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Abstract
In this paper, we study numerical solutions for the Hamilton-Jacobi-Bellman (HJB) and
Kolmogorov–Fokker–Planck (KFP) equations arising from mean field games. In order to
solve the nonlinear discretized systems efficiently, we propose a multigrid method. Our
proposed multigrid method is developed on the joint spacetime and is a full approximation
scheme (FAS).We consider hybrid full-semi coarsening and kernel preserving biased restric-
tion to address the anisotropy in time and convections in space. Themain novelty of this paper
is that we propose adding artificial viscosity to the direct discretization coarse grid operators,
such that the coarse grid error estimations are more accurate. We use Fourier analysis to
illustrate the efficiency of our proposed multigrid method. Numerical experiments show that
the convergence rate of the proposed multigrid method is mesh-independent and faster than
the existing methods in the literature.

Keywords Mean field games · Hamilton–Jacobi–Bellman equation ·
Kolmogorov–Fokker–Planck equation · Spacetime methods · Multigrid methods · Full
approximation scheme · Artificial viscosity

1 Introduction

Mean field game theory, first proposed by [31–33], studies the competitions among infinite
numbers of players, where individual players have negligible influence to the system, and
respond to each other in a statistical sense. There are numerous applications of mean field
games, including, but not limited to, micro or macro economics, sociology, engineering,
urban planning, etc [15,17,24].
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In [24,33], mean field games are formulated into a system of nonlinear partial differential
equations (PDEs) that contains two equations. One equation is a backwardHamilton–Jacobi–
Bellman (HJB) equation for the optimal value function of the players. The other equation
is a forward Kolmogorov–Fokker–Planck (KFP) equation for the distribution (or density
function) of the players’ states. Numerical methods for the HJB/KFP system have been
studied extensively in [1–7,12,13,30]. The major challenge of numerical solution for the
HJB/KFP system is the nonlinearity and the size of the discretized system, which requires
effective and fast solvers.

However, very few literature, such as [1,5,6,12], has proposed effective and fast solvers
for the nonlinear discretized HJB/KFP system. These solvers have two common features.
One is that they are all spacetime methods. The reason to consider spacetime methods is that
the HJB equation is backward and the KFP equation is forward, which makes it impossible to
solve the system using the conventional forward timestepping. The other common feature is
that all of these methods are outer-inner linearization-basedmultigrid methods. More specifi-
cally, in order to solve the nonlinear discretized problems, [1,5] propose spacetime Newton’s
iterations; [6] proposes ALG2 (i.e. Douglas-Rachford) iterations; [12] proposes primal-dual
(i.e. Chambolle–Pock) iterations. Each nonlinear iteration requires solving a large spacetime
linear system. In order to solve the linear system, they typically use BiCGStab iterations, and
use multigrid cycles as preconditioners for each BiCGStab iteration. The common issue of
these approaches is that they all involve many layers of iterations: outer nonlinear iterations,
and inner multigrid iterations (or inner BiCGStab iterations with multigrid preconditioners)
for each linearized system. As a result, the total number of iterations, which is approximately
the product of the iteration counts of the outer and inner iterations, can be large. To be more
concrete, the approach in [6] typically requires more than 1000 outer ALG2 iterations and 7
inner multigrid-preconditioned CG iterations per ALG2 iteration, i.e. more than 7000 iter-
ations in total; the approach in [12] typically requires more than 20 outer Chambolle–Pock
iterations and 4 inner multigrid-preconditioned BiCGStab iterations per outer iteration, i.e.
more than 80 iterations in total.

To address the issues of these existingmultigridmethods, in this paper, we propose another
spacetime multigrid solver for the nonlinear discretized HJB/KFP system. In particular, our
multigrid method is a full approximation scheme (FAS) [26,37]. Unlike the other multigrid
methods that are applied iteratively on the inner linearized systems nested in outer nonlinear
iterations, our FAS is directly applied on the nonlinear system itself and thus involves only
one layer of iterations.

In our FASmultigrid method, we consider a hybrid of full and semi coarsenings to address
the anisotropy arising from the timedirection [5,27].Wenote that convections in theHJB/KFP
system pose a major challenge for multigrid methods, as standard multigrid methods are
ineffective for convection-diffusion equations [37]. In order to address this difficulty, we
consider adapting a stable and efficient multigrid method proposed in [9], which uses a type
of biased restriction, calledkernel preserving restriction, togetherwithPetrov-Galerkin coarse
grid operators. However, themultigridmethod in [9] is designed for linear equations. It cannot
be directly applied to the FAS framework, because the nonlinearity of FAS is incompatible
with Petrov-Galerkin operators. Direct discretization, as the alternative of Petrov-Galerkin
operators, is compatible with the FAS framework. However, it is well-known that when the
convections are non-negligible, the convergence rate under direct discretization is no better
than 0.5 [11].

Our approach,which is themain novel component of this paper, is to add artificial viscosity
to the direct discretization coarse grid operators.Adding artificial viscosity allows us to design
an effective FAS solver under the direct discretization operators when the convections are

123



Journal of Scientific Computing (2021) 88 :10 Page 3 of 29 10

non-negligible. Our Local Fourier Analysis proves that adding artificial viscosity reduces the
asymptotic convergence factor and the error reduction factor.We remark that although adding
artificial viscosity is a well-known idea for stabilizing numerical solutions for convection-
diffusion equations [19,29,34], it has not been used for the purpose of improving coarse grid
correction for multigrid methods.

Significantly, our numerical simulations illustrate that our FAS multigrid method with
artificial viscosity yields mesh-independent convergence rates for the HJB/KFP system. In
particular, our approach typically converges in less than 10 iterations in total, which is faster
than the outer-inner linearization-based multigrid methods in [1,5,6,12].

To the best of our knowledge, this paper is the first proposal of multigrid method with the
following two features: it is an FAS directly designed for the nonlinear discretized HJB/KFP
system (as opposed to the linearized version); and in particular, it adds artificial viscosity on
the direct discretization coarse grid operator. These two features are critical for our proposed
multigrid method to converge faster than the other methods.

To illustrate our proposed multigrid method, we first review the HJB/KFP PDE system
arising from mean field games in Sect. 2. Then we describe finite difference discretization in
Sect. 3. Section 4 introduces joint spacetime methods for solving the nonlinear discretized
system. Section 5 describes our proposed spacetime FAS multigrid methods with artificial
viscosity. Section 6 uses Local Fourier Analysis to demonstrate the efficiency of the proposed
multigrid method. Section 7 presents numerical results. Section 8 is the conclusion.

2 Mean Field Games

In this section, we review the mathematical formulation for mean field games. Consider a
differential game with N players, where each player sets its control to maximize its value
function. For example, in a competitive smartphone market, each company (player) sets its
smartphone price (control) to maximize its long-term profit (value function). Such games
can be formulated by a PDE system with N HJB equations, where each equation solves
for the optimal value function of each individual player. Since each player tries to win the
competition by adjusting its own control in response to the other players’ controls, the HJB
equations are coupled. When N is large, the PDE system becomes extremely complicated.
Fortunately, when N → ∞, the model can be simplified. Each single player’s impact to the
entire system is negligible. Also, since it is difficult to keep track of every single opponent’s
control, players respond to each other’s control in the statistical sense. Individual players are
only distinguished and labeled by a “state variable”. For example, in the smartphone market
with many players, identifying every individual company becomes intractable. Instead, we
only differentiate the companies by their “capacities” (state variable). Such kind of games
can be reduced to a less complicated model, called “mean field games”; see [15,24,31–33].
These papers have shown that the model of mean field games yields a good approximation
of the original N -HJB model when N is large. We refer readers to [24] for an introduction
to the topic.

2.1 Mean Field Games with Local Coupling

We first review the mathematical formulation of mean field games with local coupling intro-
duced in [24,33]. Let � be a space domain in R

d . Let � × [0, T ] be a spacetime domain.
Let x ∈ � be the players’ d-dimensional state variable, and let t ∈ [0, T ] be the time. Let
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u : �×[0, T ] → R be the optimal value function of the players, and letm : �×[0, T ] → R

be the distribution (or density function) of the players’ state variable.Mean field games can be
formulated into a system of PDEs that contains two equations. One equation is the Hamilton–
Jacobi–Bellman (HJB) equation for the value function u:

−ut − σΔu + max
c

[c · ∇u − L(c)] + ρu − g(m) = 0, in � × [0, T ),

u(x, T ) = uT (x), in �,
(1)

where c : � × [0, T ] → R
d is a d-dimensional control parameter, ρ is the discount factor,

g(m) = g(m(x, t)) is the local cost function, L(c) = L(c(x, t), x) is the Lagrangian, and
c · ∇u − L(c) is the Hamiltonian. We assume that the Hamiltonian is concave in c and
the maximum can be achieved at the corresponding stationary point1. Noticeably, the HJB
equation is backward from the terminal time t = T to the initial time t = 0. Hence, the HJB
equation has a terminal condition u(x, T ) = uT (x) rather than an initial condition.

The other equation in the PDE system is the forward Kolmogorov–Fokker–Planck (KFP)
equation for the distribution m:

mt − σΔm − ∇ · (c∗m) = 0, in � × (0, T ],
m(x, 0) = m0(x), in �,

(2)

where

c∗ ≡ argmax
c

[c · ∇u − L(c)] (3)

is the optimal control of the HJB equation (1). For simplicity, unless specified, we assume
periodic boundary conditions for both (1) and (2). We refer readers to [1,33] for a discussion
on the well posedness of the problem (1–3).

