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Abstract In this paper, we propose a monotone mixed finite difference scheme for solving
the two-dimensional Monge–Ampère equation. In order to accomplish this, we convert the
Monge–Ampère equation to an equivalent Hamilton–Jacobi–Bellman (HJB) equation. Based
on the HJB formulation, we apply the standard 7-point stencil discretization, which is second
order accurate, to the grid points wherever monotonicity holds, and apply semi-Lagrangian
wide stencil discretization elsewhere to ensure monotonicity on the entire computational
domain. By dividing the admissible control set into six regions and optimizing the sub-
problem in each region, the computational cost of the optimization problem at each grid
point is reduced from O(M2) to O(1) when the standard 7-point stencil discretization is
applied and to O(M) otherwise, where the discretized control set is M × M . We prove that
our numerical scheme satisfies consistency, stability, monotonicity and strong comparison
principle, and hence is convergent to the viscosity solution of the Monge–Ampère equation.
In the numerical results, second order convergence rate is achieved when the standard 7-point
stencil discretization is applied monotonically on the entire computation domain, and up to
order one convergence is achieved otherwise. The proposed mixed scheme yields a smaller
discretization error and a faster convergence rate compared to the pure semi-Lagrangian wide
stencil scheme.
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1 Introduction

The goal of this paper is to compute the numerical solution of the two-dimensional Monge–
Ampère equation with Dirichlet boundary condition:

uxxuyy − u2xy = f, in Ω,

u = g, on ∂Ω,

u is convex,
(1)

whereΩ is a bounded convex open set inR2, ∂Ω is its boundary,Ω = Ω ∪∂Ω , u : Ω → R

is the unknown function, and f : Ω → R and g : ∂Ω → R are given functions.
The Monge–Ampère equation is of great interest due to a wide range of applications,

including differential geometry, optimal mass transport (or Monge–Kantorovich) problem,
image registration, mesh generation, etc. We direct the interested readers to [8] for an exten-
sive review of applications.

The Monge–Ampère equation is a fully nonlinear partial differential equation (PDE),
since the left hand side consists of products of the second derivatives. As a result, it may have
multiple weak solutions. Among all these weak solutions, we are interested in computing
the viscosity solution [10,11], since it is often considered the correct one in many practical
applications [17]. The viscosity solution of the Monge–Ampère equation is globally convex,
while the other solutions may not be convex [17]. We note that a convexity constraint is
imposed in the Dirichlet problem (1) in order to select the viscosity solution and circumvent
the issue of multiple weak solutions.

Due to the nonlinearity of the Monge–Ampère Eq. (1) with the additional convexity
constraint, it is challenging to design a numerical scheme that converges to the viscosity
solution. Some numerical schemes have been proposed in recent years. One approach is using
finite differencemethods. Somefinite difference schemes, such as [4], use the standard central
differencing to discretize uxy , and are thus not monotone. The significance of monotonicity
is that together with consistency, stability and strong comparison principle, they provide
sufficient conditions for a numerical scheme to converge to the viscosity solution [2].

Very few finite difference schemes that are monotone and thus convergent in the viscosity
sense have been proposed. One of the schemes, proposed in [28], is to exploit the geomet-
rical interpretation of the Monge–Ampère equation. The grid structure, constrained by the
geometry of the equation, is usually not rectangular or triangular. Another scheme, proposed
in [17,27], uses wide stencils to achieve monotonicity. However, in order for the scheme to
converge, the number of the stencil points must increase towards infinity when the mesh size
h decreases towards 0, thus resulting in high computational costs for solving problems on fine
grids. Some improvements on this wide stencil scheme have been proposed. For instance, in
[18,19], the same authors use hybrid and filtered schemes, both integrating the wide stencil
scheme with the more accurate non-monotone central difference scheme in order to improve
the accuracy. That being said, the issue of infinite stencil points still exists. Recently, Ref. [3]
improves on the previous wide stencil approach so that it is the least nonlocal among all wide
stencils of the same family. The number of stencil points does not need to grow to infinity as
h → 0, but it still grows and can reach as high as 48.

Galerkin-type methods have also been developed for solving the Monge–Ampère equa-
tion. An immediate challenge is that it is not obvious how to write down the variational
formulation of (1) using the common integration-by-parts approach. The L2 projection
methods, proposed in [5,7], build up the Galerkin-type schemes based on the linearized
Monge–Ampère equation. Similar idea can be found in the nonvariational finite element
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method in [23]. In [12], the authors reformulate the Monge–Ampère equation into an aug-
mented Lagrangian problem or a least-squares problem, which allows the use of mixed finite
element methods. The authors in [15] add an artificial fourth order elliptic differential oper-
ator εΔ2u. They show that with this additional term, a variational formulation, and thus
a finite element scheme, becomes possible. However, a common issue for these Galerkin-
type methods is that convergence to the viscosity solutions for non-regular solutions remains
unclear.

Our approach, which is distinct from many of the existing methods, is to first convert (1)
into an equivalent Hamilton–Jacobi–Bellman (HJB) equation [22,25], and then numerically
solve the equivalent HJB equation. The application of the HJB formulation in the numerical
computation of the Monge–Ampère equation is first investigated by the coauthors of this
paper; see the essay [24]. Another recent investigation on this approach, [14], is made public
at the completion of our paper. There are some important benefits using the HJB formulation.
One is that the differential operator of the HJB equation under fixed control parameters is
linear. Another benefit is that the convexity constraint in (1) is already implicitly incorporated
into the HJB differential operator. In other words, there is no need to impose the convexity
constraint in the HJB formulation. In addition, many convergent numerical schemes for HJB
equations or HJB differential operators have been developed, such as [1,6,13,16,21,26,33].
As a result, it is more tractable to design a numerical scheme that converges in the viscosity
sense for the equivalent HJB equation than for theMonge–Ampère Eq. (1) with the convexity
constraint.

Our primary goal is to design a monotone finite difference scheme for the equivalent
HJB equation. We note that the cross derivative uxy is still present in the HJB equation, and
the standard central differencing or the standard 7-point stencil discretization for uxy may
be non-monotone. In order to achieve monotonicity, Ref. [14] follows the idea in [13,26]
and applies “semi-Lagrangian scheme” on the entire computational domain, where a local
coordinate rotation is performed to remove the cross derivative from the HJB equation, and
then central differencing is appliedwith a stencil length greater than themesh size h, resulting
in at most 17 stencil points for any h. In some literature, such semi-Lagrangian scheme is also
called wide stencil scheme, which should not to be confused with the wide stencil scheme in
[17–19,27] that requires infinity stencil size as h → 0. However, monotonicity is achieved
at the expense of large truncation error and slow convergence. In particular, the convergence
rate is no better than O(h).

In order to improve the accuracy and meanwhile strictly maintain monotonicity, our
approach is to apply a mixed standard 7-point stencil and semi-Lagrangian wide stencil
discretization on the equivalent HJB equation. More specifically, the standard 7-point stencil
discretization, which is second order accurate, is applied to discretize uxy at a grid point if
monotonicity is fulfilled. Otherwise, the semi-Lagrangian wide stencil scheme, which is less
accurate but guaranteed to be monotone, is implemented. We emphasize that our discretiza-
tion scheme is designed such that consistency, stability, monotonicity and strong comparison
principle are fulfilled on the entire computational domain. As a result, our numerical scheme
is guaranteed to converge to the viscosity solution of theMonge–Ampère equation [2].Mean-
while, by maximal use of the standard 7-point stencil discretization, the discretization error
of the numerical solution is significantly reduced, compared to the pure semi-Lagrangian
wide stencil scheme in [14]. Moreover, our numerical scheme yields a convergence rate of
O(h2) whenever the standard 7-point stencil discretization can be applied monotonically on
the entire computation domain, and up to O(h) otherwise. The second order convergence
rate in the optimal cases is another significant improvement over the numerical scheme in
[14].
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To solve the resulting nonlinear discretized system, one of the most expensive steps is
to optimize two control parameters at every grid point. Reference [14] does not discuss the
computational cost of the optimization problem. Typically a bilinear search is implemented
on an M × M discretized control set, resulting in O(M2) computational complexity. We
propose an approach that reduces the computational cost for the optimization problem to
O(1) whenever the standard 7-point stencil discretization is applied, and at most O(M)

otherwise.
Finally, we want to emphasize that our method is the only method that fulfills all the

following properties: monotone and thus convergent to the viscosity solution, second order
accurate in the optimal cases, and having at most 17 stencil points independent of the mesh
size h. None of the references in our paper have the same properties.

To illustrate our numerical scheme, we will briefly review the notion of viscosity solution
in Sect. 2. In Sect. 3, wewill establish the equivalent HJB formulation for theMonge–Ampère
Eq. (1). In Sect. 4, we will describe our mixed standard 7-point stencil and semi-Lagrangian
wide stencil finite difference discretization for the HJB formulation. Section 5 solves the
nonlinear discretized system using policy iteration, with a detailed discussion on speeding up
computation for the optimization of control parameters. Section 6 proves that our numerical
scheme satisfies consistency, stability, monotonicity and strong comparison principle, and
thus converges to the viscosity solution of (1). Section 7 shows numerical results. We also
demonstrate the discretization error and the rate of convergence for each case. Section 8 is
the conclusion.

2 Viscosity Solution of the Monge–Ampère Equation

The objective of this paper is to compute the viscosity solution of theMonge–Ampère Eq. (1).
An overview on the topic of viscosity solution can be found in [10,11].

Before defining the viscosity solution of (1), we rewrite (1) as

F (x, u(x), D2u(x)
) ≡

{− det
[
D2u(x)

]+ f (x), x ∈ Ω,

u(x) − g(x), x ∈ ∂Ω,
= 0,

u is convex ⇒ D2u(x) is positive semi-definite, (2)

where x = (x, y) ∈ Ω , and D2u is the Hessian matrix of u.
To introduce the notion of viscosity solution, we define the upper (respectively lower)

semi-continuous envelope of a function z : C → R on a closed set C as

z∗(x) ≡ lim sup
y→x, y∈C

z(y)

(
respectively z∗(x) ≡ lim inf

y→x, y∈C z(y)

)
. (3)

Definition 1 (Viscosity solution) A convex upper (respectively lower) semi-continuous func-
tion u : Ω → R is a viscosity subsolution (respectively supersolution) of theMonge–Ampère
equation F (x, u(x), D2u(x)

) = 0, if for all the test functions ϕ(x) ∈ C2(Ω) and all x ∈ Ω ,
such that u∗ − ϕ (respectively u∗ − ϕ) has a local maximum (respectively minimum) at x,
we have

F∗(x, u∗(x), D2ϕ(x)) ≤ 0
(
respectively F∗(x, u∗(x), D2ϕ(x)) ≥ 0

)
. (4)

Furthermore, the function u is a viscosity solution if it is both a viscosity sub-solution and
super-solution.

