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Bertrand oligopolies are competitive markets in which a small number of firms producing similar
goods use price as their strategic variable. In particular, each firm wants to determine the optimal
price that maximizes its expected discounted lifetime profit. The oligopoly problem can be modeled as
nonzero-sum games which can be formulated as systems of Hamilton–Jacobi–Bellman (HJB) partial
differential equations (PDEs). In this paper, we propose fully implicit, positive coefficient finite
difference schemes that converge to the viscosity solution for the HJB PDE from dynamic Bertrand
monopoly and the two-dimensional HJB system from dynamic Bertrand duopoly. Furthermore, we
develop fast multigrid methods for solving these systems of discrete nonlinear HJB PDEs. The
new multigrid methods are general and can be applied to other systems of HJB and HJB-Isaacs
PDEs arising from American options under regime switching and American options with unequal
lending/borrowing rates and stock borrowing fees under regime switching, respectively. We provide
a theoretical analysis for the smoother, restriction and interpolation operators of the multigrid methods.
Finally, we demonstrate the effectiveness of our method by numerical examples from the dynamic
Bertrand problem and pricing American options under regime switching.

Keywords: Bertrand oligopoly; American options; Regime switching; Systems of HJB and HJBI
PDEs; Monotone scheme; Multigrid methods; Jump in control

JEL Classification: JEL C

1. Introduction

There are different models describing the operation of an
oligopolistic market. Cournot oligopolies are markets in which
the firms compete by using quantity as their strategic vari-
able and price is determined by the market through an in-
verse demand function (Cournot 1838). Bertrand oligopolies
are competitive markets in which a small number of firms
producing similar goods use price as their strategic variable
under randomly fluctuating demands (Bertrand 1883). In re-
ality, some markets can be better modeled as Cournot and
some as Bertrand. In this paper, we consider continuous time
Bertrand models. The firms in this market sell differentiated
but substitutable goods. Many products that are sold in markets
fit this structure. For example, in the energy market, oil, coal
and natural gas are commodities that can be substituted for
one another. However, they have different prices per unit of
energy produced. The price strategies of the firms in Bertrand
oligopoly are characterized using the solution to a system of

∗Corresponding author. Email: samarala@uwaterloo.ca

Np-dimensional nonlinear Hamilton–Jacobi–Bellman (HJB)
partial differential equations (PDEs), where Np is the number
of firms.

Bertrand oligopolies under linear demand functions were
analyzed by Ledvina and Sircar (2011) using an asymptotic
approximation in the limit of small competition. Numerical
solutions were further used to analyze cases with a high degree
of substitutability. In particular, they analyze the effects of
substitutability and relative firm size on prices, demands and
profits. The main finding is that customers benefit the most
when a market is composed of many firms of the same relative
size producing highly substitutable goods.

The systems of nonlinear HJB PDEs resulting from dynamic
oligopoly problems do not admit an explicit solution, except
possibly in the monopoly case. Therefore, one needs numerical
methods to compute the value functions and the equilibrium
strategies. Naive numerical methods quickly become computa-
tionally infeasible as the number of players goes beyond three.
Moreover, even in the two player case, these PDEs are highly
coupled when the competition is strong and are hard to handle.
In this paper, we develop an efficient discretization scheme and
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fast numerical solver for nonlinear HJB systems, which has not
been addressed in the literature so far.

Seemingly reasonable discretizations of nonlinear PDEs may
not converge to the viscosity solution (Pooley et al. 2003),
which is the financially relevant solution. Therefore, it is im-
portant to construct discretization schemes that converge to
the viscosity solution. For the systems of HJB PDEs from
the dynamic Bertrand duopoly problem, there is no coupling
of derivative terms among the individual PDEs and hence
the extended definition of the viscosity solution from Ishii
and Koike (1991) can be applied here. For nonlinear second-
order PDEs, any monotone, consistent, l∞ stable discretiza-
tion scheme converges to the viscosity solution provided that
the strong comparison property holds (Barles and Souganidis
1991, Ishii and Koike 1991). Among these properties, mono-
tonicity is, in general, hard to achieve. Positive coefficient
discretization typically results in monotone schemes.

For the duopoly problem, the Bertrand model results in a
two-dimensional system of HJB PDEs. The presence of the
cross derivative terms makes the construction of positive coef-
ficient schemes non-trivial. A skewed co-ordinate system can
be used to transform the PDEs so that it results in a zero diffu-
sion correlation. One can also rotate the grid by an appropriate
angle so that it eliminates the cross derivative term (Zvan et al.
2001). The latter approach has the advantage that it preserves
the orthogonality of the co-ordinate system. Another alterna-
tive is to enforce a spacing restriction on the original finite
difference grid such that a positive coefficient condition results
(Clift and Forsyth 2008). We adopt this approach as it is com-
putationally inexpensive compared to the other approaches.
We theoretically prove that our fully implicit finite difference
discretization converges to the unique viscosity solution of the
two-dimensional nonlinear HJB system.

