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Abstract. We propose multigrid methods for solving the discrete algebraic equations aris-
ing from the discretization of the second order Hamilton–Jacobi–Bellman (HJB) and Hamilton–
Jacobi–Bellman–Isaacs (HJBI) equations. We propose a damped-relaxation method as a smoother
for multigrid. In contrast with the standard policy iteration, the proposed damped-relaxation scheme
is convergent for both HJB and HJBI equations. We show by local Fourier analysis that the damped-
relaxation smoother effectively reduces high frequency error. For problems with large jumps in con-
trol, we develop restriction and interpolation methods to capture the jumps on the coarse grids as well
as during the coarse grid correction. We will demonstrate the effectiveness of the proposed multigrid
methods for solving HJB and HJBI equations arising from option pricing as well as problems where
policy iteration does not converge or converges slowly.
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1. Introduction. Many real life problems, such as financial problems [21, 38]
and stochastic games [30, 36], can be modeled as optimal control problems and for-
mulated as Hamilton–Jacobi–Bellman (HJB) and Hamilton–Jacobi–Bellman–Isaacs
(HJBI) equations. Stable discretization methods have been proposed and analyzed
(e.g., [14, 21]) for solving single factor optimal control problems. Semi-Lagrangian
methods have also been used [19, 20]. The discretization of these equations will lead
to a set of highly nonlinear discrete equations. The primary focus of this paper is the
fast solution of the discrete nonlinear algebraic equations. For the theoretical proper-
ties of the HJB equations such as the existence and regularity of viscosity solutions,
we refer the interested reader to, e.g., [27, 31]. Recent developments in the analysis
and approximation of differential game problems can be found in [2, 6, 15, 16, 18].

The policy iteration, also known as Howard’s algorithm [8, 24, 26], is a Newton-
like method [29] for solving nonlinear problems and, in particular, HJB equations. It
first computes for the optimal control based on an approximate solution, linearizes
the problem with the resulting control, and then solves the linear system to obtain
a better approximate solution. The policy iteration is convergent for HJB equations.
However, the convergence rate can be slow in the sense that the number of iterations,
in general, cannot be bounded by a constant that is independent of the number of
the grid points [30]. Moreover, a straightforward Newton-like extension [11] does
not guarantee global convergence for HJBI equations [11, 36], which leads to the
development of a different variant of policy iterations attempting to address this
problem [2, 11, 13, 33, 34]. Another method for solving HJB and HJBI equations is
a relaxation scheme discussed in [7], which is essentially the value iteration [25]. It is
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S324 DONG HAN AND JUSTIN W. L. WAN

proven to be globally convergent to the viscosity solution, but its convergence rate
can be very slow on the fine grids.

In this paper, we propose multigrid methods for solving the discrete nonlinear
second order HJB and HJBI equations. Multigrid methods have been used as efficient
numerical solvers for solving a wide variety of partial differential equations (PDEs)
[35]. The rate of convergence is often independent of the mesh size. However, the
literature on multigrid methods for HJB and HJBI equations is scarce. In [1, 3,
4, 5], portfolio selection problems are modeled as HJB equations and solved by the
multigrid-Howard and the full multigrid-Howard (FMGH) algorithm. In each policy
iteration, a linear multigrid method or full multigrid method is applied to solve the
linearized problem. Hoppe [22] proposed two multigrid schemes for HJB equations,
MGS I and MGS II, in which multigrid methods are applied directly to the nonlinear
HJB equation. MGS I is based on an iterative numerical scheme which requires
the solution of a unilateral variational inequality in each iteration [26] and MGS II is
based on policy iteration. MGS’s are similar to but different from a full approximation
scheme (FAS) [35] and the main difference lies in the coarse grid problem construction.
Bloss and Hoppe [10] later proposed another multigrid method, MGHJB, for HJB
equations. MGHJB is an updated version of MGS II: MGHJB applies nonlinear
Gauss–Seidel iteration as the smoother while MGS II applies linear relaxation methods
to the linearized discrete HJB equation. Multigrid methods based on a variant of
policy iteration were also applied to HJBI equations [17], in which multigrid is used
to solve the linearized HJBI problem.

Fast multigrid convergence for HJB and HJBI equations is challenging to achieve.
The controls couple with the solution of the partial differential equations in such a
very nonlinear way that a direct application of standard multigrid methods would not
work well. For instance, the MGHJB method [10] has a convergence rate of around 0.7
for a model HJB problem. In addition, we have observed that multigrid convergence
deteriorates when there are jumps in the control. The issue of jumps in the control
has never been discussed in the literature.

In this paper, we propose multigrid methods which are efficient for a wide variety
of HJB and HJBI equations where the value functions are regular. The new smoother
of our multigrid method is a damped relaxation method which has never been used as
a smoother for multigrid methods. We will prove that the smoother is convergent for
both HJB and HJBI equations, and show by a local Fourier analysis for a linearized
problem that it is effective for removing high frequency errors. In the case when the
control has jumps, we develop a restriction and interpolation method to capture the
optimal control near the jumps. The resulting multigrid methods show much faster
convergence than MGHJB [10], and are able to achieve fast convergence even with
jumps in control. Moreover, our multigrid methods can handle the more complicated
HJBI equations in the same way as the HJB equations.

We remark that multigrid methods have been proposed for complementarity prob-
lems and variation inequalities; see, e.g., [12, 23, 28, 32]. In some special cases, these
problems can be formulated as HJB equations. However, HJB and especially HJBI
equations, in general, cannot be formulated as complementarity problems. Thus meth-
ods for one would not generally be applicable to the other.

We will demonstrate our algorithms by mainly focusing on two example finance
problems in [21, 38]. In section 2, the two example problems are described and the
corresponding HJB and HJBI equations are presented. Then we will describe our new
multigrid methods in section 3. A smoothing analysis will be presented in section 4,
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followed by numerical results on a variety of examples illustrating the convergence of
different methods in section 5.

2. Model problems. HJB equations are PDEs which involve an optimal pa-
rameter generally known as the control. The optimality is typically imposed by a
max or min operator in the equations. In this paper, we consider HJB equations of
the form

(2.1) Vτ = inf
Q∈Q̂

{a(S, τ,Q)VSS + b(S, τ,Q)VS − c(S, τ,Q)V + d(S, τ,Q)} ,

where a(S, τ,Q) > 0, b(S, τ,Q), c(S, τ,Q), d(S, τ,Q) are functions of time τ , variable
S, and control Q. The set of controls is denoted by Q̂.

These equations generally arise in optimal control problems. One can also formu-
late obstacle problems [23, 32], linear complementarity problems [12], and American
option pricing [21, 28] as HJB equations. For a single obstable problem, for instance,
the control takes on only two values, one corresponding to the case when the constraint
is active and the other to when the case the constraint is inactive.

HJBI equations are PDEs which involve two optimal controls imposed by a max-
min or min-max operator. In this paper, we consider HJBI equations of the form

Vτ = sup
P∈P̂

inf
Q∈Q̂

{a(S, τ,Q, P )VSS + b(S, τ,Q, P )VS − c(S, τ,Q, P )V + d(S, τ,Q, P )} ,
(2.2)

where a(S, τ,Q, P ) > 0, b(S, τ,Q, P ), c(S, τ,Q, P ), d(S, τ,Q, P ) are functions of
time τ , variable S, and controls Q and P . The two sets of controls are denoted
by Q̂ and P̂ .

