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Abstract We propose multigrid methods for convergent
mixed finite difference discretization for the two dimensional
Monge–Ampère equation. We apply mixed standard 7-point
stencil and semi-Lagrangianwide stencil discretization, such
that the numerical solution is guaranteed to converge to the
viscosity solution of theMonge–Ampère equation.We inves-
tigate multigrid methods for two scenarios. The first scenario
considers applying standard 7-point stencil discretization on
the entire computational domain. We use full approximation
scheme with four-directional alternating line smoothers. The
second scenario considers the more general mixed stencil
discretization and is used for the linearized problem.We pro-
pose a coarsening strategy where wide stencil points are set
as coarse grid points. Linear interpolation is applied on the
entire computational domain. At wide stencil points, injec-
tion as the restriction yields a good coarse grid correction.
Numerical experiments show that the convergence rates of
the proposed multigrid methods are mesh-independent.
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1 Introduction

Weconsidermultigridmethods for solving a twodimensional
elliptic partial differential equation (PDE), called Monge–
Ampère equation:

uxx uyy − u2
xy = f, in Ω,

u = g, on ∂Ω,

u is convex.
(1)

Here Ω is a bounded convex domain in R
2, ∂Ω is its bound-

ary, u : Ω → R is the unknown function, and f : Ω → R

and g : ∂Ω → R are given functions. The Monge–
Ampère equation has a wide range of applications, including
differential geometry, optimal mass transport (or Monge–
Kantorovich) problem, image registration, mesh generation,
etc. [13].

In this paper, we compute the viscosity solution [15,16,
20] of the Monge–Ampère equation. Designing a numer-
ical scheme that converges to the viscosity solution turns
out to be challenging. A number of numerical schemes
has been proposed [6,20–22,33]. However, the number of
the stencil points grows to infinity, or as high as 48, as
h → 0, which results in high computational costs. Our
approach is to first convert the Monge–Ampère equation
to an equivalent Hamilton–Jacobi–Bellman (HJB) equation
[27,29], and then apply a mixed standard 7-point stencil
and semi-Lagrangianwide stencil finite difference discretiza-
tion. Solving the equivalent HJB equation is numerically
more manageable. Mixed finite difference scheme guaran-
tees the convergence to the viscosity solution, andmeanwhile
achieves an optimal accuracy of O(h2). Moreover, the mixed
stencil discretization has at most 17 stencil points for any
h. Our recent investigations in [14,28] elaborate the mixed
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stencil discretization and provide a theoretical proof for the
convergence.

To solve the resulting nonlinear discretized system, we
consider using fast solvers, especially when the grid size N
is large. Multigrid methods [40] are considered as the opti-
mal solvers for many elliptic problems, in the sense that the
convergence rates are independent of the grid size. Consider-
ing that the Monge–Ampère equation is elliptic, our primary
objective is to develop multigrid methods for the Monge–
Ampère equation, or the equivalent HJB equation, and yield
mesh-independent convergence rates.

In general, there are two families of multigrid methods
for solving nonlinear HJB equations. The first family is to
use multigrid for the linearized problem nested inside the
policy iteration [19,25], such as the multigrid in [1,2]. The
second family is the full approximation scheme (FAS), pro-
posed in [11] and is further studied in [9,23,24]. In this
paper, we investigate FAS for the Monge–Ampère equation
where standard 7-point stencil discretization is applied on the
entire computational domain. We show that it yields a more
effective multigrid solver than the first family of multigrid.
However, for most of the paper, in particular for the gen-
eral mixed stencil discretization, we consider first family of
multigrid. That is, multigrid methods are used to solve the
linearized discrete system.

Standard multigrid methods turn out to have poor con-
vergence. There are two major factors behind the poor
convergence. One is that the PDE may become anisotropic
along various directions. Standard pointwise smoothers fail
to smooth the error along the weakly connected directions.

The other factor that leads to the poor convergence is the
semi-Lagrangian wide stencil discretization. An immediate
challenge associated with the wide stencil discretization is
that the resulting matrix Ah is non-symmetric. We note that
standard discretization of elliptic PDEs usually gives rise to
symmetric matrices, and most of the multigrid theories are
developed for symmetric matrices. The existing literature of
multigrid methods for non-symmetric matrices are mostly
restricted to convection–diffusion equations [4,8,12,26].

Very few investigations, such as [34,36], are related to
non-symmetric matrices beyond convection–diffusion equa-
tions. In particular, to the best of our knowledge, [34] is
the only reference that investigates multigrid methods in
the context of semi-Lagrangian discretization. Both [36]
and [34] use existing algebraic multigrid (AMG) methods
[31,32,35,38,39] as preconditioners. We refer readers to
[38,40,42] for substantial reviews of AMG. The basic idea
of AMG is to perform coarsening along the strongly con-
nected grid points, where the strength of connection between
grid points i and j is defined by the magnitude of the
matrix entry Ai, j . AMG methods assess geometric informa-
tion indirectly though the strength of connections. Hence,
it may not be the optimal design for the mixed stencil dis-

cretization on a square grid. As pointed out in [34], although
AMGmethods as preconditioners give approximately mesh-
independent convergence, AMGmethods themselves are not
efficient if used as stand-alone solvers. Unfortunately, no new
multigrid methods are proposed to address the issue.

Our contribution is to propose a multigrid method as an
effective stand-alone solver. We observe that wide stencils
introduce oscillations (or local singularities) to the error, and
such oscillations cannot be eliminated by smoothers, includ-
ing the alternating line smoothers. However, the oscillations
are restricted at the wide stencil points. One possible solution
to capture the oscillations is to use a sophisticated interpola-
tion, such as biased AMG interpolation in [35]. However, the
interpolation matrix can be dense, and expensive to set up.
Alternatively, our solution is to change the coarsening strat-
egy. We propose setting wide stencil points as coarse grid
points. The purpose is to directly use the coarse grid points
to capture the oscillations. As the wide stencils are mainly
restricted to the singular points or singular lines, setting wide
stencil points as coarse grid points does not significantly
increase the number of the coarse grid points. In our numer-
ical experiments, we illustrate that the proposed multigrid
method has mesh-independent convergence rate even as a
standalone linear solver.

This paper is organized as follows. We first introduce the
mixed finite difference discretization in Sect. 2. In Sects. 3–
4, we propose multigrid methods for the standard 7-point
stencil discretization and the more general mixed stencil dis-
cretization separately. Section 5 includes smoothing analysis
on the four-directional alternating line smoother. Section 6
shows that the proposed multigrid method as a standalone
solver can achieve mesh-independent convergence.

2 Mixed finite difference discretization

In this section, we describe a mixed finite difference dis-
cretization for the Monge–Ampère Eq. (1). The significance
of the mixed finite difference discretization is that it is
guaranteed to converge to the viscosity solution of the
Monge–Ampère equation [15,16,20].We refer the interested
readers to [14] for more details.

2.1 HJB formulation of Monge–Ampère equation

In order to design a finite difference scheme that converges
to the viscosity solution, we first convert theMonge–Ampère
equation into an equivalent HJB equation. The equivalence
of the two PDEs is first established in [27] and [29]. Here we
present the equivalent HJB equation as follows:

Theorem 1 Let Ω be a convex open set in R
2. Let u ∈

C2(Ω) be a convex function, and f ∈ C(Ω) be a non-
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negative function. Then u solves the Monge–Ampère Eq. (1)
if and only if it solves the following HJB equation,

max
(a(x),θ(x))∈Γ

{
−α11(a(x), θ(x))uxx (x)

− 2α12(a(x), θ(x))uxy(x) − α22(a(x), θ(x))uyy(x)

+ 2
√

a(x)(1 − a(x)) f (x)
}

= 0, (2)

where (a(x), θ(x)) is the pair of controls at point x, Γ =
[0, 1] × [−π

4 , π
4

)
is the set of admissible controls, and the

coefficients are

α11(a(x), θ(x)) = 1

2
[1 − (1 − 2a(x)) cos 2θ(x)],

α22(a(x), θ(x)) = 1

2
[1 + (1 − 2a(x)) cos 2θ(x)],

α12(a(x), θ(x)) = 1

2
(1 − 2a(x)) sin 2θ(x). (3)

Proof See [37]. ��
The reasons for choosing the HJB formulation over the

Monge–Ampère equation are threefold. One is that for a
fixed given control pair (a, θ), the differential operator
of the HJB Eq. (2) is linear, which makes the develop-
ment of finite difference schemes more tractable. Another
reason is that the convexity constraint of (1) is already
implicitly enforced in the HJB formulation and can thus be
removed. Last but not least, numerous literature has been
devoted to convergent numerical schemes for HJB equations
[3,10,17,19,25,30,41].