A unique feature of the HJB/KFP system is that, while the HJB equation (1) is backward
from t = T to t = 0, the KFP equation (2) is forward from t = 0 to t = T . In addition,
these two equations are nonlinear and coupled with each other. More specifically, the HJB
equation is nonlinear, since the optimal control c∗ that maximizes c ·∇u−L(c) is a functional
of u. The two equations are coupled, because in the HJB equation, the cost function g(m)

depends on the solution of the KFP equationm; and in the KFP equation, the optimal control
c∗ depends on the solution of the HJB equation u. As a result, the entire HJB/KFP system is
nonlinear.

2.2 BertrandMean Field Games with Nonlocal Coupling

To illustrate a concrete application of mean field games, we review the Bertrand mean field
games proposed in [15]. Consider again a competitive market with a large number of compa-
nies. Each company, distinguished by its capacity x ∈ [0,∞), evolves over time t ∈ [0, T ].
Let u(x, t) be the optimal expected profit (value function) of each company over the period
[t, T ]. Let p(x, t) be the price of each company’s product (control). Let m(x, t) be the
distribution of the companies. The HJB equation reads

−ut − σuxx − max
p≥0

{D(p, p̄(m), η(m))(p − ux )} + ρu = 0,

u(x, T ) = 0, u(0, t) = 0, ux (∞, t) = 0,
(4)

where ρ is the interest rate of the bank, and σ is the randomness of the demand in the market.
In this HJB equation, the optimal control of each company p∗(x, t), the total number of

1 In some applications, the Hamiltonian is convex in c. Then “max" in (1) is replaced by “min".
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companies η : t → η(m)(t), the market average price p̄ : t → p̄(m)(t) and the demand
function D : (x, t) → D(p, p̄(m), η(m))(x, t) are given by

p∗ = argmax
p≥0

{D(p, p̄, η)(p − ux )} ,

η(t) =
∫ ∞

0
m(x, t)dx, p̄(t) = 1

η(t)

∫ ∞

0
p∗(x, t)m(x, t)dx,

D(x, t) = s

(
1

1 + εη(t)
− p(x, t) + εη(t)

1 + εη(t)
p̄(t)

)
,

(5)

where ε and s are constants. The corresponding KFP equation reads

mt − σmxx − [D(p∗, p̄(m), η(m))m
]
x = 0,

m(x, 0) = m0(x), mx (0, t) = 0, m(∞, t) = 0,
(6)

wherem0(x) is the initial distribution (e.g.m0(x) = 1−B(x; 2, 4), where B is the cumulative
beta distribution function). We refer readers to [23] for the well posedness of the problem (4–
6). We note that the coupling between the HJB equation (4) and the KFP equation (6) is more
complicated than Equations (1–3). More specifically, (1–3) only involves local couplings,
i.e. the convection coefficient is the local optimal control c∗ and the cost function g is also
local. However, in (4–6), the convection coefficient D is a functional of both p∗ andm in the
form of nonlocal integrals. To simplify the presentation, we will focus on Eqs. (1–3) in this
paper and revisit Eqs. (4–6) in Sect. 7.

3 Finite Difference Discretization

Consider the numerical solution of (1–3).Without loss of generality,we assume that the space-
time is (2+1)-dimensional. Define an Nx ×Ny ×Nt spacetime mesh {xni, j = (xi , y j , tn) | i =
1, ..., Nx ; j = 1, ..., Ny; n = 0, ..., Nt }. Denote the corresponding mesh sizes as Δx , Δy,
Δt . Our goal is to solve the set of the unknowns {uni, j ≡ u(xni, j ), m

n
i, j ≡ m(xni, j )}.

For the HJB equation (1), we use implicit timestepping for ut , central differencing for
Δu, and upwinding discretization for c · ∇u = c1ux + c2uy . Define c+ = max(c, 0), and
c− = min(c, 0). Then the discretization of HJB equation reads

−un+1
i, j − uni, j

Δt
− σ

uni+1, j − 2uni, j + uni−1, j

Δx2
− σ

uni, j+1 − 2uni, j + uni, j−1

Δy2

+max
cni, j

[
((c1)

n
i, j )

+ uni, j − uni−1, j

Δx
+ ((c1)

n
i, j )

− uni+1, j − uni, j
Δx

+((c2)
n
i, j )

+ uni, j − uni, j−1

Δy
+ ((c2)

n
i, j )

− uni, j+1 − uni, j
Δy

− L(cni, j )

]

+ρuni, j − g(mn
i, j ) = 0.

(7)

We note that since the HJB equation is backward in time, the implicit timestepping is given
by (un+1

i, j − uni, j )/Δt rather than the conventional (uni, j − un−1
i, j )/Δt .

For the KFP equation (2), we also use implicit timestepping for mt . Notice that the KFP
equation is written into a conservation form [36]. A standard discretization for conservation
laws is to use a numerical flux for f = c∗m. For instance, we can choose the Engquist-Osher
flux [36]:
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f̂ ni+1/2, j = ((c∗
1)

n
i, j )

−mn
i, j + ((c∗

1)
n
i+1, j )

+mn
i+1, j ,

f̂ ni, j+1/2 = ((c∗
2)

n
i, j )

−mn
i, j + ((c∗

2)
n
i, j+1)

+mn
i, j+1.

(8)

This is essentially an upwindfluxwith an additional consideration for rarefactions and shocks.
As a result, the finite difference discretization for the KFP equation is given by

mn
i, j − mn−1

i, j

Δt
− σ

mn
i+1, j − 2mn

i, j + mn
i−1, j

Δx2
− σ

mn
i, j+1 − 2mn

i, j + mn
i, j−1

Δy2

− f̂ ni+1/2, j − f̂ ni−1/2, j

Δx
− f̂ ni, j+1/2 − f̂ ni, j−1/2

Δy
= 0.

(9)

We note that the KFP equation (2) can also be discretized by other methods; see [8,14,16]
for a few examples. However, unless specified, we focus our discussion on the discretization
(9).

Some straightforward algebra can show that the finite difference discretization (7–9) is
equivalent to the one proposed in [1,4], where the control parameter c is kept in our dis-
cretization but is eliminated in [1,4]. The reason we keep the control c is that once c is fixed,
the differential operators of both HJB and KFP equations are linear. This motivates us to
use policy iteration [18,28] for solving the nonlinear system, which is easier than Newton’s
iteration where Jacobians have to be constructed. We will explain policy iteration in Sect.
5. Due to the equivalence between our discretization and the one proposed in [1,4], we can
follow [4] to obtain the convergence of the discrete solution to the continuous one.

For convenience, we rewrite (7) and (9) into matrix forms. Let unh ∈ R
Nx Ny×1 and mn

h ∈
R

Nx Ny×1 be the unknown vectors at the n-th time step. Let (c1)nh ∈ R
Nx Ny×1 and (c2)nh ∈

R
Nx Ny×1 be the control vectors in the x and y directions. Define cnh ≡ (

(c1)nh, (c2)
n
h

)T ∈
R
2Nx Ny×1. Then the HJB equation (7) can be rewritten as

max
cnh

[
An
H J B(cnh)u

n
h − L(cnh)

] = 1/Δt · un+1
h + g(mn

h), (10)

where An
H J B ∈ R

Nx Ny×Nx Ny is a matrix that depends on the control vector cnh . Similarly, the
KFP equation (9) can be rewritten as

An
K FP

(
(c∗)nh

)
mn

h = 1/Δt · mn−1
h , (11)

where (c∗)nh ≡ argmax
cnh

[
An
H J B(cnh)u

n
h − L(cnh)

]
is the optimal control vector given by (10),

and An
K FP is the corresponding matrix.

4 Joint Spacetime Formulation for Solving the Nonlinear Discretized
System

Next we consider solving the nonlinear discretized HJB/KFP system (10) and (11). The
standard approach for solving the time-dependent system is timestepping. For the HJB/KFP
system, timestepping needs to be implemented as a forward/backward fixed point iteration.
More specifically, one can start with an initial guess ofmh on the entire spacetime�×[0, T ],
fix mh and solve the HJB equation (10) for uh and c∗

h by backward timestepping. Then one
can fix c∗

h and solve the KFP equation (11) formh by forward timestepping. The pseudo-code
can be found in Algorithm 3 in the appendix.
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In this paper, we consider spacetime methods for solving the discretized HJB/KFP system
(10–11). The idea of spacetime methods is to treat the unknowns of the discretized HJB/KFP
system for all the timesteps as one entity, and solve them simultaneously. Our motivation
for using spacetime methods is to develop fast solvers for the HJB/KFP system. The idea is
that, in addition to the spatial dimensions, spacetime methods allow computational speed-up
in the time dimension as well. Some literature, such as [21,22], has also considered using
spacetimemethods to speed up computation for time dependent PDEs. These methods would
not be more advantageous than the conventional timestepping unless they are implemented
in the parallel manner. However, we will show that our approach achieves faster convergence
than timestepping even without parallelization. Spacetime methods have also been seen in
numerical solution for time dependent PDEs on deforming domains [35]. However, this is
beyond the scope of our paper.

Mathematically, introduce the spacetime unknown vectors

uh ≡ (u0h, ..., u
Nt−1
h )T ∈ R

Nx Ny Nt×1, mh ≡ (m1
h, ...,m

Nt
h )T ∈ R

Nx Ny Nt×1,

and the corresponding spacetime control vector ch = (c0h, ..., c
Nt
h )T ∈ R

2Nx Ny(Nt+1)×1. Then
the HJB/KFP system (10–11) can be rewritten into the following spacetime matrix forms:

AH J B(c∗
h)uh = bH J B(c∗

h,mh),

subject to c∗
h = argmax

ch
[AH J B(ch)uh − L(ch)] , (12)

AK FP (c∗
h)mh = bK FP . (13)

Here

AH J B =

⎛
⎜⎜⎜⎝

A0
H J B − 1

Δt I
A1
H J B − 1

Δt I
. . .

