image and our segmentation results are given in Figure 10.
It can be seen that the algorithm is able to effectively segment cells that are irregularly shaped, as opposed to most other
images which contain more rounded, convex shaped cells. Another fluorescent image is from the Fluo-N2DH-GOWT1
dataset which is a 1024⇥1024 image of mouse stem cells. The segmentation results are given in Figure 11. The cells here
are much more uniform but vary greatly in intensity. For example, the pair of joined cells in the bottom right are almost too
dark to be noticeable from the background, but the algorithm successfully captures them along with the brighter cells. The
last fluorescent image is a 700⇥1100 pixel image from the Fluo-N2DL-HeLa dataset and the segmentation results can be
seen in Figure 12. These HeLa cells are very densely packed and our algorithm struggles to correctly identify individual
cells in some areas.

Our next two datasets are obtained by Phase-Contrast microscopy. The first are 520 ⇥ 696 images of Glioblastoma-
astrocytoma U373 cells from the PhC-C2DH-U373 dataset. The results are shown in Figure 13. While the algorithm
is able to identify the general location of each cell, the inconsistent halos surrounding the cells makes it difficult to accu-
rately determine the boundaries of cells. Our final 2-D image is from the PhC-C2DL-PSC dataset which contains 576⇥720
pixel images of pancreatic stem cells. The image and results are given in Figure 14. It can be seen that the background of
this cell image is very inconsistent and merely taking the border as the labelled background pixels does not work very well
in this case. Therefore, to obtain a reasonable result, we had to take an additional small sample of background pixels from
the centre of the image.

The three-dimensional images are from the FLUO-N3DH-SIM+ simulated dataset which consist of 59 slices, where each
slice is a 350⇥640 two-dimensional image. Figure 15 shows some of the slices of one 3-D image. In order to work on
3-D images, our algorithm is modified to include the 3-D location of pixels in the data vectors when calculating the affinity
matrix W . We compare the result of this 3-D segmentation with the result of performing 2-D segmentation on each slice.
For computation within a reasonable amount of time, we have resized each slice to 233⇥426 pixel. Figure 16 shows the

†Challenge Website: http://www.codesolorzano.com/Challenges/CTC/Datasets.html
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Figure 10: From left to right: Fluo-C2DL-MSC original image, final segmentation result, visualization. w = 10, k = 40,
t = 0.1.

Figure 11: From left to right: Fluo-N2DH-GOWT1 original image, final segmentation result, visualization. w = 1, k = 40,
t = 0.005.

Figure 12: From left to right: Fluo-N2DL-HeLa original image, final segmentation result, visualization. w = 10, k = 40,
t = 0.005.

Figure 13: From left to right: PhC-C2DH-U373 original image, final segmentation result, visualization. w = 10, k = 40,
t = 0.005.
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J. 4Figure 14: From left to right: PhC-C2DL-PSC original image, final segmentation result, visualization. w = 10, k = 25,
t = 0.005.

Figure 15: From top left to right then next rows: slices number 14, 17, 20, ..., 59 of a FLUO-N3DH-SIM+ 3-D image.

results which are very much comparable. However, upon closer inspection of a single slice in Figure 17, it can be seen
that 3-D segmentation is able to capture more cell pixels that are of especially low contrast. This could be due to extra
information from neighbouring slices. The running time for 3-D segmentation, 1017.3 sec, was also less than that of 2-D
segmentation, 1859.8 sec.

5. CONCLUSION
In this work we presented two algorithms for segmentation of cellular images using a graph-partitioning approach. The
first, a Laplacian based model, was shown to give good results on the challenging bright-field images as well as other
datasets within a reasonable amount of time. The second model, based on the Total Variation, was shown to give equally
good results on bright-field images but was very computationally expensive. Furthermore, both models were capable of
successfully segmenting images containing multiple cells with minimal parameter tuning.

The Laplacian-based algorithm was also tested on six datasets from the ISBI 2013 Cell Tracking Challenge and six datasets
from the Cell Tracking Challenge 2017. For the first six datasets, we evaluated the segmentation accuracy using the Jaccard
Similarly Index. Our algorithm was seen to perform the best on three of the datasets and produced comparable results on
the other three as well. For the last six datasets, we carefully picked unique types of cells and cell images to determine
the strengths and weaknesses of our algorithm. Our results on the Fluo-C2DL-MSC and Fluo-N2DH-GOWT1 datasets
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(a) 2-D Segmentation on each slice. w = 1, k = 70, t = 0.1.
(b) 3-D Segmentation on whole image. w = 10, k = 10, t =
0.1.

Figure 16: Results of 2- and 3-D segmentation applied on a FLUO-N3DH-SIM+ 3-D image.

Figure 17: Top: Slice number 52 of 3-D image. Second row: 2-D segmentation result, 3-D segmentation result. Third row:
2-D segmentation visualization, 3-D segmentation visualization.
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demonstrate that the algorithm is able to effectively segment irregularly shaped cells as well as extremely low intensity
cells. Furthermore, we showed that the algorithm is faster and better able to segment 3-D images as a whole than segment-
ing each slice separately.

A couple of limitations of the algorithm were discovered by testing on the Fluo-N2DL-HeLa dataset where cells were
very densely packed together and resulted in joined cells, and the PhC-C2DL-PSC dataset where the background is very
inconsistent. Further work can be done in the investigation of under-segmentation on densely packed cell images as well
as methods to extract an accurate background labelling when backgrounds are inconsistent. Another area for investigation
could be in reducing the computational complexity of the Total Variation based model so that it can be tested on more data
sets in less time.
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