2.2 Standard 7-point stencil discretization

Next, we will construct a convergent finite difference dis-
cretization for the HJB Eq. (2). Let us consider an n × n
square grid {xi, j = (xi , y j ) | i, j = 1, . . . , n}. Let N = n2

be the total number of the grid points. Let h be the mesh
size. Also, let ui, j , ai, j , θi, j and fi, j be the grid functions of
u(xi, j ), a(xi, j ), θ(xi, j ) and f (xi, j ) respectively. Our goal is
to solve the set of the unknowns {ui, j | i, j = 1, . . . , n}.

Reference [5] has proved that consistency, stability and
monotonicity are sufficient conditions for a numerical solu-
tion to converge to the viscosity solution of a nonlinear PDE
as h → 0. For the equivalent HJB Eq. (2), ensuring mono-
tonicity is the major issue.

Consider discretizing the differential operator of the HJB
Eq. (2) at a grid point xi, j . When θi, j = 0, uxy(xi, j ) term
disappears. The discretization is given by a 5-point stencil:

L [0]
h ≡ 1

h2

⎡
⎣ 0 −α22 0

−α11 2(α11 + α22) −α11

0 −α22 −0

⎤
⎦

h

. (4)

Here the discretization is written in terms of the widely-used
stencil notations in multigrid literature [40]. For simplicity,
we have suppressed the dependency of α11, α22, α12 and L [0]

h
on the control (ai, j , θi, j ).

However, θi, j is not necessarily 0 and uxy(xi, j ) appears
in the HJB equation in general. It can be shown that the
standard 7-point stencil discretization can lead to amonotone
discretization in the following two cases [5]:

(i) When the coefficients α11, α22 and α12, given by (3),
satisfy

α11(ai, j , θi, j ) ≥ |α12(ai, j , θi, j )|,
α22(ai, j , θi, j ) ≥ |α12(ai, j , θi, j )|,

and α12(ai, j , θi, j ) ≥ 0 at the grid point xi, j , (5)

theHJBdifferential operator ismonotonically discretized
by

L [1]
h ≡ 1

h2

⎡
⎢⎣

0 −(α22 − α12) −α12

−(α11 − α12) 2(α11 + α22 − α12) −(α11 − α12)

−α12 −(α22 − α12) 0

⎤
⎥⎦

h

.

(6)

(ii) When the coefficients α11, α22 and α12 in (3) satisfy

α11(ai, j , θi, j ) ≥ |α12(ai, j , θi, j )|,
α22(ai, j , θi, j ) ≥ |α12(ai, j , θi, j )|,

and α12(ai, j , θi, j ) ≤ 0 at the grid point xi, j , (7)

theHJBdifferential operator ismonotonically discretized
by

L [2]
h ≡ 1

h2

⎡
⎢⎣

α12 −(α22 + α12) 0

−(α11 + α12) 2(α11 + α22 + α12) −(α11 + α12)

0 −(α22 + α12) α12

⎤
⎥⎦

h

.

(8)

Figure 1a, b provide graphic representations for the 7-point
stencils (6) and (8).

2.3 Semi-Lagrangian wide stencil discretization

However, if neither (5) nor (7) is fulfilled at the grid point
xi, j , then it is unclear how to directly discretize uxy(xi, j )

monotonically. Following [17,30], we eliminate the cross
derivative uxy(xi, j ) by a local coordinate transformation. Let
{(ez)i, j , (ew)i, j } be a rotated orthogonal basis at xi, j ; see
Fig. 1c. One can prove that if the rotation angle is

φi, j = 1

2
arctan

2α12
(
ai, j , θi, j

)
α11

(
ai, j , θi, j

) − α22
(
ai, j , θi, j

) = −θi, j ,

123



30 Y. Chen, J. W. L. Wan

(a)

(b) (c)

Fig. 1 a Graphic representations of the 7-point stencils (6). b Graphic
representations of the 7-point stencils (8). c Graphic representations
of a semi-Lagrangian wide stencil. The rotation angle is φi, j . The grey
dashed lines are the orthogonal axes {(ez)i, j , (ew)i, j }. The stencil length
is

√
h. Thegrey stars are the pointsxi, j ±

√
h(ez)i, j andxi, j ±

√
h(ew)i, j .

The unknowns at these points are approximated by the bilinear interpo-
lation from the neighboring points (black dots)

then the cross derivative vanishes under the rotated basis, and
the HJB Eq. (2) becomes

max
(ai, j ,θi, j )∈Γ

{
−ai, j uzz(xi, j ) − (

1 − ai, j
)

uww(xi, j )

+ 2
√

ai, j
(
1 − ai, j

)
fi, j

}
= 0, (9)

where uzz(xi, j ) and uww(xi, j ) are the directional derivatives
along the basis (ez)i, j and (ew)i, j .

Figure 1c explains the discretization of (9). The standard
central differencing uzz(xi, j ), namely,

1

h2

[
u(xi, j + h(ez)i, j ) − 2ui, j + u(xi, j − h(ez)i, j )

]
,

is guaranteed to be monotone. However, since the stencil
is rotated, the stencil points xi, j ± h(ez)i, j may no longer
coincide with any grid points. We can consider approximat-
ing u(xi, j ± h(ez)i, j ) using bilinear interpolation from its
four neighboring grid points. However, under bilinear inter-
polation, the truncation error becomes O(1), which is not
consistent. Instead, we choose the stencil length to be

√
h,

which yields O(h) truncation error. As a result, the finite
difference discretization for uzz(xi, j ) is given by

(δzzu)i, j ≡
Ihu|xi, j +

√
h(ez)i, j

− 2ui, j + Ihu|xi, j −
√

h(ez)i, j

h
,

where Ihu|xi, j ±
√

h(ez)i, j
represents the bilinear interpolation

from the four neighboring unknownvalues at the points xi, j ±√
h(ez)i, j . The other directional derivative, uww(xi, j ), can be

discretized in a similar fashion. Note that when h is small,√
h > h, which means the stencil length appears to be wide.

Hence this approach is called “semi-Lagrangian wide stencil
discretization” [17,30].

2.4 Mixed discretization

The advantage of the semi-Lagrangian wide stencil dis-
cretization is that it is unconditionally monotone [14,18].
However, it is only first order accurate, while the standard 7-
point stencil discretization is second order accurate. In order
to combine the advantages of the two discretization schemes,
we apply the following “mixed stencil discretization” at each
grid point xi, j :

(i) When the control pair (ai, j , θi, j ) satisfies Condition (5)
or (7), the discrete equation is given by the standard 7-
point stencil discretization:

max
(ai, j ,θi, j )∈Γ

{
L [disc]

h (ai, j , θi, j )ui, j

+ 2
√

ai, j (1 − ai, j ) fi, j

}
= 0, (10)

where disc = 1 (or 2) if Condition (5) (or Condition (7))
is satisfied respectively. We note that L [disc]

h (ai, j , θi, j ),
given by (4), (6) and (8), depends on the control
(ai, j , θi, j ).

(ii) Otherwise, the discrete equation is given by semi-
Lagrangian wide stencil discretization:

max
(ai, j ,θi, j )∈Γ

{
− ai, j (δzzu)i, j − (

1 − ai, j
)

(δwwu)i, j

+ 2
√

ai, j
(
1 − ai, j

)
fi, j

}
= 0. (11)

Similar to (6) and (8), we can use a graph to represent the
wide stencil (11); see the black dots in Fig. 1c. Since each
bilinear interpolation introduces 4 stencil points, there are
in total 17 stencil points in a wide stencil.

The significance of mixed stencil discretization is that
monotonicity is strictly maintained at every grid point, and
meanwhile, the numerical scheme is as accurate as possible.