We also generalize the fast numerical solver to other systems
of HJB and HJB-Isaacs (HJBI) PDEs arising from compu-
tational finance applications. The Black–Scholes model has
been used with great success to value options. However, it
is valid only for processes with constant volatility. Although
empirical tests have shown that the Black–Scholes price is
fairly close to observed prices, it has been observed that fi-
nancial models based on stochastic processes having constant
volatility are not consistent with market prices. Recent research
shows that models based on stochastic volatility, jump diffu-
sion and regime switching processes produce results that better
fit market data. Regime switching models result in a system
of coupled HJB/HJBI PDEs, which are intuitively appealing
and computationally inexpensive compared to the stochas-
tic volatility and jump diffusion models. A two state regime
switching model with constant parameters can reproduce a
volatility smile (Yao et al. 2006). Therefore, we are interested in
developing fast numerical solvers for models based on regime
switching.

Discretization schemes that converge to the viscosity so-
lution for HJB/HJBI equations associated with American op-
tions under regime switching applications have been studied by
Forsyth and Labahn (2007) and Huang et al. (2011).Among the
solvers, Policy iteration (Bellman 1971, Howard 1960, Lions
and Mercier 1980) is an efficient and convergent solver for
discrete HJB equations. However, convergence is not guaran-
teed for HJBI equations (Bokanowski et al. 2009, Wal 1978).

An alternative is to use relaxation-type iterative methods
(Barles and Jakobsen 2005), which are convergent for both
HJB and HJBI equations. However, a major drawback for
relaxation methods is their slow convergence. Therefore, we
propose to develop multigrid methods based on a full app-
roximation scheme (FAS). The rate of convergence of multi-
grid methods is often independent of the grid size (Trottenberg
et al. 2001). The components of the multigrid method are very
specific for the underlying PDE. To the best of our knowledge,
multigrid methods have not been developed for systems of HJB
and HJBI PDEs previously.

The control and solution of the HJB/HJBI equations are
highly nonlinearly coupled. Standard multigrid techniques do
not work well for problems with jumps in control or when
the control is unbounded (Han and Wan 2013), which often
happens in practice. Hoppe (1986) proposed multigrid meth-
ods for HJB equations which can be directly applied to the
nonlinear problem. The convergence of these methods is slow
because jumps in control are ignored. Han and Wan (2013) pro-
posed a multigrid method using a damped relaxation scheme
as the smoother and grid transfer techniques which address
the issue of jumps in the control. This method is computa-
tionally inefficient as the control set size increases. Multigrid
methods for linear complementarity problems (LCP) with an
application to American options were proposed by Oosterlee
(2003). They use a projected pointwise Gauss-Siedel smoother
and standard grid transfer operators. The LCP formulation
treats the unknown boundary explicitly in a post processing
step. Therefore, there is no issue of jumps in control in this
formulation. Moreover, not all HJB and HJBI equations can
be formulated as complementarity problems. Therefore, tech-
niques for one formulation are not generally applicable to the
other. Furthermore, none of these methods are designed for
systems of nonlinear HJB and HJBI PDEs.

The main results of this paper can be summarized as follows:

• We first construct a fully implicit, consistent, uncondi-
tionally l∞ stable and monotone discretization that con-
verges to the viscosity solution for the two-dimensional
system of HJB PDEs resulting from the dynamic Bertrand
duopoly problem.
• We develop a multigrid method based on the FAS to

solve systems of discrete HJB and HJBI PDEs.
• We show by a two grid Fourier analysis that the multi-

grid method gives efficient convergence. We also prove
that the multigrid method is monotone, which ensures
smooth convergence.
• We demonstrate the effectiveness of our multigrid solver

by numerical examples including dynamic Bertrand
duopoly and American option pricing under regime
switching.

2. Model problems

In this section, we present the model problems and its dis-
cretization in detail starting with dynamic Bertrand duopoly,
followed by American options under regime switching and
American options with unequal lending/borrowing rates with
stock borrowing fees under regime switching.
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2.1. Dynamic Bertrand oligopoly

We consider a market with two firms which make their deci-
sions dynamically through time. Each firm has a fixed lifetime
capacity of production at time t = 0 denoted by xl(0), l = 1, 2.
At any later time t , the remaining capacity is given by xl(t).
When xl(t) = 0, the firm has exhausted its capacity and is out
of business. The cost of production in the dynamic game is
assumed to be zero. However it is noticed that shadow costs
associated with the scarcity of goods as they run down are
introduced in the system.