. . .

ANt−1
H J B

⎞
⎟⎟⎟⎠ , AK FP =

⎛
⎜⎜⎜⎝

A1
K FP

− 1
Δt I A2

K FP
. . .

. . .

− 1
Δt I ANt

K FP

⎞
⎟⎟⎟⎠

are Nx NyNt × Nx NyNt matrices, and

bH J B =

⎛
⎜⎜⎜⎝

L((c∗)0h) + g(m0
h)

L((c∗)1h) + g(m1
h)

...

L((c∗)Nt−1
h ) + g(mNt−1

h ) + 1
Δt u

Nt
h

⎞
⎟⎟⎟⎠ , bK FP =

⎛
⎜⎜⎜⎝

1
Δt m

0
h

0
...

0

⎞
⎟⎟⎟⎠

are Nx NyNt × 1 vectors.
We can further rewrite the system (12–13) into a nonlinear discretized system for the joint

unknown variable (uh,mh) on the entire spacetime domain:
(
AH J B(c∗

h)

AK FP (c∗
h)

)(
uh
mh

)
=
(
bH J B(c∗

h,mh)

bK FP

)
,

subject to c∗
h = argmax

ch
[AH J B(ch)uh − L(ch)] .

(14)

To emphasize that (uh,mh) are solved together, we call (14) a “joint" spacetime formulation.
We note that this is different from the previous forward/backward timestepping fixed point
iteration (Algorithm 3), where timestepping is used for solving uh and mh separately.

One may argue that spacetime methods are usually more demanding than conventional
timestepping methods in terms of memory, as spacetime methods require storing solutions
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on the entire spacetime and also the spacetime matrix (14). However, since the HJB equation
is backward and the KFP equation is forward, both the forward/backward timestepping
methods and the joint spacetime methods require storing both solutions uh and mh on the
entire spacetime [1]. We can avoid storing the spacetime matrix by the full approximation
scheme that will be proposed in Sect. 5. We remark that Sect. 5.3 of [37] explains that a
full approximation scheme does not require explicitly constructing matrices. Hence, for the
HJB/KFP system (14), the joint spacetime method does not increase memory requirement.

As a side remark, iterating between (10) and (11) with forward/backward timestepping is
a block Gauss-Seidel iteration scheme for the joint spacetime system (14).

5 Multigrid Methods

The joint spacetime HJB/KFP system (14) is large, which requires fast and effective solvers.
In this section, we will propose a multigrid method for solving (14) efficiently. For an
introduction to multigrid methods, we refer readers to [37]. For simplicity, we assume that
Δx = Δy = h.

5.1 A Review of SpacetimeMultigrid Methods

There have been multigrid methods that are developed on the entire spacetime. For example,
[22] considers spacetime multigrid methods for solving discretized linear parabolic PDEs.
The authors propose using a block Jacobi smoother and a hybrid full & semi coarsening. We
note that the block Jacobi smoother has two deficiencies. One is that it is a block smoother,
which is more expensive than pointwise smoothers. The other is that it is a Jacobi smoother,
which is weaker than the widely-used Gauss-Seidel smoothers. In addition, the spacetime
multigrid method in [22] is only developed for linear systems and cannot be directly applied
to the nonlinear system (14).

Outer-inner linearization-basedmultigridmethods, such as [1,5,6,12], have been proposed
for (14). They have been discussed in Sect. 1.We remark that [1,5,6,12] are not the only outer-
inner linearization-based multigrid methods. For instance, we can take advantage of the fact
that our formulation (14) keeps the optimal control c∗

h explicitly, unlike [1,5] where c∗
h is

eliminated. This allows us to use policy iteration [18,28]. More specifically, by fixing c∗
h

and the right hand side’s mh , the HJB/KFP system (14) becomes linear. This motivates us
to iterate between two tasks: solving the linearized HJB/KFP system under the fixed control
c∗
h , and solving the optimization problem for the control. We can use such policy iteration as
the outer nonlinear iteration and solve each linearized system by inner multigrid cycles. The
pseudo-code for this multigrid scheme is provided in Algorithm 4 in the appendix.

We emphasize, however, that all these schemes require multiple layers of iterations: outer
nonlinear iterations (Newton, ALG2, primal-dual, policy); and inner multigrid cycles (or
inner BiCGStab iterations with multigrid preconditioners). Due to the outer-inner iterative
structure of these algorithms, the total number of iterations can be large. We also note that
thesemultigrid schemes are not fully nonlinear, because the innermultigrid cycles are applied
to the linearization of (14), rather than (14) itself.
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5.2 Full Approximation Scheme

To address the issues of the outer-inner linearization-based multigrid methods, in this paper,
we propose a full approximation scheme (FAS) [10,26,37]. FAS is a family of multigrid
schemes that is directly developed upon nonlinear discretized systems, and involves only one
layer of iterations. We refer readers to Sect. 5.3 of [37] for an introduction to the FAS. The
key component of the FAS is the construction of the nonlinear coarse grid problem. Denote
the discretized nonlinear operator for (14) as

Nh(uh,mh) ≡
(
AH J B(c∗

h(uh))
AK FP (c∗

h(uh))

)(
uh
mh

)
−
(
bH J B(c∗

h(uh),mh)

bK FP

)
,

subject to c∗
h(uh) = argmax

ch
[AH J B(ch)uh − L(ch)] .

(15)

Then we define the following coarse grid problem with respect to (û2h, m̂2h):

N2h(û2h, m̂2h) = N2h(u2h,m2h) + Rhrh . (16)

Here N2h is called the direct discretization coarse grid operator, i.e. the left hand sides of
(7) and (9) where the mesh spacing h is replaced by 2h. (û2h, m̂2h) is the unknown on the
coarse grid, (u2h,m2h) is the injection of the current approximated solution (uh,mh), rh is
the residual for the approximated (uh,mh), and Rh is a restriction operator. The coarse grid
error is then given by e2h = (û2h, m̂2h) − (u2h,m2h).

5.3 Failure of FAS with the StandardMultigrid Components

Naively, one may consider using FAS with the standard multigrid components (i.e. pointwise
Gauss–Seidel smoother, full coarsening, bilinear interpolation, full-weighting restriction).
However, it turns out that such multigrid methods do not converge in general. The failure is
caused by the following issues:

(1) The standard pointwise Gauss–Seidel smoother does not smooth the error in the time
direction, if σ Δt

Δx2
	 1. Consider the KFP equation with zero convection (c∗ = 0), namely

mt − σΔm = 0. Figure 1 shows the errors after 10 steps of Gauss–Seidel iterations, where
σ Δt

Δx2
= 1 and 32, respectively. We note that when σ Δt

Δx2
= 32, the error is not smooth in

the time dimension; see Fig. 1(iv)-(v).
(2) The standard full-weighting restriction does not take into account of the one-sided

nature of the information propagation in the time dimension.
(3) The standard full-weighting restriction does not take into account of the one-sided

nature of the informationpropagation resulting from the convections in the spatial dimensions.
It is well-known that convergence of multigrid deteriorates as the convections increase [37].

(4) Direct discretization coarse grid operator (16) results in a poor coarse grid estimated
error. It is shown [11] that if direct discretization is used, when the convections are not aligned
with the grid, the convergence factor is no better than 0.5.

In the next few subsections, we will discuss how to address these issues in details.

5.4 Joint Spacetime Pointwise Gauss–Seidel (GS) Smoother

We propose a smoother that is nonlinear based on the policy iteration discussed in Sect. 5.1.
More specifically, in one step nonlinear smoothing, we first fix the control c∗

h in (14), obtain
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(i)

(ii)

(iv)

(iii)

(v)

Fig. 1 The errors of the KFP equation with zero convection (c∗ = 0), namely mt − σΔm = 0. (i) Initial
error on the 32 × 32 grid. (ii) Error after 10 steps of Gauss–Seidel iterations. σΔt/Δx2 = 1. (iii) Cross
sections of the smoothed error in (ii). Blue and red lines are the cross sections of the error along x and t axes
respectively. (iv) Error after 10 steps of Gauss–Seidel iterations. σΔt/Δx2 = 32. (v) Cross sections of the
smoothed error in (iv)

the linearized HJB/KFP system and perform smoothing for the linearized problem; then we
update the control by solving the nonlinear optimization problem in (14) under the latest uh .

Regarding the smoother for the linearized problem of (14), we consider a spacetime
pointwise GS smoother. That is, we perform forward timestepping for the KFP equation (9)
and backward timestepping for theHJB equation (7), where pointwiseGS smoother is applied
at each timestep. We note that both (7) and (9) are convection-diffusion problems. In some
mean field games where the convection is guaranteed to be non-negative (such as the demand
function D in Sect. 2.2, production quantity in [15,24], etc), the smoother at each timestep
is the downstream GS smoother; in other mean field games where the sign of the convection
may change at different grid points, the smoother at each timestep is the four-direction GS
smoother [37]. We note that if the four-direction smoother is applied, it is only applied in the
spatial dimensions; in the time dimension, the smoother remains one-directional.