123



J Sci Comput (2018) 76:1839–1867 1843

We note that the convexity of u (or equivalently, D2u being positive semi-definite,
det(D2u) = f ≥ 0) already implies that the differential operator of (2) is degenerate elliptic.
Furthermore, degenerate ellipticity, plusΩ being bounded and convex, ensures the existence
and uniqueness of the viscosity solution of (2). See [10,20] for details.

3 HJB Formulation of the Monge–Ampère Equation

Since the Monge–Ampère Eq. (2) is nonlinear, it is challenging to design a finite difference
scheme that converges to the viscosity solution. Our approach is to convert the Monge–
Ampère equation into an equivalent HJB equation. The equivalence of the two PDEs is first
established in [22,25] for classical solutions. Recently, Ref. [14] extends the equivalence
to the setting of viscosity solutions. Here we state the equivalence of the two PDEs as the
following theorem:

Theorem 1 Let Ω be a convex open set in R
2. Let f ∈ C(Ω) be a non-negative function.

Let a convex function u be the viscosity solution of the following HJB equation,

max
A(x)∈S+

1

{
− tr

[
A(x)D2u(x)

]+ 2
√
det(A(x)) f (x)

}
= 0, (5)

where S+
1 ≡ {A ∈ R

2×2 : A is positive semi-definite, AT = A, tr(A) = 1} and A(x) ∈ S+
1

is the control at point x. Then u is the viscosity solution of the Monge–Ampère Eq. (2).

Proof We refer interested readers to the proof in [32] when u is a classical solution, and the
proof in [14] for the extension to the viscosity solution. 
�

Wenotice that due to the positive semi-definite property of thematrix A(x), it can be diago-
nalized by an order-two orthogonalmatrix.More specifically, A(x) ∈ S+

1 can be parametrized
as follows:

A(x) =
(

cos θ(x) sin θ(x)

− sin θ(x) cos θ(x)

)(
a(x) 0
0 1 − a(x)

)(
cos θ(x) − sin θ(x)

sin θ(x) cos θ(x)

)
,

a(x) ∈ [0, 1], θ(x) ∈ [−π, π). (6)

This parametrization gives rise to the following HJB equation, which we aim at solving.

Corollary 1 Under the parametrization (6), the HJB Eq. (5) becomes

max
(a(x),θ(x))∈Γ

{
− α11 (a(x), θ(x))uxx (x) − 2α12(a(x), θ(x))uxy(x)

−α22(a(x), θ(x))uyy(x) + 2
√
a(x)(1 − a(x)) f (x)

}
= 0, (7)

where (a(x), θ(x)) is the pair of controls at point x, Γ = [0, 1] × [− π
4 , π

4

)
is the set of

admissible controls,1 and the coefficients are

1 Although (6) defines the admissible control set to be in the range of [0, 1]×[−π, π), the optimal control pair
(a∗, θ∗) that maximizes (7) may not be unique in [0, 1]× [−π, π). We notice that sinceLa,θ u = La,θ+π u,
and La,θ u = L1−a,θ+ π

2
u, the admissible control set Γ can be reduced to [0, 1] × [− π

4 , π
4 ). Such removal

of the redundancy of Γ ensures that the optimal control pair (a∗, θ∗) is unique in Γ , except when a∗ = 1
2 or

when f = 0.
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α11(a(x), θ(x)) = 1

2
[1 − (1 − 2a(x)) cos 2θ(x)] ,

α22(a(x), θ(x)) = 1

2
[1 + (1 − 2a(x)) cos 2θ(x)] ,

α12(a(x), θ(x)) = 1

2
(1 − 2a(x)) sin 2θ(x). (8)

For convenience, we rewrite the HJB Eq. (7) as

F (x, u(x), D2u(x)
) ≡ max

(a(x),θ(x))∈Γ
La(x),θ(x) u(x) = 0, (9)

where the differential operator of the HJB equation is given by

La,θ u ≡ −α11(a, θ)uxx − 2α12(a, θ)uxy − α22(a, θ)uyy + 2
√
a(1 − a) f . (10)

We note that since the HJB Eqs. (9)–(10) and theMonge–Ampère Eq. (2) are mathematically
equivalent, we still use the notation F (x, u(x), D2u(x)

)
to denote the HJB equation.

The HJB formulation introduces some favorable properties over the Monge–Ampère
Eq. (2). We first notice that in the equivalent HJB Eqs. (5) or (7), the convexity constraint
of the Monge–Ampère equation disappears. Indeed, the convexity constraint is implicitly
enforced in the HJB formulation. The reason is that the proof of Theorem 1, where the
Monge–Ampère equation is converted to the HJB equation, has already taken into account
that u is a convex function. We remark that the convexity constraint poses a major difficulty
in designing a convergent numerical scheme for Monge–Ampère equation; see [17] for a dis-
cussion. However, in the HJB formulation, there is no need to explicitly impose the convexity
constraint any more, which makes the numerical computation more manageable.

Another useful property of theHJBEqs. (9)–(10) is that for a fixed given control pair (a, θ),
the differential operatorLa,θ u is linear. We note, however, that the HJB equation itself is still
nonlinear, since the maximization depends on u. Unlike (2), the linear differential operator
La,θ u does not contain products of the second derivatives. The linearity of La,θ u allows us
to develop finite difference schemes based on numerical methods for linear PDEs.

Considering these advantages of the HJB formulation, our approach is to solve the HJB
Eq. (7) instead of the Monge–Ampère Eq. (2).

4 Mixed Finite Difference Discretization

In this section, we will construct a monotone finite difference discretization for the HJB
Eq. (7). Monotonicity is a desirable property, since [2] has proved that monotonicity is one
of the sufficient conditions for a numerical scheme to converge to the viscosity solution.

To set up notation, let us consider an N ×N square grid
{
xi, j = (xi , y j )

}
, where xi, j ∈ Ω

when i, j = 1, · · · , N , and xi, j ∈ ∂Ω when i, j = 0 or N + 1. Also, let h be the mesh size
and let ui, j , ai, j , θi, j and fi, j be the grid functions of u(xi, j ), a(xi, j ), θ(xi, j ) and f (xi, j ),
respectively. Our goal is to solve the set of the unknowns {ui, j | 1 ≤ i ≤ N , 1 ≤ j ≤ N }.
4.1 Standard 7-Point Stencil Discretization

Consider discretizing the HJB Eq. (7) at a grid point xi, j . We can use the standard central
differencing to approximate uxx (xi, j ) and uyy(xi, j ) as follows:

(δxxu)i, j ≡ ui+1, j − 2ui, j + ui−1, j

h2
, (δyyu)i, j ≡ ui, j+1 − 2ui, j + ui, j−1

h2
. (11)
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Fig. 1 (left) Local coordinate rotation at the grid point xi, j , and semi-Lagrangian wide stencil discretization
of uzz(xi, j ) and uww(xi, j ) under the rotation. The rotation angle is φi, j , counter-clockwise. The grey dashed

lines are the orthogonal axis {(ez)i, j , (ew)i, j }. The stencil length is
√
h (

√
h > h). The grey stars are the stencil

points xi, j ± √
h(ez)i, j and xi, j ± √

h(ew)i, j . The unknowns at these stencil points are approximated by the
bilinear interpolation from the neighboring points (black dots). Standard central differencing associated with
this wide stencil is applied to approximate uzz(xi, j ) and uww(xi, j ). (right) Semi-Lagrangian wide stencil

discretization near the boundary. One of the wide stencil points xi, j +
√
h(ez)i, j falls outsideΩ (hollow star).

The wide stencil is truncated and the stencil point is relocated to the point xi, j + η1(ez)i, j ∈ ∂Ω (black star).

The corresponding stencil length has shrunk from
√
h to η1

It can be shown that the standard 7-point stencil discretization for uxy(xi, j ) can lead to a
monotone scheme in the following two cases:

Case 1 When the coefficients α11, α22 and α12 in (8) satisfy

α11(ai, j , θi, j ) ≥ |α12(ai, j , θi, j )|, α22(ai, j , θi, j ) ≥ |α12(ai, j , θi, j )|,
and α12(ai, j , θi, j ) ≥ 0 at the grid point xi, j , (12)

we approximate uxy(xi, j ) using

(δ[1]
xy u)i, j ≡ 2ui, j + ui+1, j+1 + ui−1, j−1 − ui+1, j − ui−1, j − ui, j+1 − ui, j−1

2h2
. (13)

Case 2 When the coefficients α11, α22 and α12 in (8) satisfy

α11(ai, j , θi, j ) ≥ |α12(ai, j , θi, j )|, α22(ai, j , θi, j ) ≥ |α12(ai, j , θi, j )|,
and α12(ai, j , θi, j ) ≤ 0 at the grid point xi, j , (14)

we approximate uxy(xi, j ) using

(δ[2]
xy u)i, j ≡ − 2ui, j − ui+1, j−1 − ui−1, j+1 + ui+1, j + ui−1, j + ui, j+1 + ui, j−1

2h2
. (15)

4.2 Semi-Lagrangian Wide Stencil Discretization

However, if neither (12) nor (14) is fulfilled at the grid point xi, j , then it is unclear how to
directly discretize the cross derivativeuxy(xi, j ) in (7)monotonically.Our approach, following
[13,26], is to eliminate the cross derivative uxy(xi, j ) by a local coordinate transformation. Let
{(ez)i, j , (ew)i, j } be a local orthogonal basis which is obtained by a rotation of the standard
axes {(ex )i, j , (ey)i, j } at an angle φi, j ; see Fig. 1 (left). If the rotation angle is chosen as
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φi, j = 1
2 arctan

2α12(ai, j ,θi, j)
α11(ai, j ,θi, j)−α22(ai, j ,θi, j)

= − θi, j , then the cross derivative vanishes under

the basis {(ez)i, j , (ew)i, j }. By straightforward algebra, one can show that (7) becomes

max
(ai, j ,θi, j )∈Γ

{
−ai, j uzz(xi, j ) − (1 − ai, j

)
uww(xi, j ) + 2

√
ai, j

(
1 − ai, j

)
fi, j

}
= 0. (16)

Here uzz(xi, j ) and uww(xi, j ) are the directional derivatives along the basis (ez)i, j and (ew)i, j ,
which depend on the rotation θi, j .