These equations arise in, for instance, two-player zero-sum differential games such
as the pursuit-evasion problem [6]. One player tries to maximize the payoff while the
other player tries to minimize it. The players’ optimal strategies correspond to the
two controls in the equation. The value of the final payoff is given by the solution V
of the HJBI equation.

There are two model problems we are considering in this paper which arise from
nonlinear asset allocation and option pricing problems in financial modeling. They
lead to an HJB and an HJBI equation, respectively, which are described briefly in the
next two sections. We note that there are other methods for solving similar nonlinear
asset allocation and option pricing problems. Since those methods are outside the
scope of this paper, we will refer the interested reader to [9, 25, 40].

2.1. HJB case: Pension plan asset allocation problem. Suppose there are
two assets in the market, one risk free and the other risky. The risky asset S follows
the stochastic process

dS = (r + ξσ)Sdt+ σSdZ,

where dZ is the increment of a Wiener process, σ is volatility, r is the interest rate,
and ξ is the market price of risk. The investor pays into the pension plan at a constant
rate ρ in the unit time. Let W (t) denote the wealth in the pension plan at time t.
A proportion q of this wealth is invested in the risky asset and the rest is invested in
the risk free asset. Then

dW = [(r + qξσ)W + ρ] dt+ qσWdZ.
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S326 DONG HAN AND JUSTIN W. L. WAN

Let WT = W (T ), where T is the expiration time of the pension plan. The aim of
the investor is to maxq

{
Et=0 [WT ]

}
such that V art=0 [WT ] = constant, where E [·] is

the expectation operator and V ar [·] is the variance operator. The superscript t = 0
indicates that the expectation and variance are computed at t = 0.

For the convenience of computation, we will follow the common practice in the
literature to introduce a parameter τ = T − t. Let w be in a set of all admissible
wealth W (t) for 0 ≤ t ≤ T . Define an intermediate variable

V (w, τ) = inf
Q∈Q̂

{
E

[(
WT − γ

2

)2
|W (T − τ) = w

]}
that has terminal condition V (w, 0) = (w− γ

2 )
2, where γ is a predetermined constant.

The pension problem can be simplified to two steps [21]: first solve for V (w, T ), which
satisfies an HJB equation

(2.3) Vτ = inf
q∈Q̂

{
1

2
(qσw)2Vww + [ρ+ w(r + qσξ)Vw ]

}
,

and then compute the expected wealth by solving a Black–Scholes-like equation.
Equation (2.3) will be used as an example to illustrate our method for the HJB
case.

2.2. HJBI case: American options and stock borrowing fees. In this
problem, V (S, t) is the value of an American option written on asset S. Let V ∗ be
the payoff. Then the price of the option can be written in penalty form as

Vt + sup
μ∈{0,1}

{
σ2S2

2
VSS + rSVS − rV + μ

V ∗ − V

η

}
= 0,

where σ is the volatility, r is the interest rate, and η � 1 is a small positive number.
Extend this model to include unequal borrowing rates (rb), lending rates (rl), and
stock borrowing fees (rf ). The holder of a short position will receive rl − rf on the
proceeds of the short sale. This gives rise to the equation

Vτ = sup
μ∈P̂

inf
Q∈Q̂

{
σ2S2

2
VSS + q3q1(SVS − V )

+ (1− q3)[(rl − rf )SVS − q2V ] + μ
V ∗ − V

η

}
,(2.4)

where Q = (q1, q2, q3), Q̂ = ({rl, rb}, {rl, rb}, {0, 1}), and P̂ = {0, 1}. Equation (2.4)
is an HJBI equation, which we will use as an example to illustrate our method for the
HJBI case.

2.3. Discretization. We will briefly discuss the discretization for the PDE in
the general form of HJB and HJBI equations in this section. A positive coefficient
discretization scheme, which will ensure the convergence to the viscosity solution, is
applied to both HJB and HJBI cases. It is shown that near quadratic convergence
can be achieved as the grid size is reduced. The details for the positive coefficient
discretization can be found in [21].

Define a grid {S0, S1, . . . , SM} with SM = Smax. Let V
n
i be a discrete approxima-

tion to V (Si, τ
n) and let V n = [V n

0 , . . . , V n
M ]

T
. The objective function that depends
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on V in (2.1) at (Si, τ
n+1) is discretized using a combination of forward, backward,

or central differencing methods, giving

(a(S, τ,Q)VSS + b(S, τ,Q)VS − c(S, τ,Q)V )i

= αn+1
i (Q)V n+1

i−1 + βn+1
i (Q)V n+1

i+1 − (αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q))V n+1

i ,(2.5)

where αi and βi are defined such that a positive coefficient scheme is resulted; see [21]
for details. Assuming central differencing and uniform grid, we obtain

(2.6) α(Q) =
2a(Q)

2h2
− b(Q)

2h
, β(Q) =

2a(Q)

2h2
+

b(Q)

2h
,

where h is the grid size.
We will consider fully implicit timestepping and (2.5) to discretize (2.1),

(2.7)
V n+1
i − V n

i

Δτ
= inf

Q∈Q̂

{[
A(Q)V n+1

]
i
+ [D(Q)]n+1

i

}
, i < M,

where [A(Q)V n+1]i is the matrix form of the operator defined in (2.5) and [D(Q)]n+1
i

is the vector form of dn+1
i (Q). The first and last row of matrix A and vector D are

modified accordingly to handle the boundary conditions. Also we note that higher
order timestepping, such as Crank–Nicolson timestepping, can be used [21, 38]. The
HJBI equation can be discretized in a similar way, yielding

(2.8)
V n+1
i − V n

i

Δτ
= sup

P∈P̂

inf
Q∈Q̂

{[
A(Q,P )V n+1

]
i
+ [D(Q,P )]

n+1
i

}
.

Since the discretized equations (2.7) and (2.8) are highly nonlinear, iterative meth-
ods are usually used to solve the equations. Policy iteration is commonly used for
solving HJB equations [22, 24]. It consists of an iterative algorithm on the control
and the value functions, and generates an improving sequence of controls to the non-
linear problem. Let V̂ k be an approximate solution. The idea of policy iteration is
to compute the optimal control Qk from V̂ k. Then an improved approximation V̂ k+1

is obtained from Qk. The procedure is repeated until convergence. Policy iteration
is a form of Newton-like iteration and it is globally convergent for HJB equations.
However, examples show that the convergence of policy iteration for discrete HJB
problems can depend on the number of grid points. In [30], a discrete HJB problem
defined on a grid with M grid points and a control set of size 2 requires M − 1 policy
iterations to converge. In addition, policy iteration does not guarantee global conver-
gence for HJBI equations. Pathological cases in [11, 36] show that the Newton-like
policy iteration does not converge for these problems. Thus, we do not consider the
policy iteration scheme for solving the HJBI equations. Instead, we propose a multi-
grid method which is efficient in the sense that it is independent of the grid size, and
which can be applied to both HJB and HJBI equations.