The pseudo-code for the proposed smoother is given as follows:

5.5 Hybrid Full-Semi Coarsening

Section 5.3 has shown that the pointwise GS smoother does not smooth the error in the time
direction when σ Δt

Δx2
is large. To explain this, consider again the KFP equation with zero

convection, namely the heat equation mt − σΔm = 0. When σ Δt
Δx2

	 1, the discretized
heat equation is highly anisotropic. That is, it is strongly connected in the spatial directions
but weakly connected in the time direction. It is well-known that pointwise smoothers do not
smooth errors in the weakly connected direction [37].

To address this issue, one may use block smoothers, where each block corresponds to
the 2-dimensional sub-mesh at each time step [22]. However, each block is a linear sys-
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Algorithm 1 Joint spacetime pointwise GS smoother

1: subroutine (ūh , m̄h ) = SMOOTH (uh , mh )

2: for n = 1, · · · , Nt do
3: Update the control: c̄nh = argmax

cnh

[
AnH J B (cnh )unh − L(cnh )

]
.

4: Apply one step GS smoother on the linearized KFP equation AnK FP (c̄nh )mn
h = 1/Δt · m̄n−1

h , which
updates the solution mn

h → m̄n
h .

5: end for
6: for n = Nt − 1, · · · , 0 do
7: Apply one step GS smoother on the linearized HJB equation AnH J B (c̄nh )unh = L(c̄nh )+ g(m̄n

h)+ 1/Δt ·
ūn+1
h , which updates the solution unh → ūnh .

8: end for

tem of size (Nx Ny) × (Nx Ny), and the cost of solving the linear system is as high as
O(min(N 2

x , N 2
y )Nx Ny). The problem is more severe if the dimension of the space is greater

than 2.
Alternatively, following the idea in [5,12,27], we stick to a pointwise smoother, where the

cost is only O(Nx Ny). However, in order to use a pointwise smoother, the coarsening strategy
is changed to semi-coarsening.More specifically, the strongly connected dimensions, namely
the spatial dimensions, are fully coarsened; theweakly connected dimension, namely the time
dimension, remains uncoarsened.

We note that if we perform semi-coarsening, then σ Δt
Δx2

will decrease on the coarse grids.

When σ Δt
Δx2

is no longer large, the pointwise GS smoother can effectively smooth the error
in the time direction as well; see Fig. 1(ii–iii). In this case, coarsening can also be applied in
the time direction.

As a result, we can combine these two coarsening strategies together. More specifically,
when σ Δt

Δx2
is larger than a threshold value (e.g., 1), we use semi-coarsening in the spatial

dimensions only; otherwise, we use full-coarsening on the entire spacetime grid. This gives
rise to a hybrid full-semi coarsening scheme.

We remark that semi-coarsening has been proposed in [5,12] for the HJB/KFP system.
However, our strategy is a hybrid coarsening rather than a pure semi-coarsening. In addition,
we remark that although [22] also uses a hybrid coarsening (for linear PDEs), it is very
different from our hybrid coarsening.More specifically, [22] uses full coarsening when σ Δt

Δx2

is large; we use full coarsening when σ Δt
Δx2

is small. In the event of semi-coarsening, [22]
applies coarsening in the time dimension; we apply coarsening in the spatial dimensions.
These differences are caused by difference choices of smoothers, i.e. the block smoother in
[22] versus our pointwise smoother.

5.6 Interpolation

Under the proposed hybrid coarsening strategy, the errors are smooth along the coarsened
directions. As a result, to transfer the errors from coarse grids to fine grids, we use the
standard trilinear interpolation for full-coarsening and the standard bilinear interpolation for
semi-coarsening.
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5.7 Forward/Backward Restriction in Time and Kernel Preserving Restriction in
Space

We note that the KFP equation is forward in time, while the HJB equation is backward in
time. Hence, following [27], we use forward and backward restrictions in the time direction
for the KFP and HJB equations, respectively. If we use the stencil notation introduced in
Section 1.3.4 of [37], then the restriction operators read

KFP:

[
1

2

1

2
0

]
, HJB:

[
0

1

2

1

2

]
. (17)

The restriction in the spatial dimensions must take into account of the one-sided convec-
tional effect. Let us first consider the spatial restriction for the KFP equation. Following [9],
we consider kernel preserving biased restriction. The idea is to capture the hyperbolic nature
of the PDE. The restriction weights are biased towards the upwind side and matched with
the flow direction of the error. Such biased restriction may not be unique. Kernel preserving
scheme is one type of biased restriction that preserves the kernels of the differential operator
of the KFP equation,−σΔm−∇·(cm). In this case, the kernels are the arbitrary constant and
the exponential function exp(−σ−1c ·x). To preserve the kernels, [9] proposes the following
restriction operator

Rh(c) = 1

4

⎡
⎢⎣

0 1
1+exp(−σ−1c·(0,h))

1
1+exp(−σ−1c·(h,h))

1
1+exp(−σ−1c·(−h,0))

1 1
1+exp(−σ−1c·(h,0))

1
1+exp(−σ−1c·(−h,−h))

1
1+exp(−σ−1c·(0,−h))

0

⎤
⎥⎦ , (18)

when c1c2 > 0. Similar operator can be derived for c1c2 < 0. We note that when c1 =
c2 = 0, the restriction operator (18) is reduced to a 7-point constant restriction, which
is an alternative of the full-weighting restriction. Conversely, when |c1| and |c2| are very
large, it becomes a pure upwind biased constant restriction. Regarding the HJB equation, the
convection coefficient has an opposite sign compared with the KFP equation. To obtain the
restriction operator of the HJB equation, we simply replace c in (18) by −c.

We note that in [9], the kernel preserving biased restriction is combined with the Petrov-
Galerkin coarse grid operator A2h ≡ Rh Ah Ph , where Rh and Ph are the restriction (18) and
the trilinear/bilinear interpolation.

As analyzed in [9], the kernel preserving biased restriction operator has several desirable
properties. One is that it captures the one-sided nature of the convections and preserves the
kernel of −σΔm − ∇ · (cm). Another advantage is that the phase error of the coarse grid
correction is negligible. In addition, the resulting Petrov-Galerkin coarse grid operators are
nearlyM-matrices, which is crucial for the stability of multigrid. Conversely, Galerkin coarse
grid operators under the standard full-weighting restriction are not M-matrices [9,37].

Eventually, the restriction operator on the entire spacetime is the tensor product of the
restriction operators in the space dimensions and in the time dimension.

5.8 Direct Discretization and Artificial Viscosity

Despite the advantage of the kernel preserving restriction in [9], it combines with the Petrov-
Galerkin coarse grid operator, which is incompatible with the nonlinearity of the FAS. More
specifically, under the FAS framework, the Petrov-Galerkin coarse grid operator is given by
A2h(c) ≡ Rh(c)Ah(c)Ph , where each matrix entry of A2h(c) becomes a nonlinear function
that depends on the control c. This is muchmore complicated than the Petrov-Galerkin coarse
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grid operator for the linear problems considered in [9], where each matrix entry of A2h is a
number. As a result, constructing the Petrov-Galerkin coarse grid operator for the nonlinear
FAS is impractical.

In order to make FAS a practical approach, the FAS literature uses direct discretization
as the coarse grid operator, as defined in (16). However, if direct discretization coarse grid
operator is used, then the kernel preserving restriction does not yield precise coarse grid
estimated errors any more.

In this paper, we propose to modify the direct discretization coarse grid operator (16),
such that it becomes a good approximation to the Petrov-Galerkin coarse grid operator, and
thus yields accurate coarse grid estimated errors.

In order to achieve this, we investigate the difference between Petrov-Galerkin and direct
discretization coarse grid operators. For simplicity, we first consider the one dimensional
steady-state linear convection-diffusion equation

− σmxx − cmx = 0, (19)

where c is a positive constant. If we again use the stencil notation introduced in Section 1.3.4
of [37], then the finite difference stencil is given by

Ah(c) =
[
− σ

h2
2σ

h2
+ c

h
− σ

h2
− c

h

]
. (20)

If we replace h by 2h, we obtain the direct discretization coarse grid operator:

ADD
2h (c) =

[
− σ

(2h)2

2σ

(2h)2
+ c

2h
− σ

(2h)2
− c

2h

]
. (21)

On the other hand, under the standard linear interpolation Ph and the kernel preserving
restriction

Rh(c) = 1

2

[
1

1 + exp(σ−1ch)
1

1

1 + exp(−σ−1ch)

]
, (22)

the Petrov-Galerkin coarse grid operator is given by

APG
2h (c) = Rh(c)Ah(c)Ph

=
[
− σ

(2h)2
+ (1 − η)c

8h

2σ

(2h)2
+ (1 + η)c

4h
− σ

(2h)2
− (3 + η)c

8h

]
,

(23)

where η ≡ tanh( ch2σ ). Then the difference between the two coarse grid operators (23) and
(21) is

APG
2h (c) − ADD

2h (c) = 1

2
(1 − η)ch ·

[
1

(2h)2
− 2

(2h)2

1

(2h)2

]
. (24)

Significantly, this turns out to be the stencil for an O(h) viscosity 1
2 (1−η)ch mxx . Motivated

by this fact, we consider adding this O(h) “artificial viscosity" to the direct discretization
coarse grid operator ADD

2h (c). This yields the Petrov-Galerkin coarse grid operator APG
2h (c)

and thus a more precise coarse grid error estimation.
To summarize, ourmultigrid scheme for (19) is to construct the direct discretization coarse

grid operator, but instead of using the original viscosity σ , we use the damped viscosity

σ̂ = σ − 1

2
(1 − η)|c|h, (25)
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where

η ≡ tanh

( |c|h
2σ

)
. (26)

Here we put the absolute value on c to generalize the result from c > 0 to any c.
Next we consider the two dimensional linear convection-diffusion equation