2.5 The nonlinear discrete system

The mixed discretization scheme gives rise to a non-
linear discrete system that contains N = n2 discrete
equations. If we define a vector of the unknowns uh ≡
(u1,1, u1,2, . . . , u1,n, u2,1, . . . , un,n)T ∈ R

N , and similarly,
vectors of controls ah ∈ R

N , θh ∈ R
N , then the entire nonlin-

ear discrete system can be written into the following matrix
form:

max
(ah ,θh)∈Γ

{Ah(ah, θh) uh − bh(ah, θh)} = 0, (12)
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Multigrid methods for convergent mixed finite difference scheme for Monge–Ampère equation 31

where Ah(ah, θh) ∈ R
N×N is a matrix that consists of the

coefficients of uh , and bh(ah, θh) ∈ R
N is a vector that does

not explicitly contain uh .

3 Multigrid methods for standard 7-point stencil
discretization

The next objective is to solve the complete nonlinear dis-
cretized system (12). When N is large, effective solvers are
required. In this paper, we consider using multigrid methods.
The motivation is that multigrid methods have been proved
efficient for many elliptic problems, in the sense that the
number of iterations is often independent of the grid size N .
Since our discrete matrix Ah comes from the ellipticMonge–
Ampère equation, we expect multigrid to be an effective
solver for (12) as well.

3.1 Policy-MG iteration

One family of multigrid methods for solving the discretized
HJB Eq. (12) is based on a global Newton-like iteration
for the nonlinear system (12), called policy iteration (or
Howard’s algorithm) [19,25]. At each policy iteration, a lin-
ear multigrid solver is applied to solve the linearized system.
The algorithm can be written as follows:

Start with an initial guess of the solution u(0)
h .

For k = 0, 1, . . . until convergence:

1. Solve for the optimal control pair (a(k)
h , θ

(k)
h ) under the

current solution u(k)
h :

(
a(k)

i, j , θ
(k)
i, j

)
= argmax

(ai, j ,θi, j )∈Γi, j

{
Ah(ah, θh)u(k)

h

− bh(ah, θh)

}
i, j

, (13)

for all xi, j ∈ Ω . Here Γi, j = [0, 1] × [−π
4 , π

4 ) is the
control set at xi, j .
Meanwhile, obtain the residual

r (k)
h = Ah

(
a(k)

h , θ
(k)
h

)
u(k)

h − bh

(
a(k)

h , θ
(k)
h

)
. (14)

2. If ‖r (k)
h ‖ ≤ tolerance: break

Else, use the multigrid V-cycle to solve the following
linear system for the solution u(k+1)

h under the current

optimal control pair (a(k)
h , θ

(k)
h ):

Ah

(
a(k)

h , θ
(k)
h

)
u(k+1)

h = bh

(
a(k)

h , θ
(k)
h

)
⇒u(k+1)

h . (15)

To summarize, in order to solve (12), the inner multigrid
V-cycle iteration for linearized problems is nested in an outer
policy iteration. For convenience, we refer this type of multi-
grid methods as “policy-MG iteration”.

The advantage of using this approach is that policy itera-
tion is guaranteed to converge for any initial guessu(0)

h , ifHJB
equation is monotonically discretized [3,10]. Policy iteration
consists of two sub-steps. The first sub-step is to solve the
optimization problem at each grid point xi, j ; see (13). Our
recent work [14] discusses speeding up computation of the
optimization problem in details. The second sub-step of the
policy iteration is to solve the linear system under a given
control pair; see (15). The second sub-step is our focus of
developing multigrid methods.

We start with multigrid methods for the standard 7-point
stencil discretization. More precisely, we consider the case
where the standard 7-point stencil discretization can be
applied on the entire computational domain and still results
in a monotone scheme.Wewill leave the discussion of multi-
grid for more general mixed stencil discretization to Sect. 4.

3.2 Four-directional alternating line smoother

The components of standard multigrid include pointwise
smoother, full coarsening, full-weighting restriction, bilinear
interpolation and coarse grid operator (i.e. Galerkin coarse
grid operator or direct discretization). However, there are
some scenarios where standard multigrid may give poor
convergence. We note that the equivalent HJB Eq. (2) can
sometimes become anisotropic. For instance, when a = ε is
a small constant close to 0 and θ = 0, the linearized HJB
equation becomes

εuxx + (1 − ε)uyy − 2
√

ε(1 − ε) f = 0,

which is an anisotropic Poisson equation. It is well-known
that when solving the anisotropic Poisson equation, the typ-
ical pointwise smoothers do not smooth the error along the
weakly connected axis, which causes poor convergence rate.

To address anisotropy, we consider using line smooth-ers
[40]. More specifically, instead of updating the unknowns
point by point, we update strongly-connected grid points col-
lectively. Fourier analysis has proved that line smoothers can
effectively smooth the error.

For the 7-point discretization, the directions of strong con-
nections can vary from patches to patches. In some patches,
strong connections are aligned to x-axis, while in some oth-
ers, aligned to y-axis, or even diagonal axes. Considering
this, we apply four-directional alternating Gauss–Seidel line
smoother.More specifically, the line smoother is applied four
times - along x-axis (left to right), y-axis (top to bottom),
diagonal axis (top left to bottom right) and eventually trans-
pose diagonal axis (top right to bottom left).
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3.3 Seven-point restriction and interpolation

Once the error becomes smooth along x , y and diagonal axes
under the four-directional alternating line smoother, standard
full coarsening can be applied. We note that some literature,
such as [40], has discussed the multigrid methods for the 7-
point discretization of −uxx −uyy − τuxy, |τ | < 2. In order
to capture the directional feature of the 7-point discretization,
the literature suggests the use of 7-point restriction operators.
We would adopt the 7-point restriction operators to the HJB
Eq. (2). More specifically, if the discretization of the HJB
operator is given by (4), (6), or (8), then the corresponding
7-point restriction operator is given by

R[0] = 1

16

⎡
⎣1 2 1
2 4 2
1 2 1

⎤
⎦ , R[1] = 1

8

⎡
⎣0 1 1
1 2 1
1 1 0

⎤
⎦ ,

R[2] = 1

8

⎡
⎣1 1 0
1 2 1
0 1 1

⎤
⎦

respectively. Meanwhile, the corresponding interpolation
operator is scaled transposed / adjoint with respect to grid
size scaled scalar product, or more precisely,

P [disc] = 4(R[disc])T , disc = 0, 1, 2.

Galerkin coarse grid operator can be used as the coarse grid
operator A2h .

3.4 Full approximation scheme (FAS)

So far we have discussed solving the nonlinear discretized
system (12) using policy-MG iteration. We will show in
Sect. 6 that the convergence rate of the inner multigrid V-
cycle is independent of mesh size. However, the convergence
rate of the outer policy iteration is in general not bounded by
a mesh-independent constant.

One approach to extend from linear systems to nonlinear
systems is Full Approximation Scheme (FAS) [11,23,40].
The key of the FAS is the construction of the coarse grid
problem. In particular, the coarse grid problem should be
nonlinear. Denote the discretized nonlinear operator in (12)
as

Nh(uh) ≡ max
(ah ,θh)∈Γ

{Ah(ah, θh)uh − bh(ah, θh)} .

We use direct discretization to obtain N2h . Then we define
the following coarse grid problem with respect to w2h

N2h(w2h) = N2h(u2h) + Rrh,

where u2h is the injection of the solution uh . The coarse grid
error is then given by e2h = w2h − u2h .

FAS uses nonlinear smoothers, which are convergent
nonlinear relaxations that solve the nonlinear system (12)
directly. One convergent nonlinear relaxation is the follow-
ing:

Start with an initial guess of the solution u(0)
h .

For k = 0, 1, . . . until convergence:

1. Use (13) to solve for the optimal control pair (a(k)
h , θ

(k)
h )

under the current solution u(k)
h . Meanwhile, obtain the

residual r (k)
h by (14).

2. If ‖r (k)
h ‖ ≤ tolerance: break

Else, apply one step four-directional alternating Gauss-
Seidel line relaxation to the linear system

Ah

(
a(k)

h , θ
(k)
h

)
u = bh

(
a(k)

h , θ
(k)
h

)
, (16)

which updates the solution from u(k)
h to u(k+1)

h .

We will use this iteration as the nonlinear smoother for the
FAS. For the coarse grid correction process, we use the stan-
dard coarsening, and 7-point restriction and interpolation.