3. Multigrid methods for HJB and HJBI equations. In this section, we
propose multigrid methods to solve HJB and HJBI equations. One approach is to
solve the linear system

[
I −ΔτAn+1

(
Qk
)]

V̂ k+1 = V n+ΔτDn+1
(
Qk
)
for V̂ k+1 using

standard multigrid in each policy iteration [3]. Our approach, however, is to solve
the discrete nonlinear HJB and HJBI equations directly using the full approximation
scheme (FAS). Write the discrete HJB equation as

(3.1) NQ
h

(
V n+1

)
= Bh,
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S328 DONG HAN AND JUSTIN W. L. WAN

where

(3.2) Bh ≡ V n, NQ
h (V n+1) ≡ V n+1 −Δτ inf

Q∈Q̂

{LQV n+1
}
,

and

(3.3) LQV n+1 = An+1(Q)V n+1 +Dn+1(Q).

The V-cycle is used with the FAS and the problem on the coarsest grid is solved
by the smoother or the policy iteration. The remaining components needing to be
defined are the smoother and the intergrid transfer operators, which will be described
in section 3.1 and 3.4, respectively. We remark that if there is no jump in the con-
trol, linear interpolation and full weighting restriction could be used for the intergrid
transfer. However, when there is a jump in the control, special care is needed; other-
wise, the multigrid convergence can be very slow or even divergent due to the jump.
In section 3.4, we propose a restriction and interpolation method for capturing the
optimal control on the coarse and fine grids.

3.1. Damped relaxation smoother for HJB. In [3, 22], the nonlinear HJB
problem is linearized and Gauss–Seidel is used as a smoother for the linearized opera-
tor. We would like to use a smoother directly applied to the nonlinear HJB equation.
The policy iteration could be a possible smoother but it does not guarantee conver-
gence for HJBI equations. Instead, our proposed smoother is based on a relaxation
scheme [7], also known as the value iteration method [25]. Consider the HJB equation.
The discrete equation (2.7) can be written as

V n+1
i = Δτ inf

Q∈Q̂

{
αn+1
i (Q)V n+1

i−1 + βn+1
i (Q)V n+1

i+1

− (αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)
V n+1
i + dn+1

i (Q)
}
+ V n

i .(3.4)

Since V n+1
i does not depend on the control, then Q, V n

i , and Δτ are constants.
Rearranging (3.4), we obtain

0 = inf
Q∈Q̂

{
Δτ

(
αn+1
i (Q)V n+1

i−1 + βn+1
i (Q)V n+1

i+1 + dn+1
i (Q)

)
+ V n

i

− [1 + Δτ
(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)]
V n+1
i

}
,

which can be written as

0 = inf
Q∈Q̂

{[
1 + Δτ

(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)]
[
−V n+1

i +
Δτ

(
αn+1
i (Q)V n+1

i−1 + βn+1
i (Q)V n+1

i+1 + dn+1
i (Q)

)
+ V n

i

1 + Δτ
(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

) ]}
.(3.5)

Note that αn+1
i , βn+1

i , and cn+1
i are all nonnegative. Letting V̂ k be the kth estimate

for V n+1, a relaxation scheme can be derived from (3.5),

(3.6) V̂i
k+1

= inf
Q∈Q̂

⎧⎨⎩Δτ
(
αn+1
i (Q)V̂ k

i−1 + βn+1
i (Q)V̂ k

i+1 + dn+1
i (Q)

)
+ V n

i

1 + Δτ
(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)
⎫⎬⎭ .
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This relaxation scheme, however, does not, in general, reduce high frequency
errors, and hence is not an effective smoother. To achieve a better smoothing effect,
we introduce a damping factor to the relaxation scheme, as it is used for the damped-
Jacobi method. The damped-relaxation smoother is defined as

V̂i
k+1

= (1− ω)V̂ k
i

+ω inf
Q∈Q̂

⎧⎨⎩Δτ
(
αn+1
i (Q)V̂ k

i−1 + βn+1
i (Q)V̂ k

i+1 + dn+1
i (Q)

)
+ V n

i

1 + Δτ
(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)
⎫⎬⎭ ,(3.7)

where ω is the damping factor.
A damped relaxation smoother can be defined similarly for HJBI equations; see

section 3.3.
Theorem 3.1. Suppose that the discretization (2.7) satisfies a positive coefficient

condition [21]. Then the iteration scheme (3.7) is globally convergent for any initial
guess if 0 < ω < 2/(1 + γ). Furthermore,∥∥∥V̂ k+1 − V̂ k

∥∥∥
∞

≤ (|1− ω|+ |ω|γ)
∥∥∥V̂ k − V̂ k−1

∥∥∥
∞

,

where

(3.8) γ = max
i

sup
Q∈Q̂

{
αn+1
i (Q) + βn+1

i (Q)

1 + Δτ
[
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

]} .

Proof. By (3.7) and the properties of the inf operator,

|V̂ k+1
i − V̂ k

i |
≤ |1− ω||V̂ k

i − V̂ k−1
i |

+ |ω| sup
Q∈Q̂

⎧⎨⎩
∣∣∣∣∣∣
Δτ

(
αn+1
i (Q)V̂ k

i−1 + βn+1
i (Q)V̂ k

i+1 + dn+1
i (Q)

)
+ V n

i

1 + Δτ
(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)
−

Δτ
(
αn+1
i (Q)V̂ k−1

i−1 + βn+1
i (Q)V̂ k−1

i+1 + dn+1
i (Q)

)
+ V n

i

1 + Δτ
(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)
∣∣∣∣∣∣
⎫⎬⎭

= |1− ω||V̂ k
i − V̂ k−1

i |

+ |ω| sup
Q∈Q̂

{
αn+1
i (Q) + βn+1

i (Q)

1 + Δτ
[
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

]} |V̂ k
i − V̂ k−1

i |.

Therefore,

‖V̂ k+1 − V̂ k‖∞ ≤ |1− ω|‖V̂ k − V̂ k−1‖∞ + |ω|γ‖V̂ k − V̂ k−1‖∞
= (|1− ω|+ |ω|γ) ‖V̂ k − V̂ k−1‖∞.

Since αn+1
i (Q), βn+1

i (Q), and cn+1
i (Q) are nonnegative for all Q ∈ Q̂, we have γ

< 1. Hence, the iteration converges if the damping factor ω satisfies 0 < ω <
2/(1 + γ).