We may consider the finite difference discretization of (16) by applying the standard
central differencing to uzz(xi, j ) and uww(xi, j ). For instance, we approximate uzz(xi, j ) by
1
h2
[
u(xi, j + h(ez)i, j ) − 2ui, j + u(xi, j − h(ez)i, j )

]
. However, since the stencil is rotated,

the stencil points xi, j ± h(ez)i, j may no longer coincide with any grid points. In such cases,
bilinear interpolation from the neighboring grid points can be used to approximate u(xi, j ±
h(ez)i, j ). However, a consequence of the bilinear interpolation is that the truncation error
of this central difference approximation becomes O(1) if the stencil length is h. In order to
maintain consistency, we choose the stencil length

√
h, which yields O(h) truncation error.

Note that when h is small,
√
h > h, which means the stencil length appears to be wide.

The details of the discretization is explained in Fig. 1 (left). As a result, the finite difference
discretization for uzz(xi, j ) and uww(xi, j ) is given by

(δzzu)i, j ≡
Ihu|xi, j+√

h(ez)i, j
− 2ui, j + Ihu|xi, j−√

h(ez)i, j

h
, (17)

(δwwu)i, j ≡
Ihu|xi, j+√

h(ew)i, j
− 2ui, j + Ihu|xi, j−√

h(ew)i, j

h
, (18)

where we have used the stencil length
√
h, and used bilinear interpolation to approxi-

mate the unknown values at the stencil points xi, j ± √
h(ez)i, j and xi, j ± √

h(ew)i, j ,
denoted as Ihu|xi, j±√

h(ez)i, j
and Ihu|xi, j±√

h(ew)i, j
. Such discretization scheme is called

semi-Lagrangian wide stencil discretization [13,26].
If we apply the semi-Lagrangian wide stencil discretization at a grid point xi, j that is

close to the boundary, some of its associated stencil points may fall outside the computational
domain Ω . In such case, our solution is to shrink the corresponding stencil length(s) such
that the stencil point(s) are relocated onto the boundary ∂Ω . Without loss of generality, we
analyze one scenario; see Fig. 1 (right). Let us assume that xi, j + √

h(ez)i, j falls outside
Ω . We truncate the corresponding stencil length from

√
h to η1 along the ez axis, such that

the stencil point is relocated to xi, j + η1(ez)i, j ∈ ∂Ω . Since η1 = √
h, the finite difference

approximation for uzz(xi, j ) in (17) is replaced by

(δzzu)i, j ≡
g(xi, j+η1(ez)i, j )−ui, j

η1
− ui, j−Ihu|xi, j−√

h(ez )i, j√
h

η1+
√
h

2

, (19)

where we have used the Dirichlet boundary condition of (1): u(xi, j + η1(ez)i, j ) = g(xi, j +
η1(ez)i, j ). We note that such procedure can be used whenever xi, j is close to the boundary
and a truncation of stencil is needed.

4.3 Mixed Discretization

Sections 4.1 and 4.2 describe the standard 7-point stencil and semi-Lagrangian wide stencil
finite difference discretization for the HJB Eq. (7). The advantage of the semi-Lagrangian
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wide stencil discretization is that it is unconditionally monotone. Reference [14] applies the
semi-Lagrangian wide stencil discretization at every grid point. However, it is only first order
accurate, while the standard 7-point stencil discretization is second order accurate, as will
be proved in Sect. 6. In order to combine the advantages of both discretization schemes,
we will only apply the semi-Lagrangian wide stencil discretization at the grid points where
neither (12) nor (14) is satisfied. For the other grid points where either (12) or (14) is fulfilled,
we will apply the standard 7-point stencil discretization. The purpose is to strictly maintain
monotonicity at every grid point and meanwhile to make the numerical scheme as accurate
as possible. As a result, the discrete equation at each grid point xi, j is given by the following
mixed scheme:

Standard 7-point stencil discretization. When the control pair (ai, j , θi, j ) satisfies Condi-
tion (12) or (14), the discrete equation is given by

max
(ai, j ,θi, j )∈Γ

{
−α11(ai, j , θi, j )(δxxu)i, j − 2α12(ai, j , θi, j )

(
δ[disc]
xy u

)

i, j

−α22(ai, j , θi, j )(δyyu)i, j + 2
√
ai, j (1 − ai, j ) fi, j

}
= 0, (20)

where disc = 1 or 2 if (12) or (14) is satisfied respectively.
Semi-Lagrangian wide stencil discretization.Otherwise, the discrete equation is given by

max
(ai, j ,θi, j )∈Γ

{− ai, j (δzzu)i, j − (1 − ai, j
)

(δwwu)i, j

+ 2
√
ai, j

(
1 − ai, j

)
fi, j

}
= 0, (21)

where (δzzu)i, j and (δwwu)i, j are defined by (17) and (18) when xi, j is inside the computa-
tional domain, and by (19) or similar expressions when xi, j is near the boundary.

4.4 The Nonlinear Discrete System

The mixed discretization scheme, defined by (20) and (21), gives rise to a nonlinear dis-
crete system that contains N 2 discrete equations. If we define a vector of the unknowns
uh ≡ (u1,1, u1,2, . . . , u1,N , u2,1, . . . , uN ,N )T ∈ R

N2×1, and similarly, vectors of controls

ah ∈ R
N2×1, θh ∈ R

N2×1, then the entire nonlinear discrete system can be written into the
following matrix form:

max
(ah ,θh)∈Γ

{A(ah, θh) uh − Fh(ah, θh)} = 0, (22)

whereA(ah, θh) ∈ R
N2×N2

is amatrix that consists of the coefficients ofuh , and Fh(ah, θh) ∈
R

N2×1 is a vector that does not explicitly contain uh . We note that this nonlinear system can
be treated as a combination of an optimization problem and a linear system as follows:

Fh(uh) ≡ max
(ah ,θh)∈Γ

Lh(ah, θh; uh) = 0, (23)

where the to-be-maximized linear system is

Lh(ah, θh; uh) ≡ A(ah, θh) uh − Fh(ah, θh). (24)

Here the symbolsFh and Lh in (23)–(24) represent the discretization ofF and L in (9)–(10),
respectively.
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Fig. 2 (left-top) Case 1: Suppose Condition (12) is satisfied at xi, j and the standard 7-point stencil dis-
cretization (20) is used. The discrete equation contains 7 unknown values of uh , labelled by the black dots.
(left-bottom) Case 2: Consider x1,N , which is close to the boundary. The hollow dots sit on the boundary and
the values of u on these points are determined by the Dirichlet boundary condition. As a result, the discrete
equation contains 3 unknown values of uh , labeled by the black dots. (right) Case 3: Suppose neither (12)
nor (14) is satisfied at xi, j and thus semi-Lagrangian wide stencil discretization (21) is used. Since bilinear
interpolation of each stencil point contains 4 unknown values, the resulting discrete equation has 17 unknown
values in total (black dots)

To show how the standard 7-point stencil discretization (20) and the semi-Lagrangian
wide stencil discretization (21) can be written into the general form (22), we analyze four
cases.

Standard 7-point stencil discretization, grid point xi, j inside Ω . Suppose Condition (12)
is satisfied at xi, j . Then we use the standard 7-point stencil discretization (20) with disc = 1.
This is illustrated in Fig. 2 (left-top). Some simple algebra shows that (20) can be transformed
into (22) where

(Auh)i, j = 2

h2
(α11 + α22 − α12)ui, j − 1

h2
(α11 − α12)ui+1, j

− 1

h2
(α11 − α12)ui−1, j − 1

h2
(α22 − α12)ui, j+1

− 1

h2
(α22 − α12)ui, j−1 − 1

h2
α12 ui+1, j+1 − 1

h2
α12 ui−1, j−1,

Fi, j = − 2
√
ai, j (1 − ai, j ) fi, j , (25)

where (Auh)i, j and Fi, j are the values of A(ah, θh)uh and Fh(ah, θh) at the grid point xi, j .
For simplicity, we have suppressed the dependency ofA, Fi, j , α11, α22 and α12 on (ai, j , θi, j ).
This equation contains 7 unknown values of uh . Similarly, interested readers can also write
down the expressions when Condition (14) is satisfied at xi, j and the standard 7-point stencil
discretization (20) with disc = 2 is applied.

Standard 7-point stencil discretization, grid point xi, j near ∂Ω . Without loss of gen-
erality, we assume that xi, j = x1,N , as shown in Fig. 2 (left-bottom). Now ui−1, j , ui, j+1,
ui+1, j+1 and ui−1, j−1 can be determined by the Dirichlet boundary condition u = g. These
terms become part of Fi, j . As a result, (Auh)i, j contains only 3 unknown values.

Semi-Lagrangian wide stencil discretization, grid point xi, j inside Ω . Suppose neither
(12) nor (14) is fulfilled at xi, j , so semi-Lagrangianwide stencil discretization (21) is applied;

123



J Sci Comput (2018) 76:1839–1867 1849

see Fig. 2 (right). Then (21) can be written into (22) where

(Auh)i, j = 2

h
ui, j − ai, j

h
Ihu|xi, j+√

h(ez)i, j
− ai, j

h
Ihu|xi, j−√

h(ez)i, j

− 1 − ai, j
h

Ihu|xi, j+√
h(ew)i, j

− 1 − ai, j
h

Ihu|xi, j−√
h(ew)i, j

,

Fi, j = − 2
√
ai, j (1 − ai, j ) fi, j . (26)

We note that each bilinear interpolation term contains 4 unknowns. For instance,
Ihu|xi, j+√

h(ez)i, j
can be written as the linear combination of the unknowns at the four neigh-

boring points ur,s , ur+1,s , ur,s+1 and ur+1,s+1, which are labeled in Fig. 2 (right). As a result,
(26) has 17 unknown values.