The price of the good for each firm in general depends on
the capacity of all firms, i.e. pl = pl(x(t)), where x(t) =
(x1(t), x2(t)) and is chosen by a Markovian dynamic strategy.
Given these prices, each firm expects the market to demand at
a rate Dl(p1, p2), which is affine in prices (Ledvina and Sircar
2011):

Dl(p1, p2) = a1 − a2 pl + a3 pm, l,m = 1, 2, m �= l,

where a1, a2, a3 are positive parameters such that a2 > a3.
The intercept parameter a1 is a measure of general level of
demand due to business cycles and recessions and a3/a2 is
the measure of substitutability. The actual demand from the
market dl(t), however, undergoes short term unpredictable
fluctuations, which is modeled by

dl(t) = Dl(p1, p2)− σl υl(t), l = 1, 2,

where υl(t) are correlated Gaussian white noise sequences and
σl is the volatility of the demand of firm l. The lifetime capacity
of each firm depletes over time according to the market demand
for its good. As a result, the dynamics of the lifetime capacity
of the firms are given by dxl(t) = −dl(t)dt . Consequently,
the stochastic differential equation for the lifetime capacity is
given by

dxl(t) = −Dl (p1, p2) dt + σl dWl(t), if xl > 0, l = 1, 2,

where Wl(t) are correlated Brownian motions. If xl(t) = 0,
then for all s ≥ t , xl(s) = 0.

Given the initial lifetime capacity xl(0) > 0, the players
seek to maximize their expected discounted lifetime profit, also
known as the value function Vl(x1, x2), in the Nash equilibrium
sense. Each player l maximizes its value function by assuming
that the other player is using its equilibrium pricing strategy
p∗m :

Vl(x1, x2)

= suppl≥0E

{∫ ∞
0

e−r t pl(x(t))Dl
(

pl(x(t)), p∗m(x(t))
)

× 1{xl (t)>0}dt
}
, l,m = 1, 2, m �= l, (1)

where r > 0 is the discount rate. Using a dynamic program-
ming argument for nonzero sum differential games (Dockner
et al. 2000), the equations for the value functions (1) can be
reformulated as a system of coupled backward HJB PDEs:

(Vl)τ = suppl≥0
{Lpl Vl

}
, l = 1, 2, (2)

where the differential operators Lpl are given by

Lp1 = 1

2
σ 2

1
∂2V1

∂x2
1

+ ρσ1σ2
∂2V1

∂x1∂x2
+ 1

2
σ 2

2
∂2V1

∂x2
2

− (a1 − a2 p1 + a3 p∗2
) ∂V1

∂x1

+
[
γ

η

(
a1 − a2 p1 + a3 p∗2

)− κ − p∗2
η

]
∂V1

∂x2
− r V1

+ p1
(
a1 − a2 p1 + a3 p∗2

)
.

Lp2 = 1

2
σ 2

1
∂2V2

∂x2
1

+ ρσ1σ2
∂2V2

∂x1∂x2
+ 1

2
σ 2

2
∂2V2

∂x2
2

+
[
γ

η

(
a1 − a2 p2 + a3 p∗1

)− κ − p∗1
η

]
∂V2

∂x1

− (a1 − a2 p2 + a3 p∗1
) ∂V2

∂x2
− r V2

+ p2
(
a1 − a2 p2 + a3 p∗1

)
,

where ρ is the correlation coefficient of the Brownian motions.
The parameters κ, η and γ are positive and are defined as
(Ledvina and Sircar 2011)

γ = a3

(a2 − a3)(a2 + a3)
, κ = γ a1

(
a2

a3
+ 1

)
, η = γ a2

a3
.

The parameter γ gives a measure of degree of substitutability.
We note that coupling in the system of HJB PDEs (2) is due to
the equilibrium pricing strategies (p∗1, p∗2).

The domain of the PDE is x1 > 0, x2 > 0, τ > 0.
For computational purposes, the domain is truncated to
D =
(x1, x2, τ ) ∈ [0, x1,max]× [0, x2,max]× [0, T ]. When one firm
runs out of capacity, the other has a monopoly. If v(x) is the
value function of a monopolist, then on x1 = 0, x2 > 0,
we have V1(0, x2) = 0, V2(0, x2) = v(x2). Similarly when
x1 > 0, x2 = 0, we have V1(x1, 0) = v(x1) and V2(x1, 0) =
0. We look for solutions in which limxl→∞∂Vl/∂xl = 0, l =
1, 2 and limxm→∞∂Vl/∂xm = 0, l,m = 1, 2, m �= l. As a
result, we use Neumann conditions on x1 = x1,max and x2 =
x2,max. When γ = 0, both firms are monopolists in disjoint
markets of their own goods and hence Vl(x1, x2) = v(xl).
The value function v(x) of the monopoly firm is given by the
following HJB equation (Ledvina and Sircar 2011)

vτ = supp≥0

{
LM,pv

}
, (3)

where

LM,pv = 1

2
σ 2 ∂

2v

∂x2
− 1

η
(κ − p)

∂v

∂x
− rv + p

η
(κ − p) ,(4)

where x denotes the firm’s remaining life time capacity and
p is the price of the firm’s good. The domain of the PDE is
x > 0, τ > 0. The boundary conditions are v(0) = 0 and
limx→∞∂v/∂x = 0. For computational purposes, the domain
is localized to 
M = (x, τ ) ∈ [0, xmax] × [0, T ].