The main advantage of the FAS is that it does not require
the outer–inner multi-layer iteration as policy-MG iteration
does. Instead, it contains only one layer of iteration.

4 Multigrid methods for mixed stencil
discretization

In this section, we will discuss multigrid methods for mixed
stencil discretization. We will only consider policy-MG iter-
ation, as defined in Sect. 3.1. The reason is that for our
proposed approach, the coarse grids are no longer square
grids, which poses difficulties for defining the coarse grid
problem under the FAS framework.

In the mixed stencil discretization, semi-Lagrangian wide
stencils are applied to the grid points that do not satisfy Con-
dition (5) or (7). An immediate challenge arising from the
wide stencils is that the discrete matrix Ah becomes non-
symmetric. Figure 2 shows the arising asymmetry of Ah

under the mixed stencil discretization. Suppose wide sten-
cil discretization is applied at the grid point i , and at one of
its stencil points (denoted by j), standard 7-point stencil is
applied. Then Ai j �= 0 and A ji = 0, resulting in asymmetry.
This asymmetry also leads to non-smooth errors.

4.1 Failure of the standard multigrid method

Wefirst investigate the performance of the standardmultigrid
method formixed stencil discretization. To startwith a simple
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Fig. 2 Suppose wide stencil discretization is applied at the grid point
i , and at one of its stencil points (denoted by j), standard 7-point stencil
is applied. Then Ai j �= 0 and A ji = 0, resulting in asymmetry

Fig. 3 The error after 2-step four-directional alternating Gauss–Seidel
line smoothing. (top-left) Initial error. (top-right) Smoothed error. (bot-
tom) Cross section of the smoothed error along x axis. A kink appears
at the center of Ω

scenario, we assume that the control is given as a = 1
2 and

θ = 0 on the entire computational domain, where standard
7-point stencil is applied, except that at the origin, a = 1 and
θ = π

8 , where wide stencil is applied. In other words, we
consider solving the following linearized HJB equation

1

2
uxx + 1

2
uyy = √

f , in Ω\{(0, 0)},
2 + √

2

4
uxx + 2 − √

2

4
uyy + 1√

2
uxy = 0, at (0, 0),

u = g, on ∂Ω. (17)

A monotone discretization is to apply standard 5-point sten-
cil discretization everywhere and wide stencil at the origin.
Figure 3 shows the error after applying the four-directional
alternating line smoother. A kink appears at the center of Ω .
In general, a kink appears wherever wide stencil discretiza-
tion is applied at a grid point. This introduces an oscillatory

perturbation to the smoothed error. We note that such oscil-
lation also occurs for the other types of smoothers, such as
(symmetric) pointwise Gauss–Seidel smoother.

4.2 Coarsening strategy

Choosing alternating line smoother is not sufficient to handle
the oscillations from semi-Lagrangianwide stencils, and thus
more sophisticated multigrid method is needed. One idea
is to use algebraic multigrid (AMG) methods [35,38,39],
which coarsens the grid only along the strongly connected
grid points. However, AMG coarsening may lead to a dense
coarse grid operator [38]. We observe that if we apply the
four-directional alternating line smoother, the error becomes
smooth on those standard 7-point stencil patches; see Fig. 3.
This motivates us to still apply standard coarsening on the
standard 7-point stencil patches, but consider other type of
coarsening strategy to the wide stencil patches.

To motivate our coarsening strategy, we first consider the
one-dimensional cross section of the error; see Fig. 4. We
notice that if a wide stencil point i is an F-point, which
requires an interpolation, then a naive bilinear interpolated
error will fail to represent the kink accurately. Instead, we
simply reset the wide stencil F-point as a coarse grid point.
As a result, interpolation at the wide stencil point is no longer
needed. The error at the wide stencil point is simply copied
from the coarse grid to fine grid. This yields a more accurate
estimated error.

The proposed coarsening strategy can be extended to two
dimensions. Figure 5 illustrates the coarsening process. On
the fine grid, the black dots are selected as coarse grid points,
or C-points. The hollow dots are F-points. Suppose wide
stencils are applied on the three red dots. Then these three
dots are all assigned asC-points. The resulting 1st coarse grid
is a combination of a square grid that comes from geometric
coarsening, and some additional coarse grid points that come
from wide stencils. We can continue to coarsen the square
sub-grid andmeanwhile keep all the wide stencil points asC-
points, which generates the 2nd coarse grid. Such coarsening
strategy can be applied recursively until the coarsest level.

One may argue that by setting all the wide stencil points
as coarse grid points, the number of coarse grid points, and
thus the computational complexity, will increase. However,
it is observed in the numerical simulation that wide stencils
are usually restricted around the grid points where the right
hand side f or the solution u is singular. In other words,
it is sufficient to apply wide stencils only at singularities
and still maintain monotonicity on the entire computational
domain. In practice, such singular points account for only a
small portion of the total grid points. As a result, setting the
wide stencil points as coarse grid points does not result in a
significant increase of the number of the coarse grid points.
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Fig. 4 Coarsening strategy for awide stencil point (red arrow),where a
kink appears. Black dots are coarse grid points (C-points), while hollow
dots are non-coarse grid points (F-points). (top) Standard coarsening
with linear interpolation. The interpolated error (grey piecewise straight
lines) has a big error at the wide stencil point. (bottom) By setting the
wide stencil point as a coarse grid point, the error at the point no longer
needs to be interpolated, resulting in a more accurate estimated error

Fig. 5 Proposed coarsening strategy. On the fine grid, the black dots
are selected as coarse grid points, or C-points. The hollow dots are F-
points. Suppose wide stencils are applied on the three red dots. Then
these three dots are all assigned asC-points. The resulting 1st coarse grid
is a combination of a square grid that comes from geometric coarsening,
and some additional coarse grid points that come from wide stencils.
We can continue to coarsen the square sub-grid and meanwhile keep
all the wide stencil points as C-points, which generates the 2nd coarse
grid

4.3 Interpolation

Under the proposed coarsening strategy, all the wide stencil
points are excluded from the set of F-points. In other words,
F-points must be the standard 7-point stencils. Hence, the
7-point interpolation, as described in Sect. 3.3, can be used
for interpolating the errors at these F-points.

We have seen in Fig. 5 that the coarse grids are no longer
square grids. However, each of these coarse grids can be
seen as a combination of a square grid and some additional
wide-stencilC-points. Then all the F-points can still be inter-
polated from theC-points on the square sub-grid. The arrows
in Fig. 5 show how F-points can be interpolated on a coarse
grid.

4.4 Restriction

In both the standard multigrid and classical AMG methods,
restriction is simply the transpose of interpolation. However,
it does not result in mesh-independent convergence for the
non-symmetric matrices Ah arising from the mixed sten-

(a)

(b)

Fig. 6 Restriction for one-dimensional Poisson equation. The black
points are C-points, while the hollow points are F-points. a h = 1

36
and

√
h = 6h. b h = 1

49 and
√

h = 7h.

cil discretization. We will show such poor convergence in
Sect. 6.2. In this paper, we propose a restriction operator R
that is different from the transpose of the interpolation P .

Our approach is simply to use injection on wide stencil
points. To motivate the use of injection, let us simplify our
problem and start with the one-dimensional Poisson equation

−uxx = 0, x ∈ [−0.5, 0.5].

Under the standard coarsening, the C-points are i =
− N

2 , . . . , 0, 2, . . . , N
2 , and F-points are i = − N

2 + 1, . . . ,
−1, 1, . . . , N

2 − 1. We apply wide stencil discretization at
i = 0 and standard finite difference discretization on the rest
of the computational domain. A naive choice of restriction
at i = 0 would be the transpose of interpolation, or the full-
weighting restriction. However, this leads to a poor coarse
grid estimated error. In order to find the correct restriction,
we investigate two cases.

Case 1: h = 1
36 and

√
h = 6h. Figure 6a shows the

discretization and coarsening. In this case, the wide stencil
discretization at x = 0 reads

−u−6 + 2u0 − u6

(6h)2
= 0.