We note that the convergence of the relaxation scheme alone can be very slow for
small grid sizes. However, with a carefully chosen damping factor, a smoothing factor
close to 0.5 can be achieved; see the smoothing analysis in section 4 for more details.
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3.2. Difference between our FAS method and MGS. The MGS scheme
in [22] is also based on the FAS, but differs from ours in several ways. First, MGS uses
W-cycles while our FAS uses V-cycles. Second, different smoothing procedures are
applied. MGS first linearizes the HJB problem by finding the optimal control based
on the current approximate solution, and then applies common smoothers in standard
multigrid for a few iterations to the linearized problem. Thus the approximate solu-
tion given by the smoother approximates the solution of the linearized system. Our
approach, however, applies the nonlinear damped-relaxation smoother in section 3.1
to the HJB problem directly. In other words, the approximate solution given by our
smoother approximates the nonlinear HJB problem. Third, the construction proce-
dures of the coarse grid problem are different. Suppose the discrete HJB equation on
the fine grid is given by infQ∈Q̂{AQ

h (Vh)−fQ
h } = Bh with Bh ≡ 0, and the coarse grid

problem is given by infQ∈Q̂{AQ
H(VH) − fQ

H} = BH , where the operator AQ
H (·) is ob-

tained from direct discretization. In MGS, AQ
H (VH) and fQ

H are considered separately.

fQ
H is obtained from

fQ
H = AQ

H(R · Vh) +R ·
(
fQ
h −AQ

h (Vh)
)

for all Q ∈ Q̂, where R is the restriction operator. BH is simply set to 0. In our
approach, NQ

h ≡ infQ∈Q̂{AQ
h (Vh) − fQ

h } is considered as one nonlinear term. Let

NQ
H (VH) ≡ infQ∈Q̂{AQ

H(VH)− fQ
H}. NQ

H (·) is obtained from direct discretization and

so is fQ
H . BH is then defined as

BH = NQ
H (R · Vh) +R ·

(
Bh −NQ

h (Vh)
)
.

These differences in algorithm design result in different convergence results, which
will be shown in section 5.

3.3. Multigrid for HJBI equations. We do not consider policy iteration for
the HJBI equations due to its uncertainty in convergence. As for the HJB equations,
we will apply the multigrid scheme we proposed in the previous section to the HJBI
problem. Applying the FAS to HJBI equations is very similar to the FAS for HJB.
The original nonlinear problem is rewritten in a similar way as in the HJB case with
one more control added. Thus (2.8) becomes NQ,P

h (V n+1) = Bh. Following a similar
derivation as in section 3.1, the relaxation scheme for HJBI problems is given by

(3.9)

V̂ k+1
i = sup

P∈P̂

inf
Q∈Q̂

⎧⎨⎩Δτ
(
αn+1
i (Q,P )V̂ k

i−1 + βn+1
i (Q,P )V̂ k

i+1 + dn+1
i (Q,P )

)
+ V n

i

1 + Δτ
(
αn+1
i (Q,P ) + βn+1

i (Q,P ) + cn+1
i (Q,P )

)
⎫⎬⎭ .

A damped version of the relaxation scheme is used as a smoother. By a similar
argument as in Theorem 3.1, it can be shown that the relaxation scheme (3.9) is
globally convergent. The proof is omitted here.

The smoothing iteration is similar to the HJB case except that both Qk and P k

need to be determined. More precisely, define

(
FQ,P V̂ k

)
i
≡

Δτ
(
αn+1
i (Q,P )V̂ k

i−1 + βn+1
i (Q,P )V̂ k

i+1 + dn+1
i (Q,P )

)
+ V n

i

1 + Δτ
(
αn+1
i (Q,P ) + βn+1

i (Q,P ) + cn+1
i (Q,P )

) .
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To find the optimal control values Q and P at grid point i in the kth iteration,
we compute the value of (FQ,P V̂ k)i for every Q with a fixed P ∈ P̂ to obtain an
infimum I (P ) = (FQ∗

P ,P V̂ k)i, where Q∗
P ∈ arg infQ∈Q̂{(FQ,P V̂ k)i}. Then compute

the infimum I (P ) for every P ∈ P̂ to obtain the supremum of all I (P )’s and its
corresponding optimal P ∗

i . The corresponding optimal Q∗
i is given by Q∗

P∗ .
This process can be easily implemented by two nested loops:

Optimal Control at Grid Point i for HJBI Smoother

Let Sup = −∞
For all P ∈ P̂

Let Inf = +∞
For all Q ∈ Q̂

If
(
FQ,P V̂ k

)
i
< Inf

Then Inf =
(
FQ,P V̂ k

)
i
, Q∗

P = Q

If Inf > Sup
Then Sup = Inf, Q∗

i = Q∗
P, P ∗

i = P.

Linear restriction and interpolation are used for intergrid transfer between fine and
coarse levels when there is no jump. On the coarsest level, the nonlinear problem is
solved by applying the relaxation scheme.

3.4. Jumps in control. The optimal control values P ∗
i and Q∗

i can vary sig-
nificantly from one grid point to another. Take the American options with stock
borrowing fees problem in section 2.2, for example. In (2.4), there are two sets of
controls. Q̂ is composed by different combinations of rl, rb, 0, and 1, whose values do
not change significantly; therefore, no special care is required. The other control μ
has two possible values, 0 and 1. Note that μ is used with the penalty term: μV −V ∗

η .

Thus one can think that the control P̂ is effectively
{
0, 108

}
, which will create a large

jump when the optimal control P changes from one grid point to another. This is-
sue can also appear when the control is not bounded. Ignoring such “jumps” in the
optimal control values could slow down the convergence or even render a diverging
result.

As a result, special care for the intergrid transfer is needed. We use a two-grid
FAS for an HJB problem (3.1) with |Q̂| = 2 to illustrate the modified FAS scheme for
“jumps” in control. The procedures for coarser grid problem construction and coarse
grid correction we proposed are presented in this section.

3.4.1. Coarser grid problem construction. The optimal control on the coarse
grid might not be consistent with the optimal control on the fine grid. Suppose the
coarse grid function NQ

H (·) is a direct discretization of NQ
h (·) on the coarse grid. The

only information passed from the fine grid to the coarse grid is the approximate coarse
grid solution VH , which is the restricted approximate fine grid solution. In the stan-
dard approach, the coarse grid vector BH = R · rh + NQ

H (VH). While the fine grid

residual rh depends on the optimal control on the fine grid Q∗
h, N

Q
H (VH) depends on

the optimal control on the coarse grid Q∗
H , which is obtained from (3.2). One can

visualize the consistency issue by the diagram in Figure 3.1. Suppose the fine grid
solution Vh has optimal control Q∗

h. The restriction of Vh on the coarse grid gives
VH , whose corresponding optimal control is Q∗

H . Consistency refers to whether Q∗
H

is a restriction of Q∗
h, which is equivalent to whether the diagram commutes. When

Q∗
H �= Q∗

h at a coarse grid point, the two components of vector BH are inconsistent
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*

*

HQ

Q h

HV

hV

Fig. 3.1. Diagram showing the relation between the fine grid solution Vh, fine grid optimal
control Q∗

h, coarse grid solution VH , and coarse grid optimal control Q∗
H .

(a) Construct coarse problem (b) Optimal control interpolation

Fig. 3.2. The different possible optimal control values near the jump during the intergrid
transfers.

with each other. Such a discrepancy is introduced by the restriction process and is
mostly visible near the “jump”.