− σ1mxx − σ2myy − c1mx − c2my = 0. (27)

We obtain the difference between the two coarse grid operators:

APG
2h (c) − ADD

2h (c) = 1

4
h
[
(2 − η12 − η1)|c1|mxx + (2 − η12 − η2)|c2|myy

−sign(c1c2)((η12 + η2)|c1| + (η12 + η1)|c2|)mxy

−sign(c2)2σ1η2mxxy − sign(c1)2σ2η1mxyy + O(h)
]
,

(28)

where

η1 ≡ tanh

( |c1|h
2σ1

)
, η2 ≡ tanh

( |c2|h
2σ2

)
, η12 ≡ tanh

( |c1|h
2σ1

+ |c2|h
2σ2

)
. (29)

Notice that when h → 0, η1, η2 and η12 are also O(h). If we assume that |c1|h
2σ1

and |c2|h
2σ2

are
not much larger than 1, then (28) can be approximated by

APG
2h (c) − ADD

2h (c) ≈ 1

4
h
[
(2 − η12 − η1)|c1|mxx + (2 − η12 − η2)|c2|myy

]
, (30)

where we only keep the viscosity terms in (28).
Similar to the one dimensional convection-diffusion equation, for the two dimensional

case (27), our multigrid scheme is to construct the direct discretization coarse grid operator,
where we add O(h) artificial viscosity to the original σ1 and σ2 and damp them to

σ̂1 = σ1 − 1

4
(2 − η12 − η1)|c1|h, σ̂2 = σ2 − 1

4
(2 − η12 − η2)|c2|h. (31)

Figure 2 shows an example of the multigrid errors for the two-dimensional convection-
diffusion equation (27). By comparing Figs. 2(iv) and 2(v), we observe that with artificial
viscosity, the coarse grid estimated error (red) becomes closer to the pre-smoothed error
(blue), and the post-smoothed error (black) becomes smaller. In other words, adding artificial
viscosity yields amore precise coarse grid estimated error and amore efficient multigrid error
reduction.

In this paper, we extend the proposed idea of artificial viscosity from the linear convection-
diffusion equations to the nonlinear HJB/KFP system (14). We will demonstrate in Sect. 7
that by adding the artificial viscosity to the direct discretization coarse grid operator, we
obtain a more efficient multigrid method for the nonlinear HJB/KFP system.

Eventually, we summarize the proposed artificial viscosity joint spacetime FAS multigrid
method in Algorithm 2.

6 Local Fourier Analysis

In this section, we use Local Fourier Analysis (LFA) [37,38] to demonstrate the efficiency
of the proposed multigrid method. Let us consider the linearized KFP equation

mt − σΔm + ∇ · (cm) = 0. (32)
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(i) (ii) (iii)

(iv) (v)

Fig. 2 The multigrid (6-grid) errors for the two-dimensional convection-diffusion equation −σΔm − ∇ ·
(cm) = 0, where σ = 1 and c = (−7, −7)T . (i) Pre-smoothed error. (ii) Coarse grid estimated error
without artificial viscosity. (iii) Coarse grid estimated error with artificial viscosity. (iv) Cross sections of the
pre-smoothed error (blue), coarse grid estimated error (red) and post-smoothed error (black) along the x axis
without artificial viscosity. (v) Cross sections of the pre-smoothed error (blue), coarse grid estimated error
(red) and post-smoothed error (black) along the x axis with artificial viscosity

We assume that c is a positive constant. Also, we assume that Δx = Δy = h.

6.1 Smoothing Analysis

We first analyze the smoothing property of the joint spacetime GS smoother proposed in
Sect. 5.4. Since we assume that c ≥ 0, in the spatial dimensions, it is sufficient to consider
the downstream (rather than four-direction) GS smoother. Define the (2+1)-dimensional
spacetime Fourier modes as ϕh,Δt (θ , x) ≡ exp [i ((θ1, θ2) · (x, y)/h + θ0t/Δt)], where θ =
(θ1, θ2, θ0) ∈ [−π, π)3, and x = (x, y, t). Following [37], we obtain the Fourier symbol of
the smoother:

S̃h(θ) =
σΔt
h2

(eiθ1 + eiθ2)

1 + σΔt
h2

(4 + c1h
σ

+ c2h
σ

) − σΔt
h2

(1 + c1h
σ

)e−iθ1 − σΔt
h2

(1 + c2h
σ

)e−iθ2 − e−iθ0
.

We define its smoothing factor as μloc ≡ supκ

{
|S̃h(θ)| : θ ∈ high frequency mode

}
.

Smoothing factor reaches its best value at 0 and worst at 1. One can see that the smoothing
factor is determined by three ratios: σΔt

h2
, c1h

σ
and c2h

σ
.

Table 1 reports the smoothing factor μloc under different combinations of σΔt
h2

and

( c1h
σ

, c2h
σ

). We can see that if full-coarsening is used, then the smoothing factor depends
on the ratio σΔt

h2
. When σΔt

h2
is large, the smoothing factor is close to 1. When σΔt

h2
is small,
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Algorithm 2 Artificial viscosity joint spacetime FAS multigrid method

1: Start with an initial guess (u(0)
h ,m(0)

h ).
2: for k = 1, 2, ... until convergence do

3: (u(k+1)
h , m(k+1)

h ) = FASCYC (u(k)
h , m(k)

h , 0, σ , σ , γ , ν1, ν2). See below for the subroutine “FASCYC".
4: end for

subroutine (u(k+1)
h ,m(k+1)

h ) = FASCYC (u(k)
h , m(k)

h , qh , (σ1)h , (σ2)h , γ , ν1, ν2)

5: Construct the nonlinear operator (15),Nh , using the viscosity (σ1)h and (σ2)h .

6: Perform ν1 smoothing steps (Algorithm 1) onNh(uh ,mh) = qh , which updates the solution (u
(k)
h , m(k)

h )

→ (ū(k)
h , m̄(k)

h ).

7: Compute the residual: rh = qh − Nh(ū(k)
h , m̄(k)

h ).
8: Determine whether to use full-coarsening or semi-coarsening according to Section 5.5.

9: Inject the solution: (ū(k)
h , m̄(k)

h ) → (ū(k)
2h , m̄(k)

2h ).
10: Restrict the residual: r2h = Rhrh , where Rh is the restriction in Section 5.7.
11: Inject the viscosity: (σ1)h → (σ1)2h , (σ2)h → (σ2)2h .
12: Add artificial viscosity: (σ1)2h ← (σ1)2h − 1

4 (2 − η12 − η1)|c1|h, (σ2)2h ← (σ2)2h − 1
4 (2 − η12 −

η2)|c2|h, where η1, η2 and η12 are defined in (29).
13: Construct the coarse grid nonlinear operator N2h , using the viscosity (σ1)2h and (σ2)2h .

14: Compute the right hand side: q2h = N2h(ū(k)
2h , m̄(k)

2h ) + Rhrh .
15: if on the coarsest grid then

16: Solve N2h(û(k)
2h , m̂(k)

2h ) = q2h for (û(k)
2h , m̂

(k)
2h ), using Algorithm 1 repeatedly.

17: else
18: Solve N2h(û(k)

2h , m̂(k)
2h ) = q2h for (û(k)

2h , m̂(k)
2h ) approximately by γ -time recursions of

19: (û(k)
2h , m̂

(k)
2h ) = FASCYC (ū(k)

2h , m̄
(k)
2h , q2h , (σ1)2h , (σ2)2h , γ , ν1, ν2).

20: end if
21: Compute the coarse grid estimated error: e2h = (û(k)

2h , m̂(k)
2h ) − (ū(k)

2h , m̄(k)
2h ).

22: Interpolate the estimated error: eh = Phe2h , where Ph is the trilinear or bilinear interpolation.

23: Correct the fine grid solution: (ũ(k)
h , m̃(k)

h ) = (û(k)
h , m̂(k)

h ) + eh .

24: Perform ν2 smoothing steps (Algorithm 1) onNh(uh ,mh) = qh , which updates the solution (ũ
(k)
h , m̃(k)

h )

→ (u(k+1)
h , m(k+1)

h ).

the smoothing factor is much smaller than 1. This means that it is desirable to use full-
coarsening if and only if σΔt

h2
is small. On the other hand, if semi-coarsening is applied, then

the smoothing factor is basically determined by the ratios between convection and diffusion,
( c1h

σ
, c2h

σ
). The smoothing factor decreases as the ratios increase. Indeed, when the ratios are

infinity, or, when the linear problem (32) becomes purely hyperbolic, the smoothing factor
becomes 0, which seems to suggest that purely hyperbolic problems can be solved by one sin-
gle Gauss–Seidel iteration. However, this is only true for linear problems. The original KFP
equation (2) would not be solved by one single Gauss–Seidel iteration due to the nonlinearity
and the coupling with the HJB equation (1), even when the problem becomes hyperbolic.

6.2 Two-grid Analysis

In this subsection, we follow [38] and consider two-grid analysis for the full and semi coars-
enings. The Fourier symbols of the differential operator of (32), the interpolation operators
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Table 1 The smoothing factor μloc for different combinations of σΔt
h2

and (
c1h
σ ,

c2h
σ ) and for (i) full coars-

ening, and (ii) semi coarsening

(
c1h
σ ,

c2h
σ ) = (0.1, 0.1) (

c1h
σ ,

c2h
σ ) = (1, 1) (

c1h
σ ,

c2h
σ ) = (10, 10)

(i) Full coarsening
σΔt
h2

= 10 0.951 0.951 0.951

σΔt
h2

= 2 0.792 0.793 0.784

σΔt
h2

= 0.4 0.499 0.411 0.433

(ii) Semi coarsening

σΔt
h2

= 10 0.478 0.334 0.083

σΔt
h2

= 2 0.483 0.339 0.084

σΔt
h2

= 0.4 0.499 0.354 0.086

and the restriction operators are

L̃h(θ) =
(
1 + σΔt

h2

(
4 + c1h

σ
+ c2h

σ

))
− σΔt

h2

(
1 + c1h

σ

)
e−iθ1 − σΔt

h2

(
1 + c2h

σ

)
e−iθ2

− σΔt
h2

eiθ1 − σΔt
h2

eiθ2 − e−iθ0 .