Semi-Lagrangian wide stencil discretization, grid point xi, j near ∂Ω . The analysis is
similar to the previous cases. The number of the unknowns is less than 17.

5 Solving the Nonlinear Discrete System

5.1 Policy Iteration

After setting up the complete nonlinear discrete system (23)–(24), the next objective is to
solve it. We apply a well-known fixed point iteration algorithm, called policy iteration (or
Howard’s algorithm) [16,21] as follows:

1. Start with an initial guess of the solution u(0)
h .

2. For k = 0, 1, . . . until convergence:

(a) Solve for the optimal control pair (a(k)
h , θ

(k)
h ) under the current solution u(k)

h :

(a(k)
i, j , θ

(k)
i, j ) = argmax(ai, j ,θi, j )∈Γi, j Li, j (ai, j , θi, j ; u(k)

h ), for all xi, j ∈ Ω, (27)

where Li, j is the pointwise component of Lh ∈ R
N2×1 defined in (24) and Γi, j =

[0, 1] × [− π
4 , π

4 ) is the control set at xi, j .

Meanwhile, obtain the residual R(k)
h ∈ R

N2×1, where each pointwise component

reads R(k)
i, j ≡ Li, j (a

(k)
i, j , θ

(k)
i, j ; u(k)

h ).

(b) If ‖R(k)
h ‖ ≤ tolerance: break

Else, solve the following linear system for the solution u(k+1)
h under the current

optimal control pair (a(k)
h , θ

(k)
h ):

A(a(k)
h , θ

(k)
h ) u(k+1)

h = Fh(a
(k)
h , θ

(k)
h ) ⇒ u(k+1)

h . (28)

It is proved that policy iteration is guaranteed to converge for any initial guess u(0)
h , if

by applying a monotone discretization to an HJB equation, the resulting matrix A(ah, θh) is
an M-matrix under all admissible controls [1,6]. We will show in Sect. 6.2 that the resulting
matrix A(ah, θh) in (22) is indeed an M-matrix.

Policy iteration consists of two sub-steps. One sub-step is to solve the linear system under
a given control pair; see (28). We use Krylov subspace methods, such as the GMRES with
the incomplete LU preconditioner. The other sub-step of the policy iteration is to solve
the optimization problem at each grid point xi, j ; see (27). We will discuss speeding up
computation of the optimization problem in detail in the next section.
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5.2 Speeding Up Computation of Optimal Controls

Since the semi-Lagrangian wide stencil discretization of (δzzu)i, j and (δwwu)i, j in (21)
depends on the control θi, j , there is no simple closed-form formula to evaluate the optimal

(a(k)
i, j , θ

(k)
i, j ) directly. In this case, one typical approach is to use bilinear search algorithm

for the optimization problem. More specifically, consider the optimization problem at a grid
point xi, j . We discretize the continuous admissible control set Γi, j = [0, 1] × [− π

4 , π
4 ) into

an M × M discrete set, denoted as Γ h
i, j . We note that the discretization of the control set

introduces additional truncation error. In order to maintain consistency, we must let M → ∞
as h → 0. A typical choice of M is M = N . Then we compute the M × M values of
the objective function Li, j (ai, j , θi, j ; u(k)

h ) with (ai, j , θi, j ) ∈ Γ h
i, j and then find the global

maximal value, which gives the optimal (a(k)
i, j , θ

(k)
i, j ). However, the computational cost of the

bilinear search per grid point xi, j is O(M2). Furthermore, if we denote the total number of
grid points as #Ω = N 2, then the computational cost on the entire computational domain Ω

is as high as O(M2#Ω), or O(#Ω2) if we choose M = N .
In order to speed up computation for the optimal controls, we divide the continuous

admissible control set Γi, j = [0, 1]× [− π
4 , π

4 ) into six regions, as shown in Fig. 3.2 The six
regions are identified by whether a control pair (ai, j , θi, j ) satisfies (12), or (14), or neither.
Our approach is to find the optimal control pair within each region, and then find the global
optimal control pair among the six regional optimal control pairs. This approach enables us
to make full use of the analytical property of each region, and to improve the optimization
algorithm within each region and eventually on the entire admissible control set Γi, j .

Using our approach, the computational cost of solving the optimization problem on Γi, j

can be significantly reduced. More specifically, if the standard 7-point stencil discretization
can be applied monotonically on all or most of the grid points, then the computational
cost is O(1) per grid point and O(#Ω) on the entire computational domain. In general,
the computational cost is at most O(M) per grid point and at most O(M#Ω) on the entire
computational domain. For the typical choiceM = N , the total computational cost of solving
the optimization problem is O(#Ω3/2).

To explain the details of the regional optimization, consider again a given grid point xi, j
and its associated control set Γi, j . In Region Γ 1

i, j , Γ
2
i, j , ∂Γ 0

i, j , ∂Γ 13
i, j and ∂Γ 23

i, j (see Fig. 3),
where the standard 7-point stencil discretization (20) is applied, the discretization of (δxxu)i, j ,

(δyyu)i, j , (δ
[1]
xy u)i, j and (δ

[2]
xy u)i, j does not depend on the controls (ai, j , θi, j ). This enables us

to derive a closed-form formula for the optimal controls in these regions using first derivative
test, which can be evaluated by O(1) operation and introduces no additional truncation error.
More specifically:

RegionΓ 1
i, j . The region is defined where Condition (12) is satisfied. Equation (20) gives

the objective function in Γ 1
i, j :

Li, j (ai, j , θi, j ) = −α11(ai, j , θi, j )(δxxu)i, j − 2α12(ai, j , θi, j )(δ
[1]
xy u)i, j

−α22(ai, j , θi, j )(δyyu)i, j + 2
√
ai, j (1 − ai, j ) fi, j , (29)

where we only manifest the dependency ofLi, j on the control pair (ai, j , θi, j ). One can verify
that this function is smooth in (ai, j , θi, j ) ∈ Γ 1

i, j , concave in ai, j ∈ [0, 1], and its stationary

2 It is unnecessary to consider the line ai, j = 1
2 , since the objective function is a constant on this line. Also

it is unnecessary to consider the line θi, j = ±π
4 , since La,θ u = L1−a,θ+ π

2
u indicates that θi, j = ±π

4 is

indeed an interior part of Γ 1
i, j and Γ 2

i, j .
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Fig. 3 Division of the admissible control set Γi, j = [0, 1] × [− π
4 , π

4 ) into regions. For each region, the
characterization, discretization, optimization algorithm and the corresponding cost/truncation error of the
optimization algorithm are listed

point in Γ 1
i, j is unique, if it exists. This allows us to use first derivative test to find the optimal

control pair in Γ 1
i, j :

θ∗
i, j = 1

2
arctan

2(δ[1]
xy u)i, j

(δyyu)i, j − (δxxu)i, j
, a∗

i, j = 1

2

⎛

⎝1 − λi, j√
4 fi, j + λ2i, j

⎞

⎠ , (30)

where λi, j ≡ [(δxxu)i, j − (δyyu)i, j ] cos 2θ∗
i, j − 2(δ[1]

xy u)i, j sin 2θ∗
i, j . With a slight abuse of

notations, here and for the rest of Sect. 5.2, we use (a∗
i, j , θ

∗
i, j ) to denote the the regional

(rather than global) optimal control pair at xi, j . We note that (a∗
i, j , θ

∗
i, j ) given by (30) may

not necessarily be inside Γ 1
i, j . If (a∗

i, j , θ
∗
i, j ) ∈ Γ 1

i, j , then the maximum in Γ 1
i, j must occur at
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(a∗
i, j , θ

∗
i, j ). Otherwise, themaximummust occur on the boundary ofΓ 1

i, j , ormore specifically,

either ∂Γ 0
i, j or ∂Γ 13

i, j , which will be investigated separately.

RegionΓ 2
i, j . The region is defined where Condition (14) is satisfied. The analysis for

solving the optimization problem in Γ 2
i, j is the same as Γ 1

i, j , except that (δ
[1]
xy u)i, j in (29),

(30) is replaced by (δ
[2]
xy u)i, j .

Region ∂Γ 0
i, j . This is the line θi, j = 0 which separates Region Γ 1

i, j and Γ 2
i, j . The objective

function in ∂Γ 0
i, j can be found in (29), where α12 = 0 and thus the cross derivative term

disappears. The optimal control pair in ∂Γ 0
i, j is simply

θ∗
i, j = 0, a∗

i, j = 1

2

⎡

⎣1 − (δxxu)i, j − (δyyu)i, j√
4 fi, j + ((δxxu)i, j − (δyyu)i, j )2

⎤

⎦ . (31)

Region ∂Γ 13
i, j . This is the boundary between Region Γ 1

i, j and Γ 3
i, j . If we define the signs

of ai, j − 1
2 and θi, j as

sa−1/2 ≡
{− 1, ai, j − 1

2 < 0,
1, ai, j − 1

2 > 0,
sθ ≡

{− 1, θi, j < 0,
1, θi, j > 0,

(32)

then ∂Γ 13
i, j contains two sections: (i) (sa−1/2, sθ ) = (1,− 1), (ii) (sa−1/2, sθ ) = (− 1, 1).

The objective function on ∂Γ 13
i, j is the same as (29). First derivative test shows that for

each of the two sections of ∂Γ 13
i, j , the maximum of the objective function occurs at

θ∗
i, j = sθ

2
arctan

(
1 + γ 2

i, j − γi, j

√
2 + γ 2

i, j

)
, (33)

where γi, j ≡ sa−1/2

2
√

fi, j

(
(δyyu)i, j − (δxxu)i, j − 2sθ (δ

[1]
xy u)i, j

)
. The corresponding a∗

i, j ∈
∂Γ 13

i, j , derived from Condition (12), is

a∗
i, j = 1

2

(

1 + sa−1/2√
2 sin(2|θ∗

i, j | + π
4 )

)

. (34)

Region ∂Γ 23
i, j . This is the boundary between Region Γ 2

i, j and Γ 3
i, j . The analysis on ∂Γ 23

i, j is

then the same as ∂Γ 13
i, j , except that the two sections of ∂Γ 23

i, j become (i) (sa−1/2, sθ ) = (1, 1),

(ii) (sa−1/2, sθ ) = (− 1,− 1), and (δ
[1]
xy u)i, j is replaced by (δ

[2]
xy u)i, j .