To be more specific, consider the plot for the optimal controls of an HJB problem
in Figure 3.2(a). The x-axis represents the grid point indices and the y-axis represents
the optimal control values. The first plot shows the fine grid optimal control Q∗

h on
each grid point: the first five fine grid points have optimal control 108 while the others
have optimal control 0. There is a “jump” in Q∗

h between grid points 5 and 6. The
desired Q∗

H , which would be consistent with the Q∗
h in the top plot, is shown in the

second plot, where Q∗
H = Q∗

h at all coarse grid points. The tricky part is that Q∗
H

is not something we can choose directly. The optimal control is determined by the
restricted coarse grid solution VH . Depending on the values of VH , the optimal control
Q∗

H may not necessary be the second plot. It could be the third plot or the last plot
in which the “jump” position is off by one grid point. As a result, BH might have one
term R ·rh, which has the optimal control Q∗

h as shown in the first plot, and the other

term NQ
H (VH), which has the optimal control Q∗

H as shown in the third or last plot,
rendering inconsistent optimal control values in the computation of BH . When the
“jump” size is large, the inconsistency will be very significant and the convergence of
the multigrid method will be slowed down.

To avoid such a situation, our approach is to make the diagram in Figure 3.1
commute by forcing Q∗

H to match Q∗
h on the coarse grid points. Since Q∗

H is de-
termined by VH , the idea is to alter VH . More precisely, suppose Q∗

H and Q∗
h are
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different at a particular grid point, i.e. Q∗
h = q1 and Q∗

H = q2 and q1 �= q2. From
(3.2), since q2 is the optimal control for VH , it gives the smallest value of Lq2VH and,
in particular, Lq1VH > Lq2VH . Notice that Lq1VH depends on both q1 and VH . By
changing the value of VH , we also change the value of Lq1VH . The trick is to modify
VH in such a way that Lq1VH < Lq2VH , which will then result in Q∗

H = q1. To define
an appropriate value for VH , we solve

(3.10) Lq1VH + δ = Lq2VH ,

where δ is a very small positive number, e.g., 10−10. Equation (3.10) is a linear PDE
since q1 and q2 are fixed. Also it is defined on one grid point, and hence it is a small
linear problem which is easy to solve. The new VH will ensure that Lq1VH < Lq2VH ,
yielding Q∗

H = q1; therefore Q∗
H = Q∗

h. After handling all the grid points where the
controls are different, the coarse grid problem becomes consistent.

For problems with a control set that has more than two values, i.e., Q̂ = {q1, q2, . . . ,
qn}, change (3.10) to

Lq1VH + δ = min
Q∈{q2,...,qn}

{LQVH

}
and keep the other steps the same.

3.4.2. Coarse grid correction. Unlike the function V , the control does not
always have a continuous control set. As such, it is not clear how to interpolate, or
more precisely, how to define the control on the fine grid from the control on the
coarse grid. Consider Figure 3.2(b). The plots show the optimal control for an HJB
problem with a control set Q̂ = {q1, q2}, where the x-axis represents the grid points
and the y-axis represents the value of the optimal control in 108 scale. From the coarse
grid solution shown in the first plot, the optimal control is determined for every other
fine grid point (grids with odd indices in this example). When there is no “jump” in
the coarse grid control, the fine grid control is obtained from linear interpolation of
coarse grid control; thus grids with even indices will have the same control as their
neighboring grids have in the example. However, for grid point 6, its neighboring
grids have different controls due to the “jump.” Thus there are two possible scenarios
for the optimal control on the fine grid: Fine grid controls I and II. In other words,
the optimal control at grid point 6 can be the same as either its left neighbor or its
right neighbor. It is not clear which of the two possible controls we should use. The
linear interpolation is not applicable at this point since the “jump” size is large and
there is no intermediate control value between the two in this example. If the control
we choose to use is different from the one it should be, the convergence rate can be
significantly slowed down or even yield divergence.

To address this issue, let i denote the fine grid index where the optimal control
is different on its left and its right grid point (i = 6 in Figure 3.2(b)), and let (Q∗

h)i
denote the optimal fine grid control at grid point i. Since there are two possible
(Q∗

h)i’s, we will consider them separately.
Case A. Assume the fine grid optimal control is taken as Fine grid control I in

Figure 3.2(b). Let Q′
j = (Q∗

h)j for all j �= i and Q′
i = (Q∗

h)i+1. Let V
′
h be the updated

solution after the standard coarse grid correction, i.e.,

V ′
h = Vh + P · (VH −R · Vh),

where Vh is the approximate fine solution after presmoothing, VH is the coarse grid
solution, and P and R are the interpolation and restriction operators. Due to the
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“jump” in the control, the error of V ′
h near the grid point i could be large. Note that

the control on the fine grid is now fixed, so NQ′
h (·) becomes a linear operator. As both

NQ′
h (·) and Bh are now deterministic, we can compute an improved fine grid solution

Ṽ ′
h corresponding to Q′ by solving the linear system

NQ′
h

(
Ṽ ′
h

)
= Bh.

Since the “jump” in control mainly affects its neighboring grid points, a small local
problem is considered in order to simplify the computation. With a predetermined
small positive integer m, which usually lies between 2 and 5, the local linear problem
is defined as

(3.11)
[
NQ′

h (Ṽ ′
h)
]
j
= (Bh)j , j = i−m, . . . , i+m,

which is centered at the grid point i with size 2m+ 1. Note that when we substitute
(Ṽ ′

h)j back into (3.2), the resulting optimal control might not be the same as Q′
j .

Hence we force the control to be the same as Q′
j by applying to the local problem the

same technique used in section 3.4.1, and then update V ′
h by setting (V ′

h)j=(Ṽ ′
h)j .

Case B. Assume the fine grid optimal control is taken as Fine grid control II in
Figure 3.2(b). Let Q′′

j = (Q∗
h)j for all j �= i and Q′′

i = (Q∗
h)i−1. Let

V ′
h = Vh + P · (VH −R · Vh).

Then repeat the process of Case A and obtain the updated solution (V ′′
h )j .

V ′
h and V ′′

h are two possible fine grid updated solutions. In general, it is difficult
to tell which is the desired solution. Assuming the correct fine grid control will yield
a solution with smaller residual norm, that is the one we choose.

We remark that the construction of interpolation by a local PDE solve in (3.11)
shares a similar flavor as the matrix dependent interpolation (e.g., [39]) and energy-
minimizing interpolation (e.g., [37]) for solving PDEs with “jumps” in coefficients.
However, with the existence of the control for the HJB and HJBI equations, it is
not clear whether the proposed interpolation will still possess any energy minimizing
property.