Ledvina and Sircar (2011) mainly consider the analysis of
the HJB PDEs (2) and (3). In this paper, we develop a fully
implicit, positive coefficient, finite difference discretization
scheme for (2) and (3). We prove that the discretization scheme
for (2) converges to the viscosity solution in section 3. It can
also be shown that the discretization scheme for (3) converges
to the viscosity solution, but we omit the details here due to
space limitations.
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2.1.1. Discretization. We first briefly provide the discretiza-
tion details for the scalar monopoly problem (3). The spatial
domain is discretized into a set of nodes {x0, x1, . . . , xN−1}
with a uniform grid spacing �x . Let vn

i be the approximate
solution of (3) at (xi , τ

n). We assume a mesh and control
discretization parameter h such that

�x = C1h, �τ = C2h, �p = C3h, (5)

where C1, C2 and C3 are constants independent of h.
The differential term LM,pv in (3) is discretized using a fully

implicit finite difference discretization, which results in

LM,p
h vn

i = αi (p)v
n
i−1 + βi (p)v

n
i+1

− (αi (p)+ βi (p)+ r) vn
i +

p

η
(κ − p) , (6)

whereαi (p) and βi (p) are given in algorithm 2.Acombination
of central and upstream differencing is used for the drift term
such that the coefficients αi (p) and βi (p) are positive, while
ensuring that central differencing is used as much as possible
(Wang and Forsyth 2008). Using a fully implicit time stepping
and (6), the discrete form of (3) is then given by

vn+1
i − vn

i

�τ
= sup

p≥0

{
LM,p

h vn+1
i

}
. (7)

We next consider the two-dimensional HJB system (2). The
spatial domain is discretized into a set of nodes {(x1)0, (x1)1,

. . . , (x1)N1−1} × {(x2)0, (x2)1, . . . , (x2)N2−1} with a uniform
grid spacing of size �x1 and �x2 in the x1 and x2 directions,
respectively. Let (Vl)

n
i, j be the approximate solution of (2) at

((x1)i , (x2) j , τ
n) for l = 1, 2. We assume a mesh and control

discretization parameter h such that

�x1 = C4 h, �x2 = C5 h, �τ = C6 h,

�p1 = �p2 = C7 h, (8)

where C4,C5, C6 and C7 are constants independent of h.
A seven point stencil (Clift and Forsyth 2008) is used to

discretize the cross derivative term. For ρ ≥ 0, the stencil in
figure 1(a) is used and the finite difference formula is given by

∂2Vl

∂x1∂x2
≈ 2 (Vl)

n
i, j + (Vl)

n
i+1, j+1 + (Vl)

n
i−1, j−1 − (Vl)

n
i+1, j − (Vl)

n
i−1, j − (Vl)

n
i, j+1 − (Vl)

n
i, j−1

2�x1�x2
. (9)

For ρ < 0, the stencil in figure 1(b) is used and the corre-
sponding formula is given by

∂2Vl

∂x1∂x2
≈ −2 (Vl)

n
i, j − (Vl)

n
i+1, j−1 − (Vl)

n
i−1, j+1 + (Vl)

n
i+1, j + (Vl)

n
i−1, j + (Vl)

n
i, j+1 + (Vl)

n
i, j−1

2�x1�x2
. (10)

Standard three point central differencing is used for ∂
2Vl

∂x2
1

and

∂2Vl

∂x2
2

. The first order derivatives are discretized using central

differencing as much as possible and forward or backward
differencing when central differencing fails to satisfy positive
coefficient discretization. The discrete form of the objective
function in (2) is then given by

Figure 1. Seven point stencil for finite differencing. (a) ρ ≥ 0. (b)
ρ < 0.