RegionΓ 3
i, j . The region is defined where neither (12) nor (14) is satisfied. The semi-

Lagrangian wide stencil discretization (21) is applied. Accordingly, the objective function
reads

Li, j (ai, j , θi, j ) = −ai, j (δzzu)i, j − (1 − ai, j ) (δwwu)i, j + 2
√
ai, j (1 − ai, j ) fi, j . (35)

The dependency of the discretization of (δzzu)i, j and (δwwu)i, j on the control θi, j prevents us
from deriving a closed-form formula for θ∗

i, j ∈ Γ 3
i, j . However, we note that the discretization

of (δzzu)i, j and (δwwu)i, j is independent of the control ai, j , which implies that a two dimen-
sional bilinear search on the controls (ai, j , θi, j ) ∈ Γi, j can be reduced to a one-dimensional
linear search on the single control θi, j ∈ [− π

4 , π
4 ).
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One can prove that the regional optimal control pair (a∗
i, j , θ

∗
i, j ) ∈ Γ 3

i, j must sit on the
following parametrized curve

ai, j (θi, j ) =
⎧
⎨

⎩

Cλ(θi, j ), if Cλ(θi, j ) ≤ C−(θi, j ) or Cλ(θi, j ) ≥ C+(θi, j ),

C−(θi, j ), if C−(θi, j ) ≤ Cλ(θi, j ) ≤ 1
2 ,

C+(θi, j ), if 1
2 ≤ Cλ(θi, j ) ≤ C+(θi, j ).

(36)

Here the curves

C±(θi, j ) ≡ 1

2

(

1 ± 1√
2 sin(2|θi, j | + π

4 )

)

, θi, j ∈
[
− π

4
,
π

4

)
(37)

are given by Condition (12) and (14). The other curve

Cλ(θi, j ) ≡ 1

2

⎡

⎣1 − (δzzu)i, j − (δwwu)i, j√
4 fi, j + ((δzzu)i, j − (δwwu)i, j )2

⎤

⎦ , θi, j ∈
[
− π

4
,
π

4

)
, (38)

where the directions of z and w depend on θi, j , is given by the first derivative test of
(35) with respect to ai, j . Taking the parametrization (36) into account, the objective func-
tion (35) becomes Li, j (ai, j (θi, j ), θi, j ), which is a function of the single control variable
θi, j ∈ [− π

4 , π
4 ). This motivates us to discretize the set [− π

4 , π
4 ) into an M-element control

set, and perform a linear search for the maximum of the parametrized objective function
Li, j (ai, j (θi, j ), θi, j ) over the single control variable θi, j ∈ [− π

4 , π
4 ). The computational cost

is thus reduced to O(M).
Once we obtain the six regional optimal control pairs and their corresponding objective

function values, we search within them for the global optimal control pair on Γi, j . This step
is cheap and straightforward.

As a side remark, in Section 8 of [14], the authors discretize θ with 64 different angles,
regardless of the mesh size N . Indeed, if θ is discretized with fixed number of angles, then
the numerical scheme in [14] is no longer consistent in theory. This is different from our
scheme, where θ is discretized with M angles, and we choose M = N such that consistency
is still maintained.

6 Convergence Analysis

As proved by Barles and Souganidis [2], there are four sufficient conditions for the numerical
scheme of a nonlinear PDE to converge in the viscosity sense. In this section, we will prove
that our numerical scheme does fulfill all the four requirements and is therefore guaranteed
to converge to the viscosity solution of (2).

6.1 Consistency

One sufficient condition for convergence is consistency. Intuitively, consistency claims that
the discretized equation of a PDE should be close to the continuous PDE. In particular,
when h → 0, the discretized equation should converge to the PDE. The main result of this
subsection is to prove that our numerical scheme is consistent in the viscosity sense:

Lemma 1 (Consistency) For the Monge–Ampère equation F (x, u(x), D2u(x)
) = 0, the

numerical scheme Fh
(
xi, j , uh

) = 0, given in (23)–(24), is consistent in the viscos-
ity sense. More specifically, for any function ϕ(x) ∈ C∞(Ω) with ϕi, j ≡ ϕ(xi, j ) and
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ϕh ≡ (ϕ1,1, ϕ1,2, . . . , ϕN ,N )T ∈ R
N2×1, for any x̂ ∈ Ω , and for h and ξ that are arbi-

trary small constants independent of x, we have

lim sup
h→0, ξ→0

xi, j→x̂

Fh(xi, j , ϕh + ξ) ≤ F∗ (x̂, ϕ(x̂), D2ϕ(x̂)
)
, (39)

lim inf
h→0, ξ→0

xi, j→x̂

Fh(xi, j , ϕh + ξ) ≥ F∗
(
x̂, ϕ(x̂), D2ϕ(x̂)

)
. (40)

In practise, we prove a sufficient condition for consistency, called local consistency, as
follows:

Lemma 2 (Local consistency) Under the assumptions in Lemma 1, we have

F(xi, j , ϕ(xi, j ), D2ϕ(xi, j )) − Fh(xi, j , ϕh + ξ)

=

⎧
⎪⎪⎨

⎪⎪⎩

O(h2) + O(ξ), standard 7-point stencil,
O(h) + O(ξ), semi-Lagrangian wide stencil, with all the 4

wide stencil points ∈ Ω,

O(
√
h) + O(ξ), semi-Lagrangian wide stencil, otherwise.

(41)

Proof We note that the proof with ξ = 0 is equivalent to the proof with a general ξ . Such
equivalence can be easily verified if we substitute ϕ by ϕ + ξ in the following proof. Hence,
we will only prove the case where ξ = 0.

Truncation error of the standard 7-point stencil discretization. Suppose the standard 7-
point stencil discretization is applied at xi, j . It is easy to show that the truncation errors for

(δxxϕ)i, j , (δyyϕ)i, j , (δ
[1]
xy ϕ)i, j and (δ

[2]
xy ϕ)i, j are all O(h2). Hence, the local truncation error

of the discrete linear Eq. (24) is then La(xi, j ),θ(xi, j )ϕ(xi, j )−Lh(xi, j ; ai, j , θi, j ;ϕh) = O(h2).
Furthermore, the local truncation error of the finite difference scheme at xi, j is

∣∣ F(xi, j , ϕ(xi, j ), D2ϕ(xi, j )) − Fh(xi, j , ϕh)
∣∣

=
∣∣∣∣ max

(a(xi, j ),θ(xi, j ))∈Γ
La(xi, j ),θ(xi, j )ϕ(xi, j ) − max

(ai, j ,θi, j )∈Γ
Lh(xi, j ; ai, j , θi, j ;ϕh)

∣∣∣∣

≤ max
(ai, j ,θi, j )∈Γ

∣∣Lai, j ,θi, j ϕ(xi, j ) − Lh(xi, j ; ai, j , θi, j ;ϕh)
∣∣ = O(h2). (42)

The inequality comes from
∣∣∣max

x
f (x) − max

x
g(x)

∣∣∣ ≤ max
x

| f (x) − g(x)|.
Truncation error of semi-Lagrangianwide stencil discretization.Suppose semi-Lagrangian

wide stencil discretization is applied at xi, j . We focus on the truncation error for (δzzϕ)i, j
only and analyze three cases. The first case is that both stencil points of (δzzϕ)i, j are in the
computational domain. The expression for (δzzϕ)i, j is given by (17). The truncation error
for (δzzϕ)i, j is then

ϕzz(xi, j ) − (δzzϕ)i, j

= ϕzz(xi, j ) −
Ihϕ|xi, j+√

h(ez)i, j
− 2ϕi, j + Ihϕ|xi, j−√

h(ez)i, j

h

= ϕzz(xi, j ) − ϕ(xi, j + √
h(ez)i, j ) − 2ϕ(xi, j ) + ϕ(xi, j − √

h(ez)i, j ) + O(h2)

h
= O(h) + O(h) = O(h).

From the first to the second line we have used the fact that the truncation error of the bilinear
interpolation is O(h2).
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Now we consider another case, where one of the stencil points of (δzzϕ)i, j falls outside
the computational domain and is thus relocated. Without loss of generality, let us assume
again that xi, j + η1(ez)i, j ∈ ∂Ω is the relocated point. The expression for (δzzϕ)i, j is given
by (19). The truncation error for (δzzϕ)i, j is then

ϕzz(xi, j ) − (δzzϕ)i, j

= ϕzz(xi, j ) −
ϕ(xi, j+η1(ez)i, j )−ϕi, j

η1
− ϕi, j−Ihϕ|xi, j−√

h(ez )i, j√
h

η1+
√
h

2

= ϕzz(xi, j ) −
ϕ(xi, j+η1(ez)i, j )−ϕ(xi, j )

η1
− ϕ(xi, j )−ϕ(xi, j−

√
h(ez)i, j )√

h
+ O(h2)

η1+
√
h

2

= O(
√
h − η1) + O

⎛

⎝ h2
√
h η1+

√
h

2

⎞

⎠ = O(
√
h).

There is one more case, where xi, j + η1(ez)i, j ∈ ∂Ω and xi, j − η2(ez)i, j ∈ ∂Ω are
both relocated points. Using the similar argument, one can show that the truncation error for
(δzzϕ)i, j is again O(

√
h).

Then, similar to (42), one can show that the local truncation error of the finite difference
scheme at xi, j , where the semi-Lagrangian wide stencil discretization is applied, is given by

∣∣ F(xi, j , ϕ(xi, j ), D2ϕ(xi, j )) − Fh(xi, j , ϕh)
∣∣

=
⎧
⎨

⎩

O(h), semi-Lagrangian wide stencil, with all the 4
wide stencil points ∈ Ω,

O(
√
h), semi-Lagrangian wide stencil, otherwise.