4. Smoothing analysis.

4.1. Smoothing analysis for HJB equations. We investigate the smoothing
property of the damped-relaxation smoother by applying a local Fourier analysis
(LFA) on the grid functions ϕ (θ, x) = eiθx [35]. Let the exact solution for time
step n+1 be V̄ and let the approximate solution after the kth smoothing iteration be
V̂ k = V̄ +εk, where εk is the error after the kth iteration. LetQk

i be the optimal control

for V̂ k
i and let α∗

i = αn+1
i (Qk

i ), β
∗
i = βn+1

i (Qk
i ), c∗i = cn+1

i (Qk
i ), d

∗
i = dn+1

i (Qk
i ),

l∗i = α∗
i + β∗

i + c∗i . By (3.6), we obtain

(4.1) εk+1
i =

[
Δτ ·α∗

i

1+Δτl∗i
0

Δτ ·β∗
i

1+Δτl∗i

]
·
⎡⎣ εki−1

εki
εki+1

⎤⎦+ C(Qk
i )

and

C
(
Qk

i

)
=
[

Δτ ·α∗
i

1+Δτl∗i
−1

Δτ ·β∗
i

1+Δτl∗i

]
·
⎡⎣ V̄i−1

V̄i

V̄i+1

⎤⎦+
V n
i +Δτ · d∗i
1 + Δτl∗i

.
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Since it is difficult to evaluate the smoothing effect on a nonlinear smoother, we
will assume the optimal control for every grid point will not change from iteration to
iteration in order to simplify the analysis. Let Q̄i be the optimal control corresponding
to the exact solution V̄ . Suppose Qk

i = Q̄i for all i. From (3.4), we deduce that C
(
Qk
)

is a zero vector. Thus (4.1) can be written as

εk+1 = Sk · εk,

where

Sk
i,i = 0, Sk

i,i−1 =
Δτ · α∗

i

1 + Δτl∗i
, Sk

i,i+1 =
Δτ · β∗

i

1 + Δτl∗i
, i = 2, . . . ,M − 1.

Then the symbol of the smoothing operator for the relaxation scheme is

(4.2) S̃k
i (θ) =

Δτ · α∗
i · e−iθ +Δτ · β∗

i · eiθ
1 + Δτl∗i

.

As we use the damped-relaxation scheme (3.6) for smoothing, the symbol of the HJB
smoother can be obtained by introducing damping factor ω to (4.2),

(4.3) S̃k
i (θ, ω) =

Δτ · α∗
i · e−iθ − (1 − 1

ω ) [1 + Δτl∗i ] + Δτ · β∗
i · eiθ

1
ω · (1 + Δτl∗i )

.

Simplifying (4.3), we obtain

(4.4) S̃k
i (θ, ω) =

ωΔτ (α∗
i + β∗

i ) cos θ + (1− ω) [1 + Δτl∗i ] + iωΔτ (β∗
i − α∗

i ) sin θ

1 + Δτl∗i
.

4.1.1. Smoothing factors of the example HJB equation. Since generating

a useful analytical expression for S̃k
i (θ, ω) is very complicated, we will consider S̃k

i (θ, ω)
for specific values of θ ≈ −π, which represent the high frequency components. Also,
though we assume the optimal control is fixed for each grid point from iteration to
iteration, we will examine many possible values of optimal controls for each grid point
to make sure that the smoother is efficient even with the worst case optimal control
for all grid points.

For simplicity of the analysis, we transform the equation to the log scale, which is
a common practice in option pricing literature. Let X = logw. Substituting w = eX

into (2.3), the HJB example problem on the log grid can be written as

Vτ = inf
Q∈Q̂

{
1

2
q2σ2VXX +

(
r + qσξ − 1

2
q2σ2 +

ρ

eX

)
VX

}
.

For simplicity, we will assume ρ = 0. The coefficients for the example HJB problem
on the log grid in (2.1) are

a(τ,Q) =
1

2
q2σ2, b(τ,Q) = r +Qσξ − 1

2
q2σ2, c(τ,Q) = 0, d(τ,Q) = 0.

We note that the coefficients on the log grid do not depend on X or S, which is a
desirable property for LFA. For the pension plan asset allocation problem, the typical
values for the parameters are σ = 0.15, ξ = 0.33, r = 0.03, Δτ = 0.01, and q ∈ [0, 1.5].
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(a) |˜S(−π, 2
3
)| with different values of h. (b) |˜S(θ, 2

3
)| with h = 0.025 and different values

of optimal control.

Fig. 4.1. The amplification factor for the example HJB equation with ω = 2
3
.

Consider θ ≈ −π. Then sin θ ≈ 0 and cos θ ≈ −1. Substituting (2.6) into (4.4),
we obtain

S̃k
i (θ, ω) ≈

−ωΔτ(α∗
i + β∗

i ) + (1− ω) [1 + Δτ(α∗
i + β∗

i )]

1 + Δτ(α∗
i + β∗

i )

= 1− 2ω +
ω

1 + Δτ · q2σ2

h2

.(4.5)

Considering the parameter values for σ, ξ, r, Δτ , since q ∈ [0, 1.5], we have S̃k
i (θ, ω) ∈

[1−2ω+ ω

1+0.01· 1.520.152

h2

, 1−ω]. For h → 0, S̃k
i (θ, ω) ∈ [1−2ω, 1−ω] and |S̃k

i (θ, ω)| ≤
max (|1− 2ω| , |1− ω|) for all ω ∈ [0, 2]. It is easy to show that the upper bound is
less than 1 when ω ∈ (0, 1), and the upper bound is minimized when ω∗ = 2

3 . Using

this ω∗, |S̃k
i (θ, ω

∗)| ≤ 1
3 . Plots for |S̃k

i (θ, ω
∗)| with different values of h are shown in

Figure 4.1(a), which verifies the above analysis.
Also, by substituting θ ≈ π

2 and θ ≈ 0 into (4.4), we obtain that with ω ∈ (0, 2),

|S̃k
i (θ, ω)| < 1 for medium and low frequency components on practical grid sizes.

Therefore, from the above analysis, ω = 2
3 is an eligible damping factor and it yields

an efficient smoothing effect among different values of ω’s.
Since we are only able to compute the theoretical value of amplification factor on

some particular frequencies, it is desirable to evaluate its actual value by making plots
of |S̃(θ, ω)| in (4.3) for all frequencies, with different values of ω, grid size, and optimal
control.

Previous analysis shows that ω has to lie between 0 and 1 to reach convergence,
and ω = 2

3 appears to produce the optimal smoothing effect. To examine the smooth-
ing effect of ω = 2

3 , let h = 0.025, which is a practical value for the grid size. Plotting

|S̃(θ, 2
3 )| against θ which varies from −π to π, we obtain Figure 4.1(b). There are

five curves in the plot, corresponding to different values of optimal control Q∗ varying
from 0 to 1.5. |S̃(θ, 2

3 )| has the properties of an effective smoother: low for high fre-
quency components and bounded by 1 for low frequency components. It reaches its
minimal when θ = ±π and it is bounded above by 1

3 when |θ| ≥ π
2 . We then alter the

grid size h to further investigate the relationship between |S̃(θ, 2
3 )| and the parame-

D
ow

nl
oa

de
d 

11
/1

9/
14

 to
 1

29
.9

7.
14

0.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MG METHODS FOR SECOND ORDER HJB AND HJBI EQUATIONS S337

(a) |˜S(θ, 2
3
)| with Q∗ = 0 and different values of

h.
(b) |˜S(θ, 2

3
)| with Q∗ = 1.5 and different values

of h.

Fig. 4.2. The amplification factor of the example HJB equation with ω = 2
3
and different values

of h.

ters. As shown in Figure 4.1(b), all the curves are bounded above by Q∗ = 1.5 and
Q∗ = 0. Hence we will focus on these two control values. Figures 4.2(a) and 4.2(b)
show the amplification factors for Q∗ = 0 and Q∗ = 1.5. It verifies that ω = 2

3 yields
an efficient smoothing effect for different values of h.