Lpl
h V n+1

i, j

=
(
(αl)

x1
i, j − ξi, j

)
(Vl)

n+1
i−1, j +

(
(βl)

x1
i, j − ξi, j

)
(Vl)

n+1
i+1, j

+
(
(αl)

x2
i, j − ξi, j

)
(Vl)

n+1
i, j−1 +

(
(βl)

x2
i, j − ξi, j

)
(Vl)

n+1
i, j+1

+ 1ρ≥0 ξi, j

(
(Vl)

n+1
i+1, j+1 + (Vl)

n+1
i−1, j−1

)
+ 1ρ<0 ξi, j

(
(Vl)

n+1
i+1, j−1 + (Vl)

n+1
i−1, j+1

)
−
(
(αl)

x1
i, j + (βl)

x1
i, j + (αl)

x2
i, j + (βl)

x2
i, j − 2ξi, j + r

)
(Vl)

n+1
i, j

+ pl
(
a1 − a2 pl + a3(p

∗
m)i, j

)
, l,m = 1, 2, m �= l,

(11)

where (αl)
x1
i, j , (βl)

x1
i, j , (αl)

x2
i, j , (βl)

x2
i, j and ξi, j are given in al-

gorithm 3. Using a fully implicit time stepping and (11), the
discrete form of (2) is given by

(Vl)
n+1
i, j − (Vl)

n
i, j

�τ
= sup

pl≥0

{
Lpl

h (Vl)
n+1
i, j

}
, l = 1, 2. (12)

We note that the presence of the cross derivative term poses
a challenge to construct a positive coefficient discretization.
The following theorem illustrates how the constraint on grid
spacing results in a positive coefficient discretization.

Theorem 2.1 If ρ �= 0 and with the use of a seven point
stencil, if the grid spacing is chosen such that

∣∣∣∣2ρ σ2

σ1

∣∣∣∣ ≤ �x2

�x1
≤
∣∣∣∣ 1

2ρ

σ2

σ1

∣∣∣∣ , (13)

then the positive coefficient conditions are satisfied, i.e.

(αl)
x1
i, j − ξi, j ≥ 0, (βl)

x1
i, j − ξi, j ≥ 0, (14)

(αl)
x2
i, j − ξi, j ≥ 0, (βl)

x2
i, j − ξi, j ≥ 0, (15)

ξi, j ≥ 0, (16)

l = 1, 2, 1 ≤ i ≤ N1 − 1, 1 ≤ j ≤ N2 − 1.
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Proof The use of the seven point stencil ensures that ξi, j ≥ 0
irrespective of the sign of the correlation ρ. This is obvious
from (A9). From algorithm 3, conditions (14) and (15) can be
rewritten as

(αl)
x1,ups
i, j − ξi, j ≥ 0, (βl)

x1,ups
i, j − ξi, j ≥ 0, (17)

(αl)
x2,ups
i, j − ξi, j ≥ 0, (βl)

x2,ups
i, j − ξi, j ≥ 0. (18)

From (A1), (A2), (A5) and (A6), it is clear that the conditions
(17) are satisfied when

σ 2
1

2�x2
1

− ρσ1σ2

�x1�x2
≥ 0. (19)

Similarly for the x2 dimension, it is clear from (A3), (A4), (A7)
and (A8), that the conditions (18) hold when

σ 2
2

2�x2
2

− ρσ1σ2

�x1�x2
≥ 0. (20)

Conditions (19) and (20) then result in the restriction on the
grid spacing as given in (13). �

2.2. American options under regime switching

Consider a regime switching model with Nm regimes and a
finite set of discrete volatilities σ j , j = 1, 2, . . . , Nm . A
continuous Markov chain process controls the shifts between
these regimes. The stochastic process for the underlying asset
S under the real world measure is

dS = μP

j S dt + σ j S dZ

+
Nm∑

m=1

(ξ jm − 1) S dX jm, j = 1, . . . , Nm, (21)

where dZ is the increment of a Wiener process and μP

j is
the drift in regime j . The superscript P denotes the objective
probability measure. The term dX jm is given by

dX jm =
{

1, with probability λP

jmdt + δ jm,

0, with probability 1− λP

jmdt − δ jm,

where the transition probability λP

jm ≥ 0, j �= m and λP

j j =
−∑m �= j λ

P

jm . The asset price jumps from S to ξ jm S when a
transition from j to m occurs and ξ j j = 1. The jump amplitudes
ξ jm are assumed to be deterministic functions of (S, t). In prac-
tice, the quantities ξ jm and λ jm are determined by calibration
to market prices (Ayache 2010).

Let Vj (S, τ ) be the no-arbitrage value of the contingent
claim in regime j , where τ = T − t with T being the expiry
time of the contingent claim and t the time variable. Consider
a hedging portfolio P such that

P = −Vj +�s S +
Nm−1∑
m=1

�m Fm,

where�s is the number of units of underlying asset with price
S and �m is the number of units of additional hedging instru-
ments with price Fm . It is possible to set up a perfect hedge
under the assumption that the set of assets {S, F1, . . . , FNm−1}
forms a non-redundant set (Kennedy 2007). The existence of
a perfect hedge allows us to define the risk neutral transition

probabilities λ jm and the quantities ρ j and λ j as (Huang et al.
2011)

ρ j =
∑
m �= j

λ jm(ξ jm − 1), λ j =
∑
m �= j

λ jm, λ j j = −λ j .