(43)

Finally, we note that the previous proof has assumed that the optimal control pair is solved
exactly, or does not introduce additional truncation error. In Sect. 5, we have mentioned that
using linear search for the optimal control pair under the semi-Lagrangian wide stencil
discretization introduces truncation error. In particular, if we choose M = O(N ), then O(h)

truncation error is introduced [33]. As a result, (43) holds. 
�
6.2 Stability

Another condition for convergence is stability, which means that the discrete system has a
bounded solution uh . Stability condition is very closely related to the matrix A(ah, θh) in
(22) being an M-matrix [29], which will be proved in this section. For convenience, given
vectors uh and vh , we use uh ≥ 0 and uh ≥ vh to denote (uh)i ≥ 0 and (uh)i ≥ (vh)i for all
i . Similarly, given a matrix A, we use A ≥ 0 to denote Ai j ≥ 0 for all i, j . In other words,
the inequalities for vectors and matrices hold for all the elements.

Lemma 3 (M-matrix) Suppose an n × n matrix A satisfies the following:

1. A is an L-matrix: Ai i > 0 for all i , and Ai j ≤ 0 for all i = j ;
2. A is weakly diagonally dominant: |Ai i | ≥∑ j =i |Ai j |; and
3. A has the following connectivity property: Let G(A) =

{
i
∣∣∣|Ai i | >

∑
j =i |Ai j |

}
= ∅

be the set of rows where strict inequality is achieved. For any i /∈ G(A), there exists a
sequence i1, i2, · · · , ik withAir ,ir+1 = 0, 0 ≤ r ≤ k−1, such that i0 = i and ik ∈ G(A).

123



1856 J Sci Comput (2018) 76:1839–1867

Then A is an M-matrix. In particular,

1. A is non-singular; and
2. A−1 ≥ 0, namely, (A−1)i j ≥ 0 for all i, j .

Proof We refer the readers to [1,29,31]. 
�
Lemma 4 The matrix A(ah, θh), defined in (22), is an M-matrix under the set of admissible
controls (ah, θh) ∈ Γ .

Proof For the matrix A(ah, θh), the L-matrix condition and the weakly diagonal dominance
condition can be easily verified by checking the four cases in Sect. 4.4. We remark that the
strictly diagonally dominant rows correspond to the grid points near the boundary ∂Ω , while
the weakly diagonally dominant rows correspond to those inside the computation domainΩ .

The connectivity property of A(ah, θh) is yet to be verified. For the grid points xi, j that are
near the boundary, the lexicographical index satisfies N (i − 1)+ j ∈ G(A). For those points
that are inside the computational domain, or N (i −1)+ j /∈ G(A), there must exist non-zero
entries AN (i−1)+ j,N (i ′−1)+ j ′ = 0, where i ′ ≥ i , j ′ ≥ j , with at lease one strict inequality
satisfied. Hence, given any xi0, j0 , where N (i0 − 1) + j0 /∈ G(A), there exist monotonically
increasing sequences i0 ≤ i1 ≤ · · · ≤ ik ≤ N and j0 ≤ j1 ≤ · · · ≤ jk ≤ N , such that
N (ik − 1) + jk ∈ G(A). 
�

Before investigating the stability for the nonlinear problem (22), we first prove the stability
for the corresponding linear problem.

Lemma 5 Define a circle BR(0) : {(x, y)|x2 + y2 ≤ R2}, where the radius R =
max

(x,y)∈Ω

√
x2 + y2, such that BR(0) covers the entire computational domain Ω . Let ϕ(x) ≡

− 1
2‖

√
f ‖∞(R2−x2−y2)be a lower-bound estimate function that is smooth and non-positive

in Ω . Denote its corresponding grid function as ϕh ∈ R
N2×1. Then the vector Aϕh ∈ R

N2×1

satisfies
Aϕh ≤ −‖√ f ‖∞, for all h. (44)

Proof Without loss of generality, let us consider a grid point xi, j where semi-Lagrangianwide
stencil discretization is applied and boundary terms occur with xi, j + √

h(ez)i, j relocated to
xi, j + η1(ez)i, j . Then

(Aϕh)i, j = 2

(
ai, j

η1
√
h

+ 1 − ai, j
h

)
ϕ(xi, j ) − ai, j√

h η1+
√
h

2

Ihϕ|xi, j−√
h(ez)i, j

− 1 − ai, j
h

Ihϕ|xi, j+√
h(ew)i, j

− 1 − ai, j
h

Ihϕ|xi, j−√
h(ew)i, j

≤ 2

(
ai, j

η1
√
h

+ 1 − ai, j
h

)
ϕ(xi, j ) − ai, j

η1
η1+

√
h

2

ϕ(xi, j + η1(ez)i, j )

− ai, j√
h η1+

√
h

2

ϕ(xi, j − √
h(ez)i, j ) − 1 − ai, j

h
ϕ(xi, j + √

h(ew)i, j )

− 1 − ai, j
h

ϕ(xi, j − √
h(ew)i, j )

= − ‖√ f ‖∞,
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where we have used ϕ(xi, j + η1(ez)i, j ) ≤ 0, and Ihϕ|xi, j−√
h(ez)i, j

≥ ϕ(xi, j − √
h(ez)i, j )

and similarly for the other stencil points. Interested readers can prove the other cases in the
same fashion. 
�
Lemma 6 (Stability for linear problem) Assume that a control pair (a, θ) is given, such that
the HJB Eq. (7) becomes linear:

−α11(a, θ)uxx − 2α12(a, θ)uxy − α22(a, θ)uyy = − 2
√
a(1 − a) f , in Ω,

u = g, on ∂Ω.

Suppose the mixed discretization gives the linear system A(ah, θh) uh = Fh(ah, θh), which
is the linear version of (22). Then the solution uh is bounded as follows:

1. If g = 0 (homogeneous boundary condition) and f ≥ 0 is a bounded function,

− 1

2
‖√ f ‖∞R2 ≤ uh ≤ 0, independent of h. (45)

2. If f = 0 (homogeneous PDE) and g is a bounded function,

‖uh‖∞ ≤ ‖g‖∞, independent of h. (46)

3. In general, if f ≥ 0 and g are bounded functions,

‖uh‖∞ ≤ 1

2
‖√ f ‖∞R2 + ‖g‖∞, independent of h. (47)

Proof 1. The proof follows the idea in [30]. In this case, the N 2-vector Fh is simply given
by Fi, j = − 2

√
ai, j (1 − ai, j ) fi, j . Since ai, j ∈ [0, 1], we have −‖√ f ‖∞ ≤ Fh ≤ 0.

Lemma 4 has proved thatA is anM-matrix, and thusA−1 ≥ 0. Also, we note that Fh ≤ 0.
Hence, the upper bound of uh is given by uh = A−1Fh ≤ 0.
Lemma 5 has proved that Aϕh ≤ −‖√ f ‖∞. Since −‖√ f ‖∞ ≤ Fh = Auh , we have
Aϕh ≤ Auh . Since A−1 ≥ 0, we have ϕh ≤ uh . Hence, the lower bound of uh is given
by uh ≥ ϕh ≥ −‖ϕ‖∞ = − 1

2‖
√

f ‖∞R2.
2. By Lemma 4, A is an M-matrix. Then following the proof in [9], the solution uh under

the M-matrix discretization satisfies the discrete comparison principle, and furthermore,
(46).

3. This can be obtained by applying the superposition principle of the linear PDEs on 1 and
2. 
�
Eventually, we come back to our original nonlinear problem (22).

Lemma 7 (Stability for nonlinear problem) Assume that f and g are bounded in L∞ norm.
Given that Lemma 4 is satisfied, the solution of the discrete system (22), uh, is bounded by

‖uh‖∞ ≤ 1

2
‖√ f ‖∞R2 + ‖g‖∞, (48)

where the bound is independent of the mesh size h and the controls (ah, θh).

Proof Since the solution for the linear PDE under the mixed discretization is bounded by
(47) under all admissible controls (ah, θh) ∈ Γ , and the bound is independent of the controls
(ah, θh) and the mesh size h, we conclude that the same bound applies to the solution for the
nonlinear PDE under the mixed discretization. 
�
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6.3 Monotonicity

For nonlinear PDEs, monotonicity is another sufficient condition for convergence in the
viscosity sense. Monotonicity means that the discretization scheme at a grid point xi, j must
be a non-decreasing function of the unknown ui, j and a non-increasing function of the
unknowns at the other points {u p,q |(p,q)=(i, j)}. Monotonicity of our numerical scheme (23)–
(24) is inherited from the M-matrix property in Lemma 3.

Lemma 8 (Monotonicity) The finite difference discretization Fh(xi, j , uh) = Fh(xi, j , ui, j ,
{u p,q |(p,q)=(i, j)}) = 0, given in (23)–(24), is monotone. More specifically, for all uh ≤ vh,
we have

Fh(xi, j , ui, j , {u p,q |(p,q)=(i, j)}) ≤ Fh(xi, j , vi, j , {u p,q |(p,q)=(i, j)}),
Fh(xi, j , ui, j , {u p,q |(p,q)=(i, j)}) ≥ Fh(xi, j , ui, j , {vp,q |(p,q)=(i, j)}). (49)

Proof The proof follows [16]. Our goal is to verify the monotonicity condition (49). Without
loss of generality, let us analyze one example: uh ≤ vh with ui, j = vi, j . Then

Fh(xi, j , ui, j , {u p,q |(p,q)=(i, j)}) − Fh(xi, j , ui, j , {vp,q |(p,q)=(i, j)})
= max

(ai, j ,θi, j )∈Γ

{
(A(ai, j , θi, j ) uh)i, j − Fi, j (ai, j , θi, j )

}

− max
(ai, j ,θi, j )∈Γ

{
(A(ai, j , θi, j ) vh)i, j − Fi, j (ai, j , θi, j )

}

≥ min
(ai, j ,θi, j )∈Γ

[(A(ai, j , θi, j )(uh − vh)]i, j ≥ 0,

where the first inequality uses max
x

f (x) − max
x

g(x) ≥ min
x

[ f (x) − g(x)], and the last

inequality considers that uh − vh ≤ 0 and that all the off-diagonal entries of A are non-
positive under all admissible controls. 
�
6.4 Strong Comparison Principle

There is one more sufficient condition for convergence, called strong comparison principle
[2]. Strong comparison principle holds if the boundary condition is satisfied in the viscosity
sense. Unfortunately, there is no proof in the literature that this necessarily holds for the
Dirichlet problem (2). Hence, we provide a proof in the setting of our proposed numerical
scheme.