The residual at i = 0 is the given by

r0 = −e−6 + 2e0 − e6
(6h)2

. (18)

We notice that i = 0, i = −6 and i = 6 are all C-points.
Then a natural construction of the coarse grid problem at
i = 0 is to discretized the Poisson equation using these three
points, or more precisely,

−eH−6 + 2eH
0 − eH

6

(6h)2
= r H

0 , (19)
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where the left hand side is a discretization of the Poisson
equation on the coarse grid with the stencil length 6h, and
the right hand side is the coarse grid residual r H

0 . Comparing
(18) and (19), we can see that the restriction at i = 0 is a
simple injection:

r H
0 ≡ r0.

Case 2: h = 1
49 and

√
h = 7h. Figure 6b shows the

discretization and coarsening. Unlike the previous case, here
the points that i = 0 connects to, namely, i = 7 and i = −7,
are both F-points. To discretize the Poisson equation on the
coarse grid, we interpolate the errors at i = 7 and i = −7
from their neighboring C-points, which gives

− 1
2

(
eH−8 + eH−6

) + 2eH
0 − 1

2

(
eH
6 + eH

8

)
(7h)2

= r H
0 . (20)

We want to find a restriction such that the right hand side r H
0

matches the left hand side of (20). One scheme is to use the
linear combination of the following fine grid residuals:

r0 = −e−7 + 2e0 − e7
(7h)2

,

r7 = −e6 + 2e7 − e8
h2 , r−7 = −e−6 + 2e−7 − e−8

h2 .

If we combine r0, r7 and r−7 as follows

r0+ 1

98
r7+ 1

98
r−7 = − 1

2 (e−8 + e−6) + 2e0 − 1
2 (e6 + e8)

(7h)2
,

(21)

then it matches the left hand side of (20) in the exact sense.
Equation (21) defines a possible restriction. We note that the
restriction (21) makes use of the residuals r7 and r−7, which
are the points that the wide stencil point i = 0 connects to.
This is different from standard full-weighting restriction that
uses the neighboring points r1 and r−1. Since the coefficients
of r7 and r−7 are small, we simply drop them and yield again
an injection:

r H
0 ≡ r0.

More generally, given a wide stencil C-point i ∈ C with
a stencil length

√
h, the non-zero restriction weights come

from the set of the F-points that it connects to, denoted
as { j | j ∈ F, Ai, j �= 0}. We can show that the restriction
weights are

wi, j = − Ai, j

A j, j
= −

− 1
(
√

h)2

2
h2

= h

2
. (22)

When h is small, the restriction (22) can be left out. In other
words, injection is sufficient for a good coarse grid problem.

We extend the injection at the wide stencil C-points
from the one-dimensional Poisson equation to the two-
dimensional HJB equation. This gives rise to a restriction
operator R that is no longer the transpose of the interpola-
tion. Once the restriction operator is specified, we define the
coarse grid operator as

A2h ≡ R Ah P. (23)

Since R �= PT , it results in the Petrov–Galerkin coarse grid
operator.

Wewill show in Sect. 6.2 that injection for thewide stencil
C-points would lead to a good approximation of the coarse
grid error estimate and eventually a mesh-independent con-
vergence rate for the proposed multigrid method.

Another benefit of using injection is its simplicity and the
sparsity of the resulting restriction operator. For AMG, the
coarse grid operator A2h could become much denser than
Ah , which causes a high computational complexity. When
we use injection for wide stencils, combined with the 7-point
restriction and interpolation for the standard 7-point stencils,
the resulting coarse grid operator (23)will still remain sparse.

5 Smoothing analysis

In this section, we analyze the smoothing property of the
four directional alternating line smoother by local Fourier
analysis (LFA) [40]. For each policy iteration, the control
(ai, j , θi, j ) is fixed, and a linear four directional alternating
line smoother is applied. As the smoothing property for the
mixed stencil discretization is complicated, this section only
analyzes the standard 7-point stencil discretization. We first
analyze the x-line smoother for the 7-point stencil operator
L [1]

h , defined by (6). The splitting of L [1]
h reads

(
L [1]

h

)
x+ ≡ 1

h2

⎡
⎣ 0 0 0

−(α11 − α12) 2(α11 + α22 − α12) −(α11 − α12)

−α12 −(α22 − α12) 0

⎤
⎦

h

,

(
L [1]

h

)
x− ≡ 1

h2

⎡
⎣0 −(α22 − α12) −α12

0 0 0
0 0 0

⎤
⎦

h

,

where we have suppressed the dependencies of α11, α22 and
α12 on (ai, j , θi, j ). This gives rise to the symbol of the x-line
smoother:

(̃
S[1]

h

)
x
(κ; ai, j , θi, j )

=
[
(α22 − α12)e

iκ2 + α12ei(κ1+κ2)
]/

[
2(α11 + α22 − α12) − (α22 − α12)e

−iκ2
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− (α11 − α12)(e
−iκ1 + eiκ1) − α12e−i(κ1+κ2)

]
.

One can obtain the symbols for y-line smoother, first diag-
onal line smoother (top left to bottom right) and second
diagonal line smoother (top right to bottom left) in a similar
fashion. The symbol for the four-directional alternating line

smoother S̃[1]
h (κ; ai, j , θi, j ) is then the product of the sym-

bols of the four line smoothers. Define the smoothing factor

of S̃[1]
h (κ; ai, j , θi, j ) as

μ
[1]
loc(ai, j , θi, j )

≡ sup
κ

{
|S̃[1]

h (κ; ai, j , θi, j )| : κ ∈ high frequency mode
}

.

Furthermore, we note that L [1]
h and L [2]

h are applied under
Condition (5) and (7) respectively. Hence, we define the
smoothing factor of the standard 7-point discretization as

μloc(ai, j , θi, j )

≡
{

μ
[1]
loc(ai, j , θi, j ), if (ai, j , θi, j ) satisfies (5),

μ
[2]
loc(ai, j , θi, j ), if (ai, j , θi, j ) satisfies (7).

(24)

We evaluate the smoothing factor (24) for each of the four
individual line smoothers and their combination. Figure 7
shows the following

– x line smoother has a good smoothing property except at
a → 0, or (a, θ) → (

1, π
4

)
,
(
1,−π

4

)
.

– y line smoother has a good smoothing property except at
a → 1, or (a, θ) → (

0, π
4

)
,
(
0,−π

4

)
.

– First-diagonal line smoother has a good smoothing prop-
erty except at a → 0 or a → 1. However, the smoother
is still effective at (a, θ) → (

0,−π
4

)
,
(
1, π

4

)
.

– Second-diagonal line smoother has a good smoothing
property except at a → 0 or a → 1. However, the
smoother is still effective at (a, θ) → (

0, π
4

)
,
(
1,−π

4

)
.

Four-directional alternating line smoother combines these
four smoothers together. Figure 7 shows that the smoothing
factor of the combined smoother is bounded by 0.5 for any
(a, θ) ∈ [0, 1] × [−π

4 , π
4

)
. Hence, the combined smoother

has a good smoothing property.

6 Numerical results

In this section, we demonstrate the mesh-independent con-
vergence rates of the proposed multigrid methods for
Monge–Ampère equation. The examples are mainly from
[7,20].

Fig. 7 Smoothing factor μloc(ai, j , θi, j ) for a x line smoother, b y
line smoother, c first diagonal line smoother, d second diagonal line
smoother, e four-directional alternating line smoother

6.1 Multigrid for standard 7-point stencil discretization

In this subsection, we consider examples where the standard
7-point stencil discretization is appliedon the entire computa-
tional domain. We compare the performance of two families
of multigrid methods. One family of multigrid methods is
“policy-MG iteration”; see Sect. 3.1. More specifically, pol-
icy iteration is used to solve the nonlinear discretized system
(12). At the k-th policy iteration, multigrid V(1,1)-cycle is
applied to solve the linearized system under the fixed con-
trol (a(k), θ (k)). The tolerances for outer policy iteration and
inner multigrid V-cycle are 10−6 and 10−7 respectively. We
apply pointwise Gauss–Seidel smoother in Example 1 and
four-directional alternating Gauss–Seidel line smoother in
Example 2. We apply standard full coarsening, and the 7-
point restriction and interpolation, as described in Sect. 3.3.
Galerkin coarse grid operator is used to construct coarse grid
problems.