(22)

Let V = [V1, V2, . . . , VNm ]T . The differential operators L j V j

and J j V are defined as

L j V j =
σ 2

j S2

2

∂2Vj

∂S2
+ (r − ρ j )S

∂Vj

∂S
− (r + λ j )Vj , (23)

J j V =
∑
m �= j

λ jm

λ j
Vm(ξ jm S, τ ), (24)

where r is the risk free interest rate. The no-arbitrage price of
theAmerican option Vj (S, τ ) is then given by (Kennedy 2007)

min
[
Vj,τ − L j V j − λ jJ j V, Vj − V ∗

] = 0, j = 1, . . . , Nm,

(25)

where V ∗(S) is the payoff function. We consider the truncated
domain (S, τ ) ∈ [0, Smax]×[0, T ] for computational purposes.
No boundary condition is required at S = 0, whereas at S =
Smax, we follow the standard approach and use a Dirichlet
condition with V (Smax, τ ) = V ∗(Smax) (Huang et al. 2011).
The initial condition is given by the payoff function at τ = 0,
which is denoted by

V (S, 0) = V ∗(S).

The minimization problem (25) can be solved in different
ways. A straight forward approach is to enforce the constraint
explicitly. But, the resulting solution is inconsistent and the
option delta is not continuous across the early exercise bound-
ary (Forsyth 2012). Alternatively, (25) can be reformulated us-
ing different optimal control formulations (Huang et al. 2011)
to overcome the issues. In this paper, we adopt the penalty
method. The penalized form of (25) (Forsyth and Vetzal 2002)
is

Vj,τ = L j V j + λ jJ j V + max
ϕ∈{0,1}

[
ϕ
(V ∗ − Vj )

ε

]
, (26)

where ε is the penalty parameter and ϕ ∈ {0, 1} is the control
parameter. For efficient convergence of the multigrid method,
it is important that the consistency of control from the fine
to the coarse grids is maintained during restriction (Han and
Wan 2013). This can be easily enforced when the penalty
formulation (26) is used. We discuss this in detail in section
4.3.

Equation (26) can be written in the general form as

Vj,τ = max
ϕ∈{0,1}

{
a j (S, τ, ϕ)

∂2Vj

∂S2
+ b j (S, τ, ϕ)

∂Vj

∂S

− c j (S, τ, ϕ)Vj + d j (S, τ, ϕ)+ λ jJ j V

}
, (27)

where

a j (S, τ, ϕ) =
σ 2

j S2

2
, b j (S, τ, ϕ) = S(r − ρ j ),

c j (S, τ, ϕ) =
(

r + λ j + ϕ
ε

)
, d j (S, τ, ϕ) = ϕ

V ∗j
ε
. (28)

Fully implicit finite differencing is used to discretize (27) as
described in the following section.
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2.2.1. Discretization. We discretize (27) using a fully im-
plicit, positive coefficient, finite difference discretization,
which ensures convergence to the viscosity solution (Forsyth
and Labahn 2007). The spatial domain is discretized into a set
of nodes {S0, S1, . . . , SN−1} and the nth time step is denoted by
τ n = n�τ , where�τ is the time step size. Let V n

i, j be the dis-
crete approximation to Vj (Si , τ

n). The discretized differential
terms in (27) are represented as(

a j (S, τ, ϕ)
∂2Vj

∂S2
+ b j (S, τ, ϕ)

∂Vj

∂S
− c j (S, τ, ϕ)Vj

)n+1

i

= αi, j (ϕ) V n+1
i−1, j + βi, j (ϕ) V n+1

i+1, j

− (αi, j (ϕ)+ βi, j (ϕ)+ ci, j (ϕ)
)

V n+1
i, j . (29)

A weighted average of central and upstream differencing
(Huang et al. 2011) is used such that the positive coefficient
condition (αi, j ≥ 0, βi, j ≥ 0) is satisfied and central differ-
encing is used as much as possible. The details are given in
algorithm 4.

We append all the discrete vectors of the approximation V n
j

to form a long vector V n of size N M ,

V n =
[
V n

0,1, . . . , V n
N−1,1, . . . , V n

0,Nm
, . . . , V n

N−1,Nm

]T
.