Ĩ h2h(θ) =
{ 1

8 (1 + cos θ1) (1 + cos θ2) (1 + cos θ0) , full coarsening;
1
4 (1 + cos θ1) (1 + cos θ2) , semi coarsening.

Ĩ 2hh (θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8

(
1 + e−iθ0

) (
1 + eiθ1

1+exp(σ−1
1 c1h)

+ e−iθ1

1+exp(−σ−1
1 c1h)

+ eiθ2

1+exp(σ−1
2 c2h)

+ e−iθ2

1+exp(−σ−1
2 c2h)

+ ei(θ1+θ2)

1+exp(σ−1
1 c1h+σ−1

2 c2h)
+ e−i(θ1+θ2)

1+exp(−σ−1
1 c1h−σ−1

2 c2h)

)
,

full coarsening;
1
4

(
1 + eiθ1

1+exp(σ−1
1 c1h)

+ e−iθ1

1+exp(−σ−1
1 c1h)

+ eiθ2

1+exp(σ−1
2 c2h)

+ e−iθ2

1+exp(−σ−1
2 c2h)

+ ei(θ1+θ2)

1+exp(σ−1
1 c1h+σ−1

2 c2h)
+ e−i(θ1+θ2)

1+exp(−σ−1
1 c1h−σ−1

2 c2h)

)
,

semi coarsening.

Now we are ready to construct the Fourier symbol of the two-grid operator. Given
a low frequency mode θ000 ≡ θ ∈ [−π

2 , π
2

)3, we define an 8-dimensional space:
span{ϕh,Δt (θ

α, ·) : α = (α1, α2, α0), α1, α2, α0 ∈ {0, 1} }, where θα ≡ θ000 −
(α1sign(θ1), α2sign(θ2), α0sign(θ0)) · π . This 8-dimensional space is called 2h-harmonics.
The significance of the 2h-harmonics is that it is invariant under the two-grid operator M2h

h .
In the 2h-harmonics, the two-grid operator is given by an 8 × 8 matrix

M2h
h (θ) ≡ (Sh(θ))ν2

[
Ih − I h2h(θ)(L2h(2θ))−1 I 2hh (θ)Lh(θ)

]
(Sh(θ))ν1 ,

where Ih ∈ R
8×8 is an identity matrix, Lh(θ) ∈ C

8×8 is a diagonal matrix consisting of
{L̃h(θ

α)}, Sh(θ) ∈ C
8×8 is a diagonal matrix consisting of {S̃h(θα)}. For full-coarsening,

the 8-dimensional 2h-harmonics is mapped to a single Fourier mode ϕ2h,2Δt (2θ000, ·).
Hence, I h2h(θ) ∈ C

8×1 is a column matrix consisting of { Ĩ h2h(θα)}, I 2hh (θ) ∈ C
1×8 is

a row matrix consisting of { Ĩ 2hh (θα)}, and L2h(2θ) ≡ L̃2h(2θ000) is a 1 × 1 matrix.
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Table 2 The two-grid convergence factor ρloc(M
2h
h ) and error reduction factor σloc(M

2h
h ) for different

combinations of σΔt
h2

and (
c1h
σ ,

c2h
σ ) and for (i) full coarsening, and (ii) semi coarsening

(
c1h
σ ,

c2h
σ ) = (0.1, 0.1) (

c1h
σ ,

c2h
σ ) = (1, 1) (

c1h
σ ,

c2h
σ ) = (10, 10)

ρloc(M
2h
h ) σloc(M

2h
h ) ρloc(M

2h
h ) σloc(M

2h
h ) ρloc(M

2h
h ) σloc(M

2h
h )

(i) Full coarsening
σΔt
h2

= 10 0.89 0.97 0.89 0.97 0.89 0.97

σΔt
h2

= 2 0.54 0.67 0.59 0.67 0.51 0.67

σΔt
h2

= 0.4 0.50 0.52 0.56 0.60 0.50 0.52

(ii) Semi coarsening

σΔt
h2

= 10 0.22 0.29 0.22 0.28 0.18 0.19

σΔt
h2

= 2 0.23 0.29 0.22 0.28 0.18 0.19

σΔt
h2

= 0.4 0.26 0.30 0.22 0.34 0.18 0.19

For semi-coarsening, the 8-dimensional 2h-harmonics is mapped to two Fourier modes
{ϕ2h,Δt ((2θ1, 2θ2, θ0), ·), ϕ2h,Δt ((2θ1, 2θ2, θ0 − sign(θ0)π), ·)}. Hence, I h2h(θ), I 2hh (θ) and
L2h(2θ) are changed accordingly into 8 × 2, 2 × 8 and 2 × 2 matrices. We refer readers to
[38] for technical details.

Based on M2h
h (θ), we define the asymptotic convergence factor and the error reduction

factor as

ρloc(M2h
h ) ≡ sup

{
ρ(M2h

h (θ)) : θ ∈ low frequency mode
}
,

σloc(M2h
h ) ≡ sup

{‖M2h
h (θ)‖2 : θ ∈ low frequency mode

}
.

Similar to the smoothing factor, the asymptotic convergence factor and the error reduction
factor reach their best values at 0 and worst at 1, and are determined by the three ratios σΔt

h2
,

c1h
σ

and c2h
σ
.

Table 2 reports the two-grid convergence factor ρloc(M2h
h ) and error reduction factor

σloc(M2h
h ) under different combinations of σΔt

h2
and ( c1h

σ
, c2h

σ
). Table 2(i) shows that if full-

coarsening is used, then the factors depend on the ratio σΔt
h2

. When σΔt
h2

is large, the factors

are close to 1. When σΔt
h2

is small, the factors are much smaller than 1. Again, this suggests

an efficient error reduction under full-coarsening if and only if σΔt
h2

is small. Table 2(ii)
shows that if semi-coarsening is applied, then the factors are mainly determined by the ratios
( c1h

σ
, c2h

σ
). The factors decrease as ( c1h

σ
, c2h

σ
) increase. However, similar to the discussion at

the end of Section 6.1, this does not imply a more efficient error reduction in convection-
dominant regime than in diffusion-dominant regime, due to the nonlinearity of the HJB/KFP
system. Interested readers are referred to [20] for more discussions on the relation between
spacetime multigrid convergence results and the corresponding LFA estimate.

6.3 The Effect of Adding Artificial Viscosity

Our proposed multigrid method considers adding artificial viscosity. For simplicity, here
we consider the steady-state version of (32), or equivalently, −σΔm + ∇ · (cm) = 0. In
this subsection, we will use multigrid (i.e. three-grid, four-grid, etc) analysis to illustrate
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the improvement of adding artificial viscosity. An introduction to multigrid analysis can be
found in [38].

Table 3 reports the multigrid asymptotic convergence factors and error reduction factors
for the linearized KFP equation. Figure 3 illustrates the multigrid asymptotic convergence
factors ρloc(M) versus the convection coefficient c. We compare the results with and without
adding artificial viscosity. To summarize, the improvements of adding artificial viscosity
include the following:

(1) The significant improvement of the multigrid convergence factors occurs approxi-
mately between c = (10, 10)T and (30, 30)T . By adding artificial viscosity, the multigrid
factors are significantly reduced by 20%-40%.

(2)When c is close to (0, 0)T , or when the problem is diffusion dominant, adding artificial
viscosity does not have a significant impact on the multigrid factors, because the original
direct discretization already yields good error estimations.

(3) When c is greater than (40, 40)T , or when the problem is convection dominant, the
multigrid factors have modest improvements if artificial viscosity is added. We note that as
the convection increases, the ratios (

|c1|h
σ

,
|c2|h

σ
) also increase. The terms dropped out of (28)

are no longer negligible.
(4) For h = 1

64 and h = 1
128 , adding artificial viscosity yields approximately the same

amount of improvement on the convergence factors.
The LFA provides an estimate on how many iterations are saved by adding artificial

viscosity. Denote the convergence (or error reduction) factors with and without artificial
viscosity as ρyes and ρno (or σyes and σno), respectively. Using the reported numbers in Table
3, the ratio of the numbers of iterations with and without artificial viscosity is given by
log ρno/ log ρyes ≈ 70% (or log σno/ log σyes ≈ 80%). That is, adding artificial viscosity
may save 2-3 iterations per 10 iterations, or 20%-30% of computational cost. We will show
in Sect. 7 that the numerical simulation agrees with this LFA estimate.

The Local Fourier Analysis only studies the convergence behavior of the multigrid algo-
rithmon the linearized system. Itwould be desirable to provide a further convergence proof for
the fully nonlinear FASmultigridmethod. Some literature, such as [25], provides a theoretical
framework for a convergence proof for FAS schemes. Unfortunately, devising a convergence
proof for our FAS scheme for the mean field games is challenging. One reason is that the
existing theoretical framework is based on a scalar PDE, whereas our FAS is developed for a
system of PDEs; another reason is that the existing framework studies elliptic PDE, whereas
our FAS is a fully spacetime scheme and applied on the entire parabolic system.