4.2. Smoothing analysis for HJBI equations. Similar to the HJB case, we
assume the exact solution for an HJBI problem at time step n + 1 is V̄ and the
approximation solution after the kth iteration is V̂ k = V̄ + εk, where εk is the error
after the kth smoothing iteration. Assume the optimal control for every grid point will
not change from iteration to iteration. Applying to the HJBI case a similar deduction
procedure as in section 4.1, we obtain

(4.6) S̃k
i (θ, ω) =

ωΔτ(α∗
i + β∗

i ) cos θ + (1− ω) [1 + Δτl∗i ] + iωΔτ(β∗
i − α∗

i ) sin θ

1 + Δτl∗i
,

where

α∗
i = αn+1

i (Qk
i , P

k
i ), β∗

i = βn+1
i (Qk

i , P
k
i ), c∗i = cn+1

i (Qk
i , P

k
i ),

d∗i = dn+1
i (Qk

i , P
k
i ), l∗i = α∗

i + β∗
i + c∗i ,

with Qk
i and P k

i as the optimal control for V̂ k at grid point i.

4.2.1. Smoothing factors of the example HJBI equation. As in the HJB
case, let X = logS. The example HJBI problem on the log grid can then be written as

Vτ = sup
P∈P̂

inf
Q∈Q̂

{
σ2

2
VXX +

[
q3q1 + (1− q3)(rl − rf )− σ2

2

]
VX

−
[
q3q1 + q2(1− q3) +

μ

η

]
V +

μ

η
V ∗
}
.
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The coefficients for the example HJBI problem on the log grid (2.2) are

a(τ,Q, P ) =
1

2
σ2, b(τ,Q, P ) = q3q1 + (1− q3)(rl − rf )− σ2

2
,

c(τ,Q, P ) = q3q1 + (1− q3)q2 +
μ

η
, d(τ,Q, P ) =

μ

η
V ∗.

The typical values for the parameters are rb = 0.05, rl = 0.03, rf = 0.004, σ2 = 0.09,
Δτ = 0.01, and η = 10−6Δτ . As in the HJB case, we will examine the amplification
factor for high frequency components on different values of optimal controls.

Consider θ ≈ −π. Then sin θ ≈ 0 and cos θ ≈ −1. Substituting (2.6) into (4.6),
we obtain

S̃k
i (θ, ω) ≈

−ωΔτ(α∗
i + β∗

i ) + (1− ω) [1 + Δτl∗i ]
1 + Δτl∗i

= 1− ω − ωΔτ σ2

h2

1 + Δτ
(

σ2

h2 + μ
η

)
+Δτ(q3q1 + (1− q3)q2)

.

When μ = 1, S̃k
i (θ, ω) → 1 − ω as h → 0 due to the penalty term, despite other

parameters. Therefore, to ensure convergence, it is required that ω ∈ (0, 2), and ω
close to 1 is preferred. When μ = 0,

S̃k
i (θ, ω) → 1− 2ω as h → 0.

Therefore, ω has to be smaller than 1 to ensure the convergence of the smoother.

Furthermore, in the limit h → 0, |S̃k
i (θ, ω)| is bounded by max (|1− ω| , |1− 2ω|),

which reaches its minimal when ω∗ = 2
3 . Using this ω∗ = 2

3 , |S̃k
i (θ, ω

∗)| ≤ 1
3 .

By substituting θ ≈ π
2 and θ ≈ 0 into (4.6), we obtain that with ω ∈ (0, 2),

|S̃k
i (θ, ω)| < 1 for medium and low frequency components on different grid sizes.

Therefore, from the above analysis, ω = 2
3 is an eligible damping factor for the HJBI

example and it yields an efficient smoothing effect among other ω’s.
To justify the conclusion about the value for ω and the smoothing factor, Fig-

ure 4.3 shows the amplification factor when μ = 0. The four curves represent |S̃k(θ, ω)|

Fig. 4.3. |˜Sk(θ, 2
3
)| with μ = 0 and different values of h.
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on different values of h with θ varying from −π to π. Although as the grid size de-

creases, |S̃k(θ, ω)| of low frequency components move up to 1, high frequency compo-

nents have small |S̃k(θ, ω)| bounded by 1
3 . It verifies that ω = 2

3 will yield efficient
smoothing for different values of h. The situation is similar when μ = 1, which is not
shown here.

5. Numerical results. In this section, we will illustrate the convergence of the
proposed multigrid methods by a variety of HJB and HJBI problems which include
the pension plan asset allocation problem and the American option problem, where
there is a jump in control (cf. section 2). A comparison with the multigrid method
proposed by Hoppe [10, 22] is given in one of the examples. For all the results in
this section, the stopping criteria is that the residual norm of the nonlinear problem
is smaller than 10−6. The smoother is as defined in section 3.1. Two pre- and two
postsmoothings are used for the multigrid methods.

Example 1. This example shows that the policy iteration, while convergent for
HJB equations, can take up to the number of grid points to converge. The proposed
multigrid method, on the other hand, can still be very fast. Consider the Markovian
dynamic programming (MDP) problem in [30] which can be written as

Vi = max
{
Vi−1 + f1

i , Vi+1 + f2
i

}
, i = 0, . . . ,M,

where f1
0 = f2

0 = f1
M = f2

M = 0, f1
i = −1, f2

i = −2 for all i = 1, . . . ,M − 1, and
f1
M−1 = −1, f2

M−1 = 2M . Suppose the initial guess is V0 = 0. The Newton-like
policy iteration will correct the optimal control one by one, from grid M −1 to grid 1.
Hence the number of iteration = M − 1. We apply our multigrid method to solve this
problem, increasing M from 128 to 1028. The number of multigrid iterations stays
between 2 and 3.

Example 2. We compare the convergence of our method with MGHJB proposed
in [10]. We use the same example as in their paper. The HJB problem is defined as{

max
1≤v≤2

[Avu(x, y)− fv(x, y)] = 0, x, y ∈ (0, 1),

u(x, y) = 0, x, y ∈ {0, 1} ,
where

A1 = − ∂2

∂x2
− 0.5

∂2

∂x∂y
− ∂2

∂y2
, A2 = −0.5

∂2

∂x2
− 0.1

∂2

∂x∂y
− ∂2

∂y2
,

and

f1 = f2 = max
(
A1ū, A2ū

)
, ū = x(1− x)y(1 − y).

ū turns out to be the exact solution of the corresponding HJB equation. We apply a
standard finite difference discretization to the second order derivatives

∂2

∂x2
≈ h−2D+

h,xD
−
h,x,

∂2

∂y2
≈ h−2D+

h,yD
−
h,y,

∂2

∂x∂y
≈ 1

2
h−2

[
D+

h,xD
+
h,y +D−

h,xD
−
h,y

]
,

where D±
h,x and D±

h,y denote the forward and backward difference in x and y, respec-
tively.