The other family of multigrid methods is the full approx-
imation scheme (FAS). The multigrid components are basi-
cally the same as the policy-MG iteration, except that the
value iteration is used as a nonlinear smoother, and direct
discretization is used for coarse grid operator; see Sect. 3.4
for details.
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Fig. 8 (1) Numerical solution for Example 1. (2) Norms of the error
‖u − uh‖. The convergence rates, indicated by the slopes, are O(h2) in
both L2 and L∞ norms

Example 1 We consider the multigrid methods for solving

f (x, y) = (1+ x2 + y2)ex2+y2 , g(x, y) = e
1
2 (x2+y2) (25)

on Ω = [−1, 1] × [−1, 1], where the viscosity solution

u(x, y) = e
1
2 (x2+y2) is smooth. Figure 8 shows that the

numerical solution converges at the optimal theoretical con-
vergence rate O(h2).

Next we show the convergence rate of the policy-MG
iteration for solving the nonlinear discretized system (12).
This example turns out to be isotropic, so it suffices to apply
the less expensive pointwise Gauss-Seidel smoother. Table 1
reports the convergence rates. Thenumber of policy iterations
is 3. The number of multigrid V-cycles within each policy
iteration ranges from 2 to 9. The total number of multigrid
V-cycles for the entire nonlinear system is 17–19, indepen-
dent of mesh size. As a side remark, the number of multigrid

Table 2 Convergence of the full approximation scheme for Example 1

n × n Total number of multigrid V-cycles

32 × 32 8

64 × 64 8

128 × 128 9

256 × 256 9

Pointwise Gauss–Seidel smoother is applied

V-cycles decreases as policy iteration approaches the final
solution. The reason is that we let the k-th solution of the
policy iteration, u(k)

h , be the initial guess of the (k + 1)-th

multigrid V-cycle for solving u(k+1)
h . As policy iteration con-

verges, u(k)
h → u(k+1)

h , which means that the initial guess of
each multigrid V-cycle becomes more and more precise.

We compare the policy-MG iteration with the FAS itera-
tion. Table 2 shows that the total number of the FASV-cycles
is 8–9 and is independent of mesh size. We note that for both
policy-MG and FAS iterations, the computational cost per
multigrid iteration is approximately the same. Hence, full
approximation scheme is less expensive and converges faster.

Example 2 We consider multigrid method for solving

f (x, y) = 1+24(x+y)4, g(x, y) = 1

2
(x2+y2)+(x+y)4

on Ω = [−1, 1] × [−1, 1], where the viscosity solution
u(x, y) = 1

2 (x2 + y2) + (x + y)4 is smooth. Similar to
Example 1, as the mesh size h → 0, the numerical solu-
tion converges towards the viscosity solution at the optimal
theoretical convergence rate O(h2); see Fig. 9.

Table 3 reports the convergence of the policy-MG itera-
tion. The number of policy iterations is approximately 6. The
multigrid V-cycle with the alternating line smoother con-
verges at 20–32 iterations in total, which is approximately
independent of mesh size. Conversely, standard multigrid V-
cycle converges at more than 70 iterations, and the number
of iterations is not mesh-independent. This is because the
example is an-isotropic along the diagonal direction.We note
that in general, the direction of the anisotropy may change
among different patches of the computational domain, so

Table 1 Convergence of the
policy-MG iteration for
Example 1

n × n Number of policy
iterations

Number of multigrid
V-cycles within each
policy iteration

Total number of
multigrid V-cycles

32 × 32 3 8, 7, 2 17

64 × 64 3 9, 7, 3 19

128 × 128 3 9, 7, 3 19

256 × 256 3 9, 7, 3 19

Pointwise Gauss–Seidel smoother is applied
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Table 3 Convergence of the
policy-MG iteration for
Example 2

n × n Number of
policy
iterations

Proposed policy-MG Standard policy-MG

Number of multigrid
V-cycles within each
policy iteration

Total number of
multigrid
V-cycles

Total number of
multigrid
V-cycles

32 × 32 5 5, 5, 5, 3, 2 20 73

64 × 64 6 5, 6, 6, 4, 2, 1 24 94

128 × 128 6 6, 6, 7, 5, 3, 1 28 129

256 × 256 6 7,7,7,6,3,1 32 161

Fig. 9 (1) Numerical solution for Example 2. (2) Norms of the error
‖u − uh‖. The convergence rates, indicated by the slopes, are O(h2) in
both L2 and L∞ norms

we implement four-directional alternating line smoother in a
non-discriminatory fashion.

6.2 Multigrid for mixed stencil discretization

In this section, we illustrate the multigrid convergence rates
for the mixed stencil discretization. The examples are solved
by the policy-MG iterations. Four-directional alternating line
smoother is applied. Regarding the coarse grid correction, we
treat standard 7-point stencil patches and semi-Lagrangian
wide stencil patches separately. For standard 7-point stencil
patches, we apply standard full coarsening, and the 7-point
restriction and interpolation. For wide stencil patches, we
set all the wide stencil points as coarse grid points, and use
injection for restriction. Petrov-Galerkin coarse grid operator
is used for constructing coarse grid problems.

Example 3 We consider solving the linearized HJB equa-
tion (17), where f and g are given in (25). A monotone
discretization is to apply the standard 5-point stencil dis-
cretization everywhere and wide stencil at the origin. We
compare the performance of (i) proposed multigrid method,
(ii) standard multigrid with four-directional alternating line
smoother, and (iii) standard multigrid with pointwise Gauss–
Seidel smoother. The only difference between Method (i)
and (ii) is that injection is applied at the wide stencil point
for Method (i), while full-weighting restriction is applied
for Method (ii). Table 4 shows that Method (iii) has poor
convergence. Method (ii) changes the smoother to the alter-
nating line smoother, but the convergence rate still grows as
N increases. Method (i) uses injection at the wide stencil
points. The convergence rate is around 5–6, independent of
N .

Figure 10 explains the reason by plotting the cross sec-
tion of the error for a one-step two-grid algorithm. After
pre-smoothing, the error (blue lines) becomes smooth every-
where, except that a kink appears at the wide stencil point.
Figure 10 (top) uses injection at the wide stencil point. The
coarse grid problem yields an accurate coarse grid estimated
errors (red lines),where all theC-points aremarkedby the red
dots. This eliminates the error effectively. Conversely, under
the same smoother, if full-weighting is used at the wide sten-
cil, as shown in Fig. 10 (bottom), the coarse grid estimated
error is no longer a good approximation of the smoothed
error.

Example 4 We consider

f (x, y) = max

(
1 − 0.15√

x2 + y2
, 0

)
,

g(x, y) = 1

2
(

√
x2 + y2 − 0.15)2

on Ω = [−0.5, 0.5] × [−0.5, 0.5]. The viscosity solution is
given by u(x, y) = 1

2 max
(√

x2 + y2 − 0.15, 0
)2
. This is

a C1 function where the solution is not smooth at the ring
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Table 4 Convergence of linear
multigrid V-cycle for Example 3

n × n (i) Proposed MG (ii) Standard MG
(alternating line
smoother)

(iii) Standard
MG (pointwise
smoother)

32 × 32 5 7 23

64 × 64 5 9 46

128 × 128 6 12 198

256 × 256 6 17 *

The tested multigrid methods are (i) proposed multigrid method, where wide stencil is restricted by injec-
tion, (ii) standard multigrid with four-directional alternating line smoother, and (iii) standard multigrid with
pointwise Gauss–Seidel smoother. The star represents 200+ iterations

Fig. 10 Cross section of the error along x-axis for a one-step two-
grid algorithm. (top) Proposed two-grid algorithm, where injection is
used at the origin (the wide stencil point). The coarse grid problem
yields an accurate coarse grid estimated error, where all the C-points
aremarkedby the reddots. (bottom)Standard two-grid algorithm,where
full-weighting restriction is used

x2 + y2 = 0.152. Semi-Lagrangian wide stencils are applied
near the ring. Firstwe check the convergence of the numerical
solution uh towards the viscosity solution u as h → 0. Ref-
erences [14,18] have proved that the convergence rate is at
most O(h) if wide stencil discretization is applied. Figure 11
shows that the convergence rate is approximately 0.76–0.86,
although convergence can be clearly observed as h → 0.
Indeed, slow convergence for singular solutions is observed

Fig. 11 (1) Numerical solution for Example 4. The solution is not
smooth at the ring x2 + y2 = 0.152. (2) Norms of the error ‖u − uh‖.
The convergence rates are indicated by the slopes in both L2 and L∞
norms

in most of the existing numerical schemes in the literature.
However, we note that unlike the other existing schemes, the
mixed discretization is proved to converge to the viscosity
solution (instead of the other weak solutions) [14,18].