7 Numerical Results

In this section, we apply our proposed spacetime multigrid method to the joint HJB/KFP
system (1)-(3), or equivalently, (14).We illustrate the fast andmesh-independent convergence
rates.

7.1 Implementation Descriptions

Unless specified, we use the V(1,1)-cycle [37]. That is, we choose ν1 = ν2 = γ = 1 in Algo-
rithm 2, or equivalently, we perform one pre and post smoothings respectively, and perform
multigrid recursion only once on each coarse grid. We terminate the multigrid iterations at
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Table 3 Multigrid asymptotic convergence factors and error reduction factors for −σΔm + ∇ · (cm) = 0,
where σ = 1. The results without artificial viscosity (the “No” rows) and with artificial viscosity (the “Yes”
rows) are compared

(i) h = 1
64 , four-grid

Artificial viscosity c = (20, 20)T c = (30, 30)T

ρloc(M
8h
h ) σloc(M

8h
h ) ρloc(M

8h
h ) σloc(M

8h
h )

No 0.34 0.40 0.43 0.47

Yes 0.20 0.32 0.33 0.39

(ii) h = 1
128 , five-grid

Artificial viscosity c = (20, 20)T c = (30, 30)T

ρloc(M
16h
h ) σloc(M

16h
h ) ρloc(M

16h
h ) σloc(M

16h
h )

No 0.39 0.44 0.48 0.51

Yes 0.23 0.35 0.38 0.43

Fig. 3 The multigrid asymptotic convergence factors ρloc(M) versus the convection coefficient c for
the two-dimensional convection-diffusion equation −σΔm + ∇ · (cm) = 0, where σ = 1 and c =
(0, 0), (5, 5), (10, 10), · · · . The blue lines are the convergence factors without artificial viscosity, while the
red lines are the corresponding convergence factors with artificial viscosity

the residual norm ‖rh‖ ≤ 10−6. The initial guesses for the grid size (Nx , Ny, Nt ) are the
trilinear interpolation of the solutions from the grid size (Nx/2, Ny/2, Nt/2).

In Examples 1 and 2, we compare the following multigrid schemes:
Scheme I (our proposed scheme) is the spacetime FAS scheme for the HJB/KFP system

(14), where artificial viscosity is added to the direct discretization coarse grid operator. The
number of iterations is counted.

Scheme II is the same as Scheme I, except that no artificial viscosity is added to the direct
discretization coarse grid operator.

Scheme III is the spacetime FAS scheme, where we use the multigrid components pro-
posed in [22]. More specifically, we apply the block Jacobi smoother, the coarsening strategy,
the standard full-weighting restriction and trilinear interpolation proposed in [22]. We note
that the scheme in [22] is developed for linear problems and cannot be directly applied to
nonlinear problems. We use the FAS with direct discretization operators to adapt the scheme
in [22] for the nonlinear HJB/KFP system. The number of iterations is counted.
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Scheme IV is the outer-inner linearization-based spacetime multigrid method described
in Algorithm 4. For each linearized problem, we use multigrid V(1,1)-cycle (inner loop). We
use the proposed multigrid components described in Sect. 5. The only exception is that we
use Petrov-Galerkin coarse grid operator, since it is accurate and not difficult to construct for
the linearized system. The number of iterations is defined as the sum of the numbers of inner
loops.

Scheme V is the forward/backward timestepping fixed point iteration described in Algo-
rithm 3. Each timestep (Lines 4 and 7) is solved by the FAS scheme, using our proposed
multigrid components described in Sect. 5. We note that the FAS here is applied on each
timestep rather than on the entire spacetime. In order to make a fair comparison between
Scheme V and the spacetime Schemes I-IV, we define the number of iterations for Scheme
V as the average number of iterations per timestep, namely, 1/Nt× sum of the FAS V-cycle
counts over all the Nt timesteps.

For all these five multigrid schemes, we note that the computational costs per iteration are
dominated by the costs of pre and post smoothings. In other words, the computational costs
of restrictions and interpolations are negligible. Hence, the complexities per iteration are the
same for Schemes I, II, IV and V. As a result, the number of iterations is a good measure for
the complexity of each multigrid scheme. We note that for Scheme III, since block smoother
is used, the complexity per iteration is more expensive than the other schemes.

In Example 7.4, we compare the numerical results by our proposed multigrid method with
the results given by the numerical scheme in [1].

7.2 Example 1

Consider the (2+1)-dimensional mean field games in Sect. 5 of [24]. This is the same as
solving (1–3), where the spacetime domain is T = 1, � = [0, 1]2, the cost function is

g(m) = ln(m), and the Lagrangian is L(c) = −‖c‖2
2 . Section 5 of [24] derives the following

exact solution:

u = −a(x2 + y2) + b, m = a

πσ
exp

(
−a(x2 + y2)

σ

)
, (33)

where a = 1
2σ − ρ

2 , b = 1
ρ

(
ln a

πσ
− 4aσ

)
. Here we imposeDirichlet boundary conditions for

both u andm, and let the terminal, initial and boundary conditions be the same as (33).We set
the discount factor asρ = 0.1.Wenote that the convection, given by c∗ = −∇u = 2a(x, y)T ,
is proportional to a. We test the following two cases.

Case 1: (σ, a) = (1, 0.45), which is diffusion dominant. Table 4(i) reports the convergence
rates of the numerical solutions towards the exact solution (33). The convergence rates of
‖u − uh‖ and ‖m − mh‖ are first order, namely, O(h).

We then investigate the convergence rates of the five multigrid schemes; see Table 4(i).
Scheme I takes only 4 iterations to converge. In addition, the CPU time for Scheme I is
approximately linear to the grid size, namely O(Nx NyNt ). The convergence rates of Scheme
II are basically the same as Scheme I. The reason is that the problem is diffusion dominant,
and thus direct discretization without artificial viscosity yields sufficiently good coarse grid
error estimations. Scheme I converges faster than Scheme III. Figure 5 explains the reason.
More specifically, Scheme I’s pre-smoothed error (blue lines) is smoother than Scheme III’s,
which leads to a more precise coarse grid estimate (red lines), a smaller post-smoothed
error (purple lines), a more efficient error reduction, and eventually a faster convergence. In
addition, the cost of Scheme I’s pointwise smoother is only O(Nx NyNt ), while the cost of
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(i) ( ,a) = (1,0.45) (ii) ( ,a) = (0.2,2.45)

Fig. 4 Example 7.2: Numerical solutions mh(x, y, T ). (i) (σ, a) = (1, 0.45). (ii) (σ, a) = (0.2, 2.45)

Scheme III’s block smoother is O(min(N 2
x , N 2

y )Nx NyNt ). We note that Schemes IV and V
are both outer-inner iterations, where the total iteration count is the number of outer iterations
times the average number of inner iterations; conversely, Scheme I is a single-layer iteration,
where the total iteration count is the FAS iteration count itself. The inner iteration count of
Schemes IV and V is approximately equal to the iteration count of Scheme I. As a result, the
total iteration count of Schemes IV and V is much higher than Scheme I. Comparing with
Schemes III-V, we conclude that the proposed Scheme I has the fastest convergence rates.

Case 2: (σ, a) = (0.2, 2.45), which is convection dominant. Table 4(ii) shows that the
numerical solutions converge to the exact solution as h → 0. We note that m(1, 1, t) ≈ 0;
see Fig. 4(ii). Hence in the HJB equation (1), ln(m(1, 1, t)) ≈ −∞. Due to this singularity,
the convergence rates of ‖u − uh‖ and ‖m − mh‖ are slightly slower than O(h).

Table 4(ii) reports the convergence rates of the five multigrid schemes. The numbers of
iterations for (σ, a) = (0.2, 2.45) are larger than those for (σ, a) = (1, 0.45). The reason
is that multigrid is usually less efficient when the problem becomes more hyperbolic. Sig-
nificantly, Scheme I converges in 6-7 iterations, independent of the mesh size. The total
complexity (reflected by the total CPU time) is linear to the grid size, namely O(Nx NyNt ).
By comparing Schemes I and II, we see that adding artificial viscosity saves 14% and 30% of
iterations when the mesh size is 16x16x16 and 32x32x32, respectively. This agrees with the
LFA estimate, which is around 20%-30% (see the end of Sect. 6.3). In particular, Scheme II
fails to converge when the mesh size is larger than 64x64x64. However, Scheme I success-
fully converges in only 7 iterations, and the convergence rate is mesh-independent. Scheme
III fails to converge. The reason, which has been explained in Fig. 5, is that Scheme III’s
errors are oscillatory. The oscillation grows quickly as the iteration proceeds. For Scheme
IV, the number of iterations grows as the grid becomes larger. The reason is that the num-
ber of outer iterations (policy iterations) grows, and is not mesh-independent. In addition,
the number of iterations for Scheme IV is above 64, much larger than Scheme I. Similarly,
Scheme V is also slower than Scheme I, since it is also an outer-inner iteration.
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(i) Scheme I, errors on the y and t axes

(ii) Scheme III, errors on the y and t axes

Fig. 5 Comparison of the error reductions between Scheme I and Scheme III. Here we consider the errors of
the HJB equation in Example 7.2 under one multigrid V-cycle. Cross sections of the errors along the y and t
axes are plotted. The initial errors are the same. Scheme I’s error reduction is faster than Scheme III’s

7.3 Example 2

We consider solving (4–6) in Section 2.2. We first verify the correctness of our nonlinear
solver by a simulation under the parameters in [15], i.e. ρ = 0.2, s = 1, σ = 0 or 0.0052,
ε = 0 or 0.3, T = 5. Figure 6 shows the plots of the initial value function u(x, 0) and the
number of remaining players η(t). The plots given by our numerical results are the same
as those in [15]. We note that unlike Example 7.2, here analytical solution is unavailable;
numerical solution is only provided as figures in [15], and thus it is impossible to compare
our solution with the solution in [15] using some norms. Interested readers are referred to
[15] for an explanation on the economic meaning of the solution.