Let J h
j denote the discrete form of the operator J j , the dis-

cretization for the regime switching term J j V is then given
by

[J h
j V n+1]i, j =

∑
m �= j

λ jm

λ j
Vm(min(Smax, ξ jm Si ), τ

n+1),

(30)

where Vm(min(Smax, ξ jm Si ), τ
n+1) is approximated by linear

interpolation, which is given by

Vm(min(Smax, ξ jm Si ), τ
n+1) = wm V n+1

im ,m

+ (1− wm)V
n+1
im+1,m, wm ∈ [0, 1]. (31)

Note that we truncate any jumps that require data outside the
computational domain in (30). The error due to this approxima-
tion is small when Smax is sufficiently large (Kennedy 2007).
The HJB system (27) is then discretized using (29), (30) and a
fully implicit time stepping as

V n+1
i, j − V n

i, j

�τ

= maxϕ∈{0,1}
{
αi, j (ϕ)V

n+1
i−1, j + βi, j (ϕ)V

n+1
i+1, j

− (αi, j (ϕ)+ βi, j (ϕ)+ ci, j (ϕ)
)

V n+1
i, j

+ di, j (ϕ)+ [J h
j V n+1]i, j

}
, i < N − 1; j = 1, . . . , Nm,

(32)

V n+1
i, j = V ∗i, j , i = N − 1; j = 1, . . . , Nm .

2.3. American options with unequal lending/borrowing rates
under regime switching

Consider the model where the cash borrowing rate, rb, and
the lending rate, rl , are not necessarily equal (with rb ≥ rl )
along with the stock borrowing fees, r f . Such models result
in nonlinear HJB PDEs (Bergman 1995, Forsyth and Labahn

2007). We consider these models under a Nm-state regime
switching process (21) combined with the American early ex-
ercise, which results in a system of HJBI PDEs. Let Vj (S, τ ) be
the no-arbitrage value of the contingent claim in regime j and
V = [V1, V2, . . . , VNm ]T . We define the following differential
operators for a long position in the contingent claim:

LQ
j Vj =

σ 2
j S2

2

∂2Vj

∂S2
+ (q3q1 + (1− q3)(rl − r f )− ρ j )

× S
∂Vj

∂S
− (q3q1 + q2(1− q3)+ λ j )Vj

J j V =
∑
m �= j

λ jm

λ j
Vm
(
ξ jm S, τ

)
,

where ρ j and λ j are given by (22). When combined with
American early exercise, we have,

min
[
Vj,τ − infQ∈Q̂{LQ

j Vj } − λ jJ j V, Vj − V ∗
]
= 0,(33)

with Q = (q1, q2, q3) and Q̂ = ({rl , rb}, {rl , rb}, 0, 1). As
mentioned in section 2.2, directly solving the minimization
problem (33) leads to an inconsistent solution. Therefore, we
reformulate (33) to a penalty form, which results in the follow-
ing system of HJBI PDEs,

Vj,τ = supϕ∈{0,1}infQ∈Q̂

{
LQ

j Vj + λ jJ j V + ϕ (V
∗ − Vj )

ε

}
.(34)

We rewrite (34) in the general form as

Vj,τ = supϕ∈{0,1}infQ∈Q̂

{
a j (S, τ, Q, ϕ)

∂2Vj

∂S2
+ b j (S, τ, Q, ϕ)

× ∂Vj

∂S
− c j (S, τ, Q, ϕ)Vj

+ d j (S, τ, Q, ϕ)+ λ jJ j V

}
, (35)

where

a j (S, τ, Q, ϕ) = σ 2
j S2

2
, b j (S, τ, Q, ϕ)

= S(q3q1 + (1− q3)(rl − r f )− ρ j ),

c j (S, τ, Q, ϕ) = (q3q1 + q2(1− q3)+ λ j + ϕ
ε
),

d j (S, τ, Q, ϕ) = ϕ V ∗j
ε
.

2.3.1. Discretization. Following the discretization proce-
dure in section 2.2.1, i.e. a fully implicit positive coefficient
discretization and linear interpolation (30) for J j V , we obtain
the following for (35),

V n+1
i, j = V n

i, j +�τ supϕ∈{0,1}infQ∈Q̂

{
αi, j (Q, ϕ)V

n+1
i−1, j

+ βi, j (Q, ϕ)V
n+1
i+1, j

− (αi, j (Q, ϕ)+ βi, j (Q, ϕ)+ ci, j (Q, ϕ)
)

V n+1
i, j

+ di, j (Q, ϕ)+ λ j [J h
j V n+1]i, j

}
, i < N − 1,

V n+1
i, j = V ∗i, j , i = N − 1. (36)
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The coefficients αi, j and βi, j are defined using a weighted
average of central and upstream differencing as described in
algorithm 4.

Remark 1 Equations (25) and (33) are special cases of the
more general systems of variational inequalities (VIs) consid-
ered by Crepey (2010), where it is shown that such VIs have
unique viscosity solutions. The definition of a viscosity solu-
tion must be generalized for systems of PDEs (Crepey 2010,
Ishii and Koike 1991).The discretization schemes (32) and (36)
for American options under regime switching can be shown to
be unconditionally l∞ stable, consistent and monotone and
hence converge to the viscosity solution in a straightforward
way by using methods in Forsyth and Labahn (2007).