Table 5 reports the convergence of the policy-MG itera-
tion.We remark that the number of the outer policy iterations
increases from 5 to 10 as n increases from 32 to 256. Such
increase of outer iteration is related to nonlinearity. Also, this
example contains a singular S1 manifold, which in general
worsens the outer convergence behavior.

To compare the number of multigrid V-cycles among dif-
ferent mesh sizes fairly, we compute the average number
of multigrid V-cycles per policy iteration. Table 5 reports
the convergence rate. The number of the multigrid V-cycles
is approximately a constant ranging from 3.0 to 4.2 as n
increases from 32 to 256. Hence, the inner multigrid V-cycle
for solving linearized systems is close tomesh-independence.
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Table 5 Convergence of the
policy-MG iteration for
Example 4

n × n Number of policy
iterations

Number of multigrid
V-cycles within each
policy iteration

Average number of
multigrid V-cycles per
policy iteration

32 × 32 5 4, 5, 3, 2, 1 3.0

64 × 64 5 4, 6, 3, 2, 1 3.2

128 × 128 6 5, 6, 4, 3, 3, 2 3.8

256 × 256 10 6, 6, 6, 6, 5, 4, 3, 3, 2, 1 4.2

Table 6 Convergence of the
policy-MG iteration for
Example 5

n × n Number of policy
iterations

Number of multigrid
V-cycles within each
policy iteration

Average number of
multigrid V-cycles per
policy iteration

32 × 32 7 4, 5, 5, 4, 4, 4, 2 4.0

64 × 64 10 5, 6, 6, 7, 5, 4, 4, 3, 2, 1 4.3

128 × 128 12 5, 7, 8, 7, 7, 6, 5, 5, 4, 2, 1, 1 4.8

256 × 256 17 6, 7, 8, 8, 8, 9, 8, 7, 6, 5, 5, 4, 4, 4, 2, 1, 1 5.5

Fig. 12 Numerical solution for Example 5. uxx or uyy approaches ∞
near the boundary

Example 5 We consider an example from [7]:

f (x, y) = 1, g(x, y) = 0

on Ω = [−0.5, 0.5] × [−0.5, 0.5]. For this example, the
exact solution is not available. However, it can be inferred
that either uxx → ∞ or uyy → ∞ along ∂Ω [7]. As a
result, wide stencils are applied near ∂Ω . Figure 12 shows
the numerical solution.

Table 6 shows that the number of the outer policy itera-
tions increases from 7 to 17 as n increases from 32 to 256.
Here we once again focus on the mesh-independent conver-
gence for the inner multigrid V-cycle. The number of the
multigrid V-cycles is approximately a constant ranging from
4.0 to 5.5 as n increases from 32 to 256, close to mesh-
independence.

7 Conclusion

We propose multigrid methods for solving the mixed stencil
discretization of the Monge–Ampère equation. We investi-
gate two scenarios. One scenario iswhen the standard 7-point
stencil discretization is applied on the entire computational
domain. Full approximation scheme gives the optimal mesh-
independent convergence. The other scenario we investigate
is the general mixed stencil discretization. Policy-MG iter-
ation is used. We set all wide stencil points as coarse grid
points and propose injection for wide stencil points. We
use Fourier analysis to show that four-directional alternat-
ing line smoother has a good smoothing property, especially
for anisotropic equation. The resultingmultigridmethods can
converge at the mesh-independent rate.

Extending the full approximation scheme to the mixed
stencil discretization and doing corresponding Fourier anal-
ysis would be interesting future works.

References

1. Akian, M., Séquier, P., Sulem, A.: A finite horizon multidimen-
sional portfolio selection problem with singular transactions. In:
Decision and Control, 1995., Proceedings of the 34th IEEE Con-
ference on, vol. 3, pp. 2193–2198. IEEE (1995)

2. Akian, M., Sulem, A., Taksar, M.I.: Dynamic optimization of
long-term growth rate for a portfolio with transaction costs and
logarithmic utility. Math. Finance 11(2), 153–188 (2001). doi:10.
1111/1467-9965.00111

3. Azimzadeh, P., Forsyth, P.A.: Weakly Chained Matrices, Policy
Iteration, and ImpulseControl. SIAMJ.Numer. Anal. 54(3), 1341–
1364 (2016). doi:10.1137/15M1043431

123

http://dx.doi.org/10.1111/1467-9965.00111
http://dx.doi.org/10.1111/1467-9965.00111
http://dx.doi.org/10.1137/15M1043431


Multigrid methods for convergent mixed finite difference scheme for Monge–Ampère equation 41

4. Bank, R.E.,Wan, J.W.L., Qu, Z.: Kernel preservingmultigridmeth-
ods for convection–diffusion equations. SIAM J. Matrix Anal.
Appl. 27(4), 1150–1171 (2006). doi:10.1137/040619533

5. Barles, G., Souganidis, P.E.: Convergence of approximation
schemes for fully nonlinear second order equations. Asymptot.
Anal. 4(3), 271–283 (1991)

6. Benamou, J.D., Collino, F., Mirebeau, J.M.: Monotone and consis-
tent discretization of the Monge–Ampère operator. Math. Comput.
85(302), 2743–2775 (2016). doi:10.1090/mcom/3080

7. Benamou, J.D., Froese, B.D., Oberman, A.M.: Two numerical
methods for the elliptic Monge–Ampère equation. M2AN. Math.
Model. Numer. Anal. 44(4), 737–758 (2010). doi:10.1051/m2an/
2010017

8. Bey, J., Wittum, G.: Downwind numbering: Robust multigrid for
convection–diffusion problems. Appl. Numer. Math. 23(1), 177–
192 (1997). doi:10.1016/S0168-9274(96)00067-0

9. Bloss, M., Hoppe, R.H.W.: Numerical computation of the value
function of optimally controlled stochastic switching processes by
multi-grid techniques. Numer. Funct. Anal. Optim. 10(3–4), 275–
304 (1989). doi:10.1080/01630568908816304

10. Bokanowski, O., Maroso, S., Zidani, H.: Some convergence results
for Howard’s algorithm. SIAM J. Numer. Anal. 47(4), 3001–3026
(2009). doi:10.1137/08073041X

11. Brandt, A.: Multi-level adaptive solutions to boundary-value prob-
lems. Math. Comput. 31(138), 333–390 (1977)

12. Brandt, A., Yavneh, I.: On multigrid solution of high-Reynolds
incompressible entering flows. J. Comput. Phys. 101(1), 151–164
(1992). doi:10.1016/0021-9991(92)90049-5

13. Caffarelli, L.A., Milman M. (eds): Monge–Ampère equation:
applications to geometry and optimization. In: Contemporary
Mathematics, vol. 226. American Mathematical Society, Provi-
dence, RI (1999). doi:10.1090/conm/226

14. Chen, Y., Wan, J.W.: Monotone mixed narrow/wide stencil finite
difference scheme for Monge–Ampère equation. ArXiv preprint
arXiv:1608.00644 (2016)

15. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to vis-
cosity solutions of second order partial differential equations.
Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992). doi:10.1090/
S0273-0979-1992-00266-5

16. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton–
Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983).
doi:10.2307/1999343

17. Debrabant, K., Jakobsen, E.R.: Semi-Lagrangian schemes
for linear and fully non-linear diffusion equations.
Math. Comput. 82(283), 1433–1462 (2013). doi:10.1090/
S0025-5718-2012-02632-9

18. Feng, X., Jensen, M.: Convergent semi-Lagrangian methods for
theMonge–Ampère equation on unstructured grids. ArXiv preprint
arXiv:1602.04758 (2016)

19. Forsyth, P.A., Labahn, G.: Numerical methods for controlled
Hamilton–Jacobi–Bellman PDEs in finance. J. Comput. Finance
11(2), 1 (2007)