Reference [15] does not discuss fast and efficient solvers for (4–6). Here we test the five
multigrid schemes. We restrict the choice of parameters to σ = 0.005, ε = 0.3, T = 5,
and test two cases. One is (ρ, s) = (0.2, 1), which is relatively diffusive, as D

σ
∼ s

σ
is

small; the other is (ρ, s) = (0.02, 10), which is relatively convective, as D
σ

∼ s
σ
is large.

We note that since the demand function D is always non-negative, we simply use the low-
cost one-direction downstream GS smoother rather than multi-direction smoother for our
proposedScheme I. The convergence rates are reported inTable 5.All themethods havemesh-
independent convergence rates. However, our proposed Scheme I has the fastest convergence
rates,which is around 7 iterations for the diffusive case and 9 iterations for the convective case.
The comparison between Schemes I and II shows that adding artificial viscosity saves 2-4

2 σ = 0.005 in Equation (4)-(6) corresponds to σ = 0.1 (namely σ 2/2 = 0.005) in [15].

123



Journal of Scientific Computing (2021) 88 :10 Page 25 of 29 10

Fig. 6 Example 7.3: Initial value function u(x, 0) and number of remaining players η(t) for different (σ, ε).
The plots given by our numerical solutions are the same as those in [15]

Table 5 Example 7.3: Convergence of the five multigrid schemes. σ = 0.005, ε = 0.3, T = 5. (i) (ρ, s) =
(0.2, 1). (ii) (ρ, s) = (0.02, 10). Note that for Scheme III, the numbers in the parentheses are the iteration
counts if the numbers of pre and post smoothings are changed from (1, 1) to (2, 2)

NxxNt Number of iterations
Scheme I Scheme II Scheme III Scheme IV Scheme V

(i) (ρ, s) = (0.2, 1)

64x64 6 7 12 29 17

128x128 7 7 12 35 19

256x256 7 8 13 40 20

512x512 7 8 14 46 20

(ii) (ρ, s) = (0.02, 10)

64x64 9 11 ∞ (11) 38 19

128x128 9 11 ∞ (11) 44 21

256x256 9 12 ∞ (11) 50 21

512x512 9 13 ∞ (11) 54 22

iterations,which is consistentwith theLFAestimate in Sect. 6.3.Wenote that tomakeScheme
III converge for the convective case, we change the numbers of pre and post smoothings from
(1, 1) to (2, 2), as shown in Table 5(ii). However, this doubles the computational cost per
iteration and yet the convergence rate is still slower than Scheme I.

7.4 Example 3

Consider the example in Sect. 4.2 of [1]. This is the same as solving (1)-(3), where the
spacetime domain is T = 1, � = [−0.5, 0.5]2, the cost function is g(m) = m, the terminal
condition is u(x, y, T ) = 0, the initial condition is m(x, y, 0) = 1, the boundary conditions

for both u and m are periodic, and the Lagrangian is L(c) = 2
√
3

9 ‖c‖3/2 − sin(2πx) −
sin(2π y) − cos(4πx). Straightforward algebra can show that under this Lagrangian, the
optimal control is c∗ = 3‖∇u‖∇u. This yields the same Hamiltonian H(x,∇u) = ‖∇u‖3 +
sin(2πx) + sin(2π y) + cos(4πx) as the one in [1].
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Table 6 Example 7.4: Convergence of our proposed multigrid schemes. Total number of iterations is counted

NxxNyxNt Total number of iterations
σ = 0.6 σ = 0.36 σ = 0.2 σ = 0.12 σ = 0.046

32x32x32 4 4 5 6 6

64x64x64 4 5 5 7 8

128x128x128 4 5 5 7 8

Table 7 Average (on the Newton loop) numbers of BiCGstab iterations given by the algorithm in [1]. We
note that the total numbers of iterations of the algorithm = the numbers of Newton loops × the numbers of
BiCGstab iterations, which can be much higher than the numbers listed in the table

NxxNyxNt Average numbers of BiCGstab iterations per Newton loop
σ = 0.6 σ = 0.36 σ = 0.2 σ = 0.12 σ = 0.046

32x32x32 2 2 3.5 6 10

64x64x64 2 2 3.5 6 10

128x128x64 2 2 4 6.1 10

We test our proposed multigrid method under different diffusion parameters; see Table
6. When σ = 0.12, 0.046, the problem is convection dominant and poses a challenge to
multigrid methods. When the spatial grid is coarser than 8 × 8, or h ≥ 1

8 , the convection-

diffusion ratios (
|c1|h

σ
,

|c2|h
σ

) turn out to be much larger than 1. As discussed in Sect. 5.8,

artificial viscosity is efficient under the assumption that ( |c1|h
σ

,
|c2|h

σ
) are not much larger than

1. To further improve the error estimations, we consider using W-cycle on the coarsest grids
where Nx × Ny is coarser than 8× 8. W-cycle is more expensive than V-cycle. However, we
emphasize that for the grids where Nx × Ny is finer than 8× 8, we still apply V-cycle. Since
W-cycle is only applied on the very coarsest grids, the extra computational cost is negligible.
In addition, for the KFP equation, we use the finite volume Scharfetter-Gummel method [8].

Table 6 shows that our proposed multigrid method converges in around 4-8 iterations; the
convergence rates are approximately mesh-independent.

Table 7 shows the convergence rates of the algorithm in [1]. We note that the total number
of iterations can be much higher than the numbers listed in the table. The reason is that
the total number of iterations is the product of the number of the outer Newton’s iterations
and the number of the inner BiCGstab iterations. The number of Newton’s iterations is not
reported in [1]. If the number of Newton’s iterations is greater than 2, then the total number
of iterations can be higher than our proposed method. In addition, each Newton-BiCGstab
iteration requires solving linear systems of size Nt Nx Ny × Nt Nx Ny , which is expensive.
Another observation of Table 7 is that as the diffusion decreases, the convergence rates of
the algorithm in [1] deteriorate quickly from 2 to 10. However, using our proposed multigrid
method, the increase of iteration counts is modest, from 4 to 8; see Table 6.

8 Conclusion

We propose a joint spacetime multigrid method for the HJB and KFP system arising from
mean field games. We propose a nonlinear FAS scheme, which requires only one layer
of iteration (as opposed to outer-inner iterations). We use a hybrid full-semi coarsening and
kernel preserving biased restriction operator to treat the anisotropy in time and the convection
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in space properly.We propose adding artificial viscosity to improve the precision of the coarse
grid error estimation using direct discretization. These properties are supported by our Fourier
analysis. The resulting multigrid method converges at the mesh-independent rate and at a
faster rate than the other approaches considered in Sect. 7.

We note that artificial viscosity is efficient under the assumption that ( |c1|h
σ

,
|c2|h

σ
) are not

much larger than 1. This may not be true if the convection is extremely large or if the diffusion
is extremely small. In Sect. 7.4, we have seen that applying W-cycle on the coarsest grids is
a good remedy in practice. However, it is desirable to find a more elegant solution, where
V-cycle can be applied on the coarsest grids and still yields an effective multigrid scheme.
Extending our proposed multigrid method to extremely large convection or extremely small
diffusion cases, and providing a complete convergence proof for our FAS algorithm, would
be an interesting future work.
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A Pseudo-code for the Associated Algorithms

Algorithm 3 Forward/backward timestepping fixed point iteration

1: Start with an initial guess (unh)(0) and (mn
h)(0) for n = 0, 1, · · · , Nt .

2: for k = 1, 2, ... until convergence do
3: for n = Nt − 1, · · · , 1, 0 do
4: Solve maxcnh

[
AnH J B (cnh )(unh)(k) − L(cnh )

]
= 1/Δt · (un+1

h )(k) + g((mn
h)(k−1)) for (unh)(k) and

(cnh )(k) = argmax
cnh

[
AnH J B (cnh )(unh)(k) − L(cnh )

]
.

5: end for
6: for n = 1, 2, · · · , Nt do
7: Solve AnK FP ((cnh )(k))(mn

h)(k) = 1/Δt · (mn−1
h )(k) for (mn

h)(k).
8: end for
9: end for

Algorithm 4Outer-inner linearization-based spacetime multigrid methods under policy iter-
ations
1: Start with an initial guess (u(0)

h ,m(0)
h ).

2: for k = 1, 2, ... until convergence (outer loop) do

3: c(k)h = argmax
ch

[
AH J B (ch)u(k−1)

h − L(ch)
]
.

4: u(k;0)
h = u(k−1)

h , m(k;0)
h = m(k−1)

h .
5: for l = 1, 2, ... until convergence (inner loop) do

6: Compute one multigrid V-cycle for the linearized KFP equation AK FP (c(k)h )mh = bK FP , which

updates the solution m(k;l−1)
h → m(k;l)

h .

7: Compute one multigrid V-cycle for the linearized HJB equation AH J B (c(k)h )uh =
bH J B (c(k)h ,m(k;l)

h ), which updates the solution u(k;l−1)
h → u(k;l)

h .
8: end for
9: u(k)

h = u(k;l)
h , m(k)

h = m(k;l)
h .

10: end for
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