Table 5.1 shows the number of levels, the number of multigrid iterations in one
time step, and the rate of convergence for different grid sizes. We can observe that the
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Table 5.1

Convergence of FAS scheme on the HJB example problem in [10].

h Level MG Rate of conv.
1
8

2 5 0.02236

1
16

3 6 0.03914

1
32

4 7 0.04366

1
64

5 7 0.05039

Table 5.2

Parameters used in the HJB example.

r σ T ξ π γ tol Δτ Q̂

0.03 0.15 20 yrs 0.33 0.10 9.125 10−6 0.01 [0, 1.5]

Table 5.3

Convergence result for policy iterations with multigrid.

Grid size Nonlinear Multigrid iterations per policy iteration
(h) iterations 1st policy 2nd policy 3rd policy
0.02 2 2 1 N/A
0.01 2 3 1 N/A
0.005 3 4 3 1
0.0025 3 6 4 1

convergence of our multigrid method does not depend on the grid size. The rate of

convergence presented in the last column is computed by averaging
‖rk+1‖
‖rk‖ over all the

iterations, where rk is the residual of the HJB equation after the kth FAS iteration.
Figures 1 and 2 in [10] show that the convergence rate of MGHJB is approximately
0.7 for this example problem. As shown in Table 5.1, the convergence rates of the
proposed multigrid method for different grid sizes and the number of levels are all
smaller than 0.1.

Example 3. In this example, we apply our multigrid method for solving the
pension plan asset allocation problem (2.3) with parameters specified in Table 5.2.
Meanwhile, we will compare our method with the approach in [3], where the policy
iteration to solve the HJB equation is applied. In each policy iteration, a standard
multigrid is used for the linearized problem with Gauss–Seidel as smoother.

Table 5.3 presents the convergence results for policy iterations with multigrid.
Column 2 shows the number of nonlinear policy iterations required for one time step
with different values of grid size. Columns 3–5 show the number of multigrid iterations
required for solving the linear problem in each nonlinear policy iteration stated in the
second column.

Table 5.4 shows the convergence results for the relaxation scheme as a solver and
our multigrid method. The damping factor ω of the smoother is chosen to be 2

3 .
The convergence rate of the relaxation scheme becomes unacceptably slow as grid
size decreases. On the other hand, the number of multigrid iterations is insensitive
to the grid size. Compared to Table 5.3, our multigrid is slightly more efficient than
the policy iteration plus multigrid approach in terms of the total number of multi-
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Table 5.4

Convergence of relaxation scheme and FAS scheme for the HJB case on uniform grid.

h
Relaxation

iter.
MG iter.

0.02 90 4
0.01 330 5
0.005 1320 6
0.0025 ≈ 4000 8

Table 5.5

Parameters used in the HJBI example.

rb rl rf μ σ T K Δτ tol penalty term η

0.05 0.03 0.004 {0, 1} 0.30 1 yr 100 0.01 10−6 10−6Δτ

grid iterations. Using either of these methods would yield satisfactory convergence.
However, there is no obvious extension of the approach in [3] for HJBI equations.

Example 4. We will apply the proposed multigrid method to HJBI equations.
The methods by Hoppe [10, 22] are for HJB equations only. The approach by [3]
is based on the policy iteration, but an example presented in [11] has shown that
the policy iteration may not converge for HJBI equations, in general. Consider the
following discrete double-obstacle problem: find V ∗ = (Ui)1≤i≤N ∈ R

N such that{
max

(
min

(
−Ui−1−2Ui+Ui+1

Δs2 , γ(Ui − g(si))
)
, γ(Ui − h(si))

)
= 0, i = 1, . . . , N,

U0 = 1, UN+1 = 0.8,

where Δs = 1
N+1 , si = iΔs, g(s) = max(0, 1.2 − ((s − 0.6)/0.1)2), and h(s) =

min(2, 0.3 + ((s− 0.2)/0.1)2), with γ = 1000, N = 127, and a starting point V 0 such
that V 0 /∈ (g, h). The policy iteration as shown in [11] does not converge. An iterative
method that converges in 16 iterations for this problem is proposed in [11]. However,
it involves solving an N × N linear system for 95 times in total. The relaxation
iteration for this problem is

V̂ k+1
i = −max

P∈{1,2}
min

Q∈{1,2}

⎧⎨⎩ai(P,Q) ·
(
V̂ k
i−1 + V̂ k

i+1

)
+ ci(P,Q)

bi(P,Q)

⎫⎬⎭ ,

where

ai =

[ − 1
Δs2 0
0 0

]
, bi =

[
2

Δs2 γ
γ γ

]
, and ci =

[
0 −γg (si)

−γh (si) −γh (si)

]
.

While convergence is guaranteed, it will take 9457 iterations for the relaxation scheme
to converge. On the other hand, the proposed multigrid method with three damped-
relaxation pre- and postsmoothings will converge in 14 iterations.

Example 5. We apply the proposed multigrid method to solve the American
options with stock borrowing fees (2.4) with parameters specified in Table 5.5. In this
example, there is a jump in the control due to the penalty term η.

Table 5.6 shows the convergence results. It is obvious that the relaxation scheme
converges very slowly on the fine grid in each time step while the number of multigrid
iterations is insensitive to the grid size. In column 4, the smallest value for m is
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Table 5.6

Convergence of relaxation scheme and FAS scheme for the HJBI case on uniform grid.

h
Relaxation

iter.
MG iter. m

10−2K 319 6 1

5× 10−3K 610 7 3

2.5× 10−3K 2500 7 3

1.25× 10−3K ≈ 10000 8 3

presented (section 3.4.2). It is a predetermined small positive integer and 2m + 1 is
the size of the local problem we solve to find the correct fine grid control at the jump
locations. Here we list only the smallest possible value for m that will result in a
convergent scheme. A larger m will also guarantee convergence, but the convergence
rate will not improve much. It is clear that the multigrid method is more efficient
than just the relaxation scheme alone for the example HJBI problem. Also, we note
that if the linear interpolation and full weighting restriction were used instead of the
interpolation and restriction described in section 3.4, the resulting multigrid method
would diverge due to the jumps in control.

Example 6. We apply the multigrid method to solve a two-dimensional HJBI
problem. It is based on a pursuit game example in [17] which can be written as a
stationary HJBI equation

−ρ+ εΔV +max
α∈A

(α · ∇V ) + min
β∈B

(β · ∇V ) + ‖x‖22 = 0

on (−0.5, 0.5)2 with ε = 0.5, Neumann boundary conditions, and A = {(a1, a2)| ai =
±1, 0}, B = {(0, 0), (1, 2), (2, 1)}. Having ρ set to constant 0.194, we solve the problem
using the proposed multigrid method. For fine grid size of 2−4, 2−5, 2−6, and 2−7,
the multigrid method converges in three iterations for all four cases.

6. Conclusion. In this paper, we propose solving the discretized HJB and HJBI
equations by applying multigrid with damped-relaxation smoother. Unlike policy iter-
ation, the relaxation scheme is convergent for both HJB and HJBI equations. Damp-
ing factor is appropriately chosen to damp away high frequency errors. Smoothing
analysis based on two financial problems shows the efficiency of the smoother. Spe-
cial restriction and interpolation techniques have been developed to handle the case
when there are jumps in the optimal control. Our variation of FAS is applied to real
life problems and examples in which policy iteration will not converge or converges
slowly. Numerical results show that our multigrid method converges in small numbers
of iterations for those examples.
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