20. Froese, B.D., Oberman, A.M.: Convergent finite difference solvers
for viscosity solutions of the elliptic Monge–Ampère equation in
dimensions two and higher. SIAM J. Numer. Anal. 49(4), 1692–
1714 (2011). doi:10.1137/100803092

21. Froese, B.D., Oberman, A.M.: Fast finite difference solvers for sin-
gular solutions of the ellipticMonge–Ampère equation. J. Comput.
Phys. 230(3), 818–834 (2011). doi:10.1016/j.jcp.2010.10.020

22. Froese, B.D., Oberman, A.M.: Convergent filtered schemes for
the Monge–Ampère partial differential equation. SIAM J. Numer.
Anal. 51(1), 423–444 (2013). doi:10.1137/120875065

23. Han, D., Wan, J.W.L.: Multigrid methods for second order
Hamilton–Jacobi–Bellman and Hamilton–Jacob–Bellman–Isaacs
equations. SIAMJ. Sci. Comput. 35(5), S323–S344 (2013). doi:10.
1137/120881476

24. Hoppe, R.H.W.: Multigrid methods for Hamilton–Jacobi–Bellman
equations. Numer. Math. 49(2–3), 239–254 (1986). doi:10.1007/
BF01389627

25. Howard, R.A.: Dynamic Programming andMarkov Processes. The
TechnologyPress ofM.I.T.,Cambridge,Mass.; JohnWiley&Sons,
Inc., New York, London (1960)

26. Jameson, A.: Solution of the Euler equations for two-dimensional
transonic flow by a multigrid method. Appl. Math. Comput. 13(3–
4), 327–355 (1983). doi:10.1016/0096-3003(83)90019-X

27. Krylov, N.V.: The control of the solution of a stochastic integral
equation. Teor. Verojatnost. i Primenen. 17, 111–128 (1972)

28. Lin, J.: Wide Stencil for the Monge–Ampère Equation.
Technical Report, University of Waterloo Master Essay, Super-
vised by Justin WL Wan, Available on https://uwaterloo.ca/
computational-mathematics/sites/ca.computational-mathematics/
files/uploads/files/cmmain1.pdf (2014)

29. Lions, P.L.: Hamilton–Jacobi–Bellman equations and the optimal
control of stochastic systems. In: Proceedings of the International
Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), pp. 1403–
1417. PWN, Warsaw (1984)

30. Ma, K., Forsyth, P.A.: An unconditionally monotone numeri-
cal scheme for the two-factor uncertain volatility model. IMA J.
Numer. Anal. 37(2), 905–944 (2016)

31. Napov, A., Notay, Y.: An algebraic multigrid method with guaran-
teed convergence rate. SIAM J. Sci. Comput. 34(2), A1079–A1109
(2012)

32. Notay, Y.: An aggregation-based algebraic multigrid method. Elec-
tron. Trans. Numer. Anal. 37, 123–146 (2010)

33. Oberman, A.M.: Wide stencil finite difference schemes for the
elliptic Monge–Ampère equation and functions of the eigenvalues
of the Hessian. Discrete Contin. Dyn. Syst. Ser. B 10(1), 221–238
(2008). doi:10.3934/dcdsb.2008.10.221

34. Reisinger, C., Arto, J.R.: Boundary treatment and multigrid pre-
conditioning for semi-Lagrangian schemes applied to Hamilton–
Jacobi–Bellman equations. ArXiv preprint arXiv:1605.04821
(2016)

35. Ruge, J.W., Stüben, K.: Algebraic multigrid. In: Multigrid Meth-
ods, Frontiers in Applied Mathematics, vol. 3, pp. 73–130. SIAM,
Philadelphia, PA (1987)

36. Seibold, B.: Performance of algebraic multigrid methods for non-
symmetric matrices arising in particle methods. Numer. Linear
Algebra Appl. 17(2–3), 433–451 (2010). doi:10.1002/nla.710

37. Smears, I.: Hamilton–Jacobi–Bellman Equations Analysis and
Numerical Analysis. Technical Report, Research Report Available
on www.math.dur.ac.uk/Ug/projects/highlights/PR4/Smears_
HJB_report.pdf

38. Stüben, K.: An introduction to algebraic multigrid. In: Trottenberg,
U., Oosterlee, C.W., Schüller, A. (eds.) Multigrid, pp. 413–532.
Academic Press Inc, San Diego, CA (2001)

39. Stüben,K.:A reviewof algebraicmultigrid. J.Comput.Appl.Math.
128(1–2), 281–309 (2001). doi:10.1016/S0377-0427(00)00516-1.
Numerical analysis 2000, Vol. VII, Partial differential equations

40. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Aca-
demic Press Inc, San Diego, CA (2001)

41. Wang, J., Forsyth, P.A.: Maximal use of central differencing for
Hamilton–Jacobi–BellmanPDEs in finance. SIAMJ.Numer.Anal.
46(3), 1580–1601 (2008). doi:10.1137/060675186

42. Xu, J., Zikatanov, L.T.: Algebraic multigrid methods. ArXiv
preprint arXiv:1611.01917 (2016)

123

http://dx.doi.org/10.1137/040619533
http://dx.doi.org/10.1090/mcom/3080
http://dx.doi.org/10.1051/m2an/2010017
http://dx.doi.org/10.1051/m2an/2010017
http://dx.doi.org/10.1016/S0168-9274(96)00067-0
http://dx.doi.org/10.1080/01630568908816304
http://dx.doi.org/10.1137/08073041X
http://dx.doi.org/10.1016/0021-9991(92)90049-5
http://dx.doi.org/10.1090/conm/226
http://arxiv.org/abs/1608.00644
http://dx.doi.org/10.1090/S0273-0979-1992-00266-5
http://dx.doi.org/10.1090/S0273-0979-1992-00266-5
http://dx.doi.org/10.2307/1999343
http://dx.doi.org/10.1090/S0025-5718-2012-02632-9
http://dx.doi.org/10.1090/S0025-5718-2012-02632-9
http://arxiv.org/abs/1602.04758
http://dx.doi.org/10.1137/100803092
http://dx.doi.org/10.1016/j.jcp.2010.10.020
http://dx.doi.org/10.1137/120875065
http://dx.doi.org/10.1137/120881476
http://dx.doi.org/10.1137/120881476
http://dx.doi.org/10.1007/BF01389627
http://dx.doi.org/10.1007/BF01389627
http://dx.doi.org/10.1016/0096-3003(83)90019-X
https://uwaterloo.ca/computational-mathematics/sites/ca.computational-mathematics/files/uploads/files/cmmain1.pdf
https://uwaterloo.ca/computational-mathematics/sites/ca.computational-mathematics/files/uploads/files/cmmain1.pdf
https://uwaterloo.ca/computational-mathematics/sites/ca.computational-mathematics/files/uploads/files/cmmain1.pdf
http://dx.doi.org/10.3934/dcdsb.2008.10.221
http://arxiv.org/abs/1605.04821
http://dx.doi.org/10.1002/nla.710
www.math.dur.ac.uk/Ug/projects/highlights/PR4/Smears_HJB_report.pdf
www.math.dur.ac.uk/Ug/projects/highlights/PR4/Smears_HJB_report.pdf
http://dx.doi.org/10.1016/S0377-0427(00)00516-1
http://dx.doi.org/10.1137/060675186
http://arxiv.org/abs/1611.01917

	Multigrid methods for convergent mixed finite difference scheme for Monge–Ampère equation
	Abstract
	1 Introduction
	2 Mixed finite difference discretization
	2.1 HJB formulation of Monge–Ampère equation
	2.2 Standard 7-point stencil discretization
	2.3 Semi-Lagrangian wide stencil discretization
	2.4 Mixed discretization
	2.5 The nonlinear discrete system

	3 Multigrid methods for standard 7-point stencil discretization
	3.1 Policy-MG iteration
	3.2 Four-directional alternating line smoother
	3.3 Seven-point restriction and interpolation
	3.4 Full approximation scheme (FAS)

	4 Multigrid methods for mixed stencil discretization
	4.1 Failure of the standard multigrid method
	4.2 Coarsening strategy
	4.3 Interpolation
	4.4 Restriction

	5 Smoothing analysis
	6 Numerical results
	6.1 Multigrid for standard 7-point stencil discretization
	6.2 Multigrid for mixed stencil discretization

	7 Conclusion
	References