Lemma 9 Let ζ(x; p) ≡ 1
2‖

√
f ‖∞‖x − p‖22, where p ∈ R

2 is a random vector. Let û(x) :
{xi, j ∈ Ω} ∪ ∂Ω → R, where û(x) ≡

{
uh(xi, j ), if x ∈ {xi, j ∈ Ω},
g(x), if x ∈ ∂Ω.

Then Ihζ ± û

achieves its maximum on ∂Ω .

Proof Without loss of generality, let us consider again a grid point xi, j /∈ ∂Ω where semi-
Lagrangian wide stencil discretization is applied and boundary terms occur with xi, j +√
h(ez)i, j relocated to xi, j + η1(ez)i, j . Assume that the control pair is fixed. Define a linear

stencil operator on an arbitrary function u at xi, j as

S[u](xi, j ) ≡ 2

(
ai, j

η1
√
h

+ 1 − ai, j
h

)
u|xi, j − ai, j√

h η1+
√
h

2

u|xi, j−√
h(ez)i, j

− ai, j

η1
η1+

√
h

2

u|xi, j+η1(ez)i, j − 1 − ai, j
h

u|xi, j+√
h(ew)i, j

− 1−ai, j
h

u|xi, j−√
h(ew)i, j

.
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We note that the relocated stencil point is also included in the operator. Then we have
S[Ihζ ](xi, j ) ≤ S[ζ ](xi, j ) = −‖√ f ‖∞, and S[û](xi, j ) = − 2

√
ai, j (1 − ai, j ) fi, j . As a

result, we have S[Ihζ ± û](xi, j ) = −‖√ f ‖∞ ± 2
√
ai, j (1 − ai, j ) fi, j ≤ 0.

Now assume that Ihζ ± û achieves its maximum at this grid point xi, j . Next we prove
that (Ihζ ± û)|y = (Ihζ ± û)|xi, j for any stencil point y connected to xi, j , namely, for any

y ∈ {xi, j+η1(ez)i, j , xi, j−
√
h(ez)i, j , xi, j±

√
h(ew)i, j }. This can be proved by contradiction.

Assume that there exists at least one stencil point where the strict inequality holds, namely,
(Ihζ ± û)|y < (Ihζ ± û)|xi, j . Then

S[Ihζ ± û](xi, j ) >

[
2

(
ai, j

η1
√
h

+ 1 − ai, j
h

)

− ai, j√
h η1+

√
h

2

− ai, j

η1
η1+

√
h

2

− 1 − ai, j
h

− 1 − ai, j
h

⎤

⎦ (Ihζ ± û)|xi, j = 0,

which contradicts with S[Ihζ ± û](xi, j ) ≤ 0. The key point of this result is that (Ihζ ±
û)|xi, j+η1(ez)i, j = (Ihζ ± û)|xi, j . That is, Ihζ ± û achieves its maximum at the boundary
point xi, j + η1(ez)i, j ∈ ∂Ω .

In general, consider any grid point xi, j /∈ ∂Ω . Assume that Ihζ ± û achieves its maximum
at xi, j . One can prove in the same fashion that (Ihζ ± û)|y = (Ihζ ± û)|xi, j for any stencil
point y connected to xi, j . Then by the connectivity property (see the proof of Lemma 4),
there exists a boundary point z ∈ ∂Ω , such that (Ihζ ± û)|z = (Ihζ ± û)|xi, j . Hence, Ihζ ± û
achieves its maximum at the boundary point z ∈ ∂Ω . 
�
Lemma 10 Let Ω be a strictly convex domain. Assume that Lemma 9 holds. Define

u(x) ≡ lim sup
h→0, y→x

uh(y), u(x) ≡ lim inf
h→0, y→x

uh(y).

Then u(x) = u(x) = g(x) for all x ∈ ∂Ω .

Proof Once Lemma 9 holds, the proof follows Lemma 6.4 in [14]. 
�
Lemma 10 is essentially the comparison result on the boundary ∂Ω . Now we are ready to

extend the comparison result to the entire computational domain Ω .

Lemma 11 Given that the finite difference discretization (23)–(24) satisfies consistency,
stability and monotonicity, u(x) and u(x) are respectively the viscosity subsolution and
supersolution of the Dirichlet problem (2).

Proof See the proof of Theorem 2.1 in [2]. 
�
Lemma 12 (Strong comparison principle) LetΩ be a strictly convex domain. Then the finite
difference discretization (23)–(24) satisfies u ≤ u in Ω .

Proof Since u and u are respectively the viscosity subsolution and supersolution (Lemma11),
and u ≤ u on ∂Ω (Lemma 10), by Theorem 3.3 in [10], we conclude that u ≤ u in Ω . 
�
6.5 Convergence of the Numerical Solution to the Viscosity Solution

Once consistency, stability,monotonicity and strong comparisonprinciple are proved,Barles–
Souganidis theorem [2] guarantees the convergence of the numerical solution to the viscosity
solution.
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Theorem 2 (Barles–Souganidis theorem) Let Ω be a strictly convex domain. Given that
the finite difference discretization (23)–(24) satisfies consistency, stability, monotonicity and
strong comparison principle, the numerical solution converges to the viscosity solution of
the Dirichlet problem (2).

Proof See Barles and Souganidis’s proof of Theorem 2.1 in [2]. 
�

7 Numerical Results

In this section, we will present numerical results for the Monge–Ampère equation using our
proposed mixed standard 7-point stencil and semi-Lagrangian wide stencil scheme. These
numerical results show that the mixed scheme can achieve second order convergence rate
whenever the standard 7-point stencils can be applied monotonically on the entire compu-
tational domain, and up to order one convergence rate otherwise. Compared to the pure
semi-Lagrangian wide stencil scheme in [14], our proposed mixed scheme yields a smaller
discretization error ‖u−uh‖ and a faster convergence rate. The examples we consider in this
section come from [4,17]. We choose the tolerance of residual for the policy iteration to be
10−6. We let the initial guess of the numerical solution be the solution of

uxx + uyy = 2
√

f , in Ω,

u = g, on ∂Ω, (50)

which corresponds to the solution of (7) with a = 1
2 and arbitrary θ . We choose the grid

size N 2 = 322, 642, . . . , 5122, and define the numerical convergence rate as log2
‖u−uh(

N
2 )‖

‖u−uh(N )‖ ,
where uh(N ) is the numerical solution on an N × N grid.

Example 1 Start with

f (x, y) = (1 + x2 + y2
)
ex

2+y2 , g(x, y) = e
1
2 (x2+y2), Ω = [− 1, 1] × [− 1, 1],

where the exact solution u(x, y) = e
1
2 (x2+y2) is smooth. For this example, it turns out that

the standard 7-point stencil discretization can be applied on the entire computational domain
and still results in a monotone scheme, since the optimal control pair (a∗, θ∗) at every grid
point is inside the 7-point-stencil regions Γ 1 ∪ Γ 2 ∪ ∂Γ 0. Consequentially, the numerical
solution converges at the optimal theoretical convergence rate O(h2); see Fig. 4(2, red-solid)
and Table 1(1). We observe that the computation is efficient, in the sense that the number of
policy iterations remains a small constant 4 as N increases.

We compare the proposed mixed scheme with the pure semi-Lagrangian wide stencil
scheme in [14], where the wide stencils are applied on the entire computation domain.
Figure 4(2, blue-dashed) and Table 1(2) show that the convergence rate of the pure wide
stencil scheme is approximately first order. We note that order one is the optimal theoretical
convergence rate for the pure wide stencil scheme; see Lemma 2. The convergence rate using
the proposedmixed scheme is significantly faster than the rate using the pure semi-Lagrangian
wide stencil scheme.

Example 2 Consider

f (x, y) = 2

(2 − x2 − y2)2
, g(x, y) = −

√
2 − x2 − y2, Ω = [0, 1] × [0, 1],
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Fig. 4 Numerical results of Example 1, where the exact solution is u(x, y) = e
1
2 (x2+y2). 1 Numerical

solution. 2 Norms of the errors ‖u − uh‖. For the proposed mixed stencil scheme (red-solid), the convergence
rates, indicated by the slopes, are O(h2) in both L2 and L∞ norms. For the pure semi-Lagrangian wide stencil
scheme (blue-dashed), the convergence rates are approximately O(h) in both L2 and L∞ norms (Color figure
online)

Table 1 Numerical results of Example 1, where the exact solution is u(x, y) = e
1
2 (x2+y2)

N ‖u − uh‖2 Numerical
convergence rate

‖u − uh‖∞ Numerical
convergence rate

Number of
policy iterations

(1) Proposed mixed stencil scheme

32 1.201 × 10−3 9.598 × 10−4 4

64 3.009 × 10−4 2.00 2.404 × 10−4 2.00 4

128 7.526 × 10−5 2.00 6.013 × 10−5 2.00 4

256 1.882 × 10−5 2.00 1.504 × 10−5 2.00 4

512 4.705 × 10−6 2.00 3.759 × 10−6 2.00 4

(2) Pure semi-Lagrangian wide stencil scheme

32 1.868 × 10−2 1.557 × 10−2 5

64 1.020 × 10−2 0.87 8.364 × 10−3 0.90 5

128 5.263 × 10−3 0.95 4.240 × 10−3 0.98 6

256 2.801 × 10−3 0.91 2.259 × 10−3 0.91 5

512 1.600 × 10−3 0.81 1.268 × 10−3 0.83 5

(1) Proposed mixed stencil scheme. The convergence rates in both L2 and L∞ norms are O(h2). (2) Pure
semi-Lagrangian wide stencil scheme. The convergence rates in both L2 and L∞ norms are approximately
O(h)

where f is singular at (1, 1), and the exact solution is u(x, y) = −√2 − x2 − y2. Similar
to Example 1, we can apply the standard 7-point stencil discretization monotonically on the
entireΩ . The convergence rates are O(h2) and O(h1.5) in L2 and L∞ norms respectively; see
Fig. 5(2, red-solid) and Table 2(1). As a comparison, if we applied the pure semi-Lagrangian
wide stencil scheme, then the convergence rate is worse than O(h); see Fig. 5(2, blue-dashed)
and Table 2(2).
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Fig. 5 Numerical results of Example 2, where the exact solution is u(x, y) = −
√
2 − x2 − y2. 1 Numerical

solution. 2 Norms of the errors ‖u − uh‖. For the proposed mixed stencil scheme (red-solid), the convergence
rates, indicated by the slopes, are O(h2) in L2 norm and O(h1.5) in L∞ norm, respectively. For the pure
semi-Lagrangian wide stencil scheme (blue-dashed), the convergence rates are worse than O(h) in both L2
and L∞ norms (Color figure online)