In the next section, we prove that the discretization scheme
(12), for dynamic Bertrand duopoly, converges to the viscosity
solution.

3. Discretization analysis

For nonlinear second-order PDEs, any monotone, consistent
and l∞ stable discretization scheme converges to the viscosity
solution provided that the strong comparison property holds
(Barles and Souganidis 1991, Ishii and Koike 1991). For the
system of HJB PDEs (2), we note that there is no coupling
of derivative terms among the individual PDEs and hence the
extended definition of the viscosity solution from Ishii and
Koike (1991) can be applied here. In this Section, we verify
that our discretization (12) converges to the viscosity solution
of the system (2).

For compactness of analysis, let

x = (x1, x2, τ ), DVl(x) =
(
∂Vl

∂x1
,
∂Vl

∂x2
,
∂Vl

∂τ

)
,

D2Vl (x) =
⎛⎝ ∂2Vl

∂x2
1

∂2Vl
∂x1∂x2

∂2Vl
∂x1∂x2

∂2Vl

∂x2
2

⎞⎠ .
Definition 1 The domain 
D is partitioned into


D
in = (x1, x2, τ ) ∈ (0, (x1)max] × (0, (x2)max] × (0, T ],


D
(x1)0
= (x1, x2, τ ) ∈ {0} × (0, (x2)max] × (0, T ],


D
(x2)0
= (x1, x2, τ ) ∈ (0, (x1)max] × {0} × (0, T ],


D
τ0
= (x1, x2, τ ) ∈ [0, (x1)max] × [0, (x2)max] × {0}.

The system of HJB equations (2) is then written in compact
form as

Fl Vl = Fl
(

x, Vl(x), DVl(x), D2Vl(x), {Vm(x)}m �=l

)
= 0,

× l,m = 1, 2, (37)

where Fl Vl is defined as

Fl Vl

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fl
in Vl ≡ Fl

in

(
x, Vl (x), DVl (x), D2Vl (x), {Vm(x)}m �=l

)
= (Vl )τ − suppl≥0

{Lpl Vl
}
, x ∈ 
D

in,

Fl
(x1)0

Vl ≡ Fl
(x1)0

(
x, Vl (x), DVl (x), D2Vl (x), {Vm(x)}m �=l

)
=
{

V1

V2 − supp2≥0

{
LM,p2 V2

}
, x ∈ 
D

(x1)0
,

Fl
(x2)0

Vl ≡ Fl
(x2)0

(
x, Vl (x), DVl (x), D2Vl (x), {Vm(x)}m �=l

)
=
{

V1 − supp1≥0

{
LM,p1 V1

}
V2

, x ∈ 
D
(x2)0

,

Fl
τ0

Ul ≡ Fl
τ0
(x, Vl (x))

= Vl − (Vl )0(x1, x2), x ∈ 
D
τ0
,

where (Vl)0(x1, x2) is the initial condition.

Definition 2 (Viscosity solution of the system of PDEs (37))
A R2-valued function V = (V1, V2), where each Vl : 
D →
R is locally bounded, is called a viscosity subsolution (re-
spectively supersolution) of the system of PDEs (37) if and
only if for all smooth test functions φl ∈ C∞(
D), and for
all maximum (respectively minimum) points x of V ∗l − φl
(respectively Vl∗ − φl ), one has

Fl∗
(

x, V ∗l (x), Dφl (x), D2φl (x), {V ∗m(x)}m �=l

)
≤ 0(

respectively Fl∗ (x, Vl∗(x), Dφl (x), D2φl (x), {Vm∗(x)}m �=l

)
≥ 0
)
.

A locally bounded function V is a viscosity solution if it is both
a viscosity subsolution and a viscosity supersolution.

There is no coupling of derivative terms among the indi-
vidual PDEs of the system (37), hence the test function for
the l-th equation is scalar valued and replaces only the l-th
component of the solution V , as in the above definition of
the viscosity solution. It is in this sense that we extend the
convergence result of Barles and Souganidis (1991) to system
of PDEs that arise in dynamic Bertrand duopoly. Related work
that also generalize the result of Barles and Souganidis (1991)
to systems of PDEs are Ishii and Koike (1991), Reisinger and
Forsyth (2015), Tse (2012).

Assumption 3.1 (Strong comparison property) If U is an
upper semi-continuous sub-solution of (37) and if V is a lower
semi-continuous super-solution of (37), then

U ≤ V .

The strong comparison property has been proven for first order
equations for all kinds of classical equations and boundary
conditions. It has also been proven for second order equations
with Neumann boundary conditions and classical Dirichlet
boundary conditions (Barles 1997, Barles and Rouy 1998,
Chaumont 2