Table 2 Numerical results of Example 2, where the exact solution is u(x, y) = −
√
2 − x2 − y2

N ‖u − uh‖2 Numerical
convergence rate

‖u − uh‖∞ Numerical
convergence rate

Number of
policy iterations

(1) Proposed mixed stencil scheme

32 6.450 × 10−5 2.359 × 10−4 4

64 1.628 × 10−5 1.99 8.211 × 10−5 1.52 5

128 4.084×10−6 2.00 2.882 × 10−5 1.51 5

256 1.022×10−6 2.00 1.015 × 10−5 1.51 5

512 2.557×10−7 2.00 3.583 × 10−6 1.50 5

(2) Pure semi-Lagrangian wide stencil scheme

32 1.493 × 10−3 5.799 × 10−3 5

64 9.634 × 10−4 0.63 4.394 × 10−3 0.40 4

128 5.166 × 10−4 0.90 2.697 × 10−3 0.70 5

256 3.153 × 10−4 0.71 1.824 × 10−3 0.56 5

512 1.583 × 10−4 0.99 1.120 × 10−3 0.70 5

(1) Proposed mixed stencil scheme. The convergence rates in L2 and L∞ norms are O(h2) and O(h1.5),
respectively. (2) Pure semi-Lagrangian wide stencil scheme. The convergence rates in both L2 and L∞ norms
are worse than O(h)

Example 3 Consider

f (x, y) = max

(

1 − 0.1
√
x2 + y2

, 0

)

, g(x, y) = 1

2
(

√
x2 + y2 − 0.1)2,

Ω = [− 0.5, 0.5] × [− 0.5, 0.5].
The exact solution is given by u(x, y) = 1

2 max
(√

x2 + y2 − 0.1, 0
)2
. This is aC1 function

where the singularity occurs at the ring x2+ y2 = 0.12. First we consider the proposedmixed
scheme. Semi-Lagrangian wide stencils need to be applied near the ring x2 + y2 = 0.12.

123



J Sci Comput (2018) 76:1839–1867 1863

Fig. 6 Numerical results of Example 3, where the exact solution is 1
2 max

(√
x2 + y2 − 0.1, 0)2. 1Numeri-

cal solution. 2Norms of the error ‖u−uh‖. For the proposedmixed stencil scheme (red-solid), the convergence
rates, indicated by the slopes, are approximately O(h) in both L2 and L∞ norms. For the pure semi-Lagrangian
wide stencil scheme (blue-dashed), the errors are larger than the mixed scheme, and the convergence rates are
worse than O(h) in both L2 and L∞ norms (Color figure online)

Table 3 Numerical results for Example 3, where the exact solution is 1
2 max

(√
x2 + y2 − 0.1, 0

)2

N ‖u − uh‖2 Numerical
convergence rate

‖u − uh‖∞ Numerical
convergence rate

Number of
policy iterations

(1) Proposed mixed stencil scheme

32 1.270 × 10−4 4.298 × 10−4 4

64 4.273 × 10−5 1.57 1.520 × 10−4 1.50 6

128 1.835 × 10−5 1.22 6.907 × 10−5 1.14 7

256 1.544 × 10−5 0.25 5.959 × 10−5 0.21 9

512 3.396 × 10−6 2.18 1.513 × 10−5 1.98 20

(2) Pure semi-Lagrangian wide stencil scheme

32 1.337 × 10−3 6.604 × 10−3 5

64 9.084 × 10−4 0.56 3.304 × 10−3 1.00 6

128 6.940 × 10−4 0.39 1.901 × 10−3 0.80 7

256 3.815 × 10−4 0.86 9.335 × 10−4 1.03 7

512 1.998 × 10−4 0.93 4.563 × 10−4 1.03 9

(1) Proposed mixed stencil scheme. (2) Pure semi-Lagrangian wide stencil scheme. The errors ‖u − uh‖ by
the proposed mixed stencil scheme are smaller than those by the pure wide stencil scheme

Figure 6(2, red-solid) and Table 3(1) show the numerical results. We note that the error
reduction rates for the sequence of N = 32, 64, . . . , 512 do not look as regular as the
previous examples. The reason is that wide stencil introduces interpolation error, which
fluctuates as N increases, despite converging towards 0. However, a clear error reduction, and
thus convergence, can be observed. For comparison, we also test the pure semi-Lagrangian
wide stencil scheme, as shown in Fig. 6(2, blue-dashed) and Table 3(2). Our proposed mixed
scheme performs better than the pure wide stencil scheme, in the sense that the error ‖u−uh‖
is significantly smaller, and the convergence rate is faster.
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Fig. 7 Numerical results of Example 4, where the exact solution is u(x, y) =
√
x2 + y2. 1Numerical solution

by the proposed mixed stencil scheme, which converges to the exact solution. 2 Numerical solution by the
pure semi-Lagrangian wide stencil scheme, which does not converge to the exact solution. 3 Norms of the
error ‖u − uh‖. The proposed mixed stencil scheme is used. The convergence rates, indicated by the slopes,
are O(h0.8) in L2 norm and O(h0.5) in L∞ norm, respectively

Example 4 In practice, our numerical scheme can converge to not only viscosity solutions,
but also a type of more general weak solutions, called Aleksandrov solutions [20]. In this
example, the corresponding f is a delta function at the origin and is zero elsewhere:

f (x, y) = πδ(0, 0), g(x, y) =
√
x2 + y2, Ω = [− 0.5, 0.5] × [− 0.5, 0.5].

The exact solution u(x, y) = √
x2 + y2 is an Aleksandrov solution. It is a C0 function

and is singular at the origin. Figure 7(1) shows that our proposed mixed scheme converges
to the cone-shaped Aleksandrov solution. Conversely, Fig. 7(2) shows that the pure semi-
Lagrangian wide stencil scheme in [14] does not give the cone-shaped Aleksandrov solution.
Indeed, there is no theoretical proof that the pure wide stencil scheme can converge to
Aleksandrov solutions. Figure7(3) and Table4 report the convergence results by the proposed
mixed scheme. The orders of convergence are close to 0.8 and 0.5 in L2 and L∞ norms
respectively.
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Table 4 Numerical results of Example 4. The exact solution is u(x, y) =
√
x2 + y2. The proposed mixed

stencil scheme is used

N ‖u − uh‖2 Numerical
convergence rate

‖u − uh‖∞ Numerical
convergence rate

Number of
policy iterations

Proposed mixed stencil scheme

32 1.156×10−3 3.868×10−3 9

64 6.484×10−4 0.83 2.583×10−3 0.58 15

128 3.803×10−4 0.77 1.848×10−3 0.48 17

256 2.159×10−4 0.82 1.305×10−3 0.50 23

512 1.148×10−4 0.91 9.203×10−4 0.50 27

Fig. 8 Example 5: 1 The solution given by the monotone mixed scheme, which is convex and is convergent
in the viscosity sense. 2 One possible solution given by a non-monotone scheme, which is concave and is not
a viscosity solution

Example 5 In order to make a case for designing a monotone numerical scheme that con-
verges to the viscosity solution (which is convex), we show explicitly that non-monotone
numerical scheme may converge to a non-viscosity solution (which may be non-convex).
More analysis on this issue can be found in [4,17]. We consider

f (x, y) = 1, g(x, y) = 0, Ω = [− 0.5, 0.5] × [− 0.5, 0.5].

For this example, the exact solution u is not smooth near ∂Ω [4]. Since a closed-form
expression for u is not available, we follow [4] and study the convergence behavior of uh
towards u by checking the values of uh(0, 0) as h → 0. The numerical solution using
our monotone mixed scheme converges to the convex viscosity solution as h → 0; see
Fig. 8 and Table 5. Alternatively, we consider a possible non-monotone discretization for
uxxuyy − u2xy = f , which is the direct application of the standard central differencing on
uxx ,uyy and the standard 4-point central differencing onuxy . In our numerical experiment, the
numerical solution under the non-monotone discretization converges to a concave function as
h → 0.We note that [4] has considered the same example using non-monotone discretization,
and obtained another non-viscosity solution that is non-convex near ∂Ω .
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Table 5 Example 5: (1) The minimum values of the numerical solutions umin given by the monotone mixed
scheme, which provides an evidence that the numerical solution converges to a convex solution. (2) The
maximum values of the numerical solutions umax given by a non-monotone scheme, which provides an
evidence that the numerical solution converges to a non-convex solution

N uh(0, 0) by monotone scheme uh(0, 0) by non-monotone scheme

32 −0.18380 0.18063

64 −0.18444 0.18312

128 −0.18461 0.18436

256 −0.18485 0.18499

512 −0.18507 0.18530

8 Conclusion

In this paper, we convert the Monge–Ampère equation into the equivalent HJB equation, and
propose a mixed finite difference discretization for solving the equivalent HJB equation. The
discretization satisfies consistency, stability, monotonicity and strong comparison principle,
and thus convergent to the viscosity solution of the Monge–Ampère equation. Our proposed
mixed scheme significantly improves the accuracy over the pure semi-Lagrangian scheme in
[14]. More specifically, the proposed mixed scheme yields a smaller discretization error ‖u−
uh‖. Furthermore, if the standard 7-point stencils can be applied on the entire computational
domainmonotonically, then our proposedmixed stencil scheme can improve the convergence
rate to O(h2).

Our mixed scheme can be potentially extended to higher dimensional cases. Assuming
that the dimension is d , the idea is to parametrize the control of the HJB Eq. (5), namely
to parametrize A(x) = Q(x)Λ(x)Q(x)T , where Q(x) ∈ SO(d) and Λ(x) is a trace-1 non-
negative diagonal matrix. Then the standard 7-point stencil discretization can be applied if
A(x) is weakly diagonal dominant, and the semi-Lagrangian wide stencil discretization is
applied otherwise. We leave this topic as a future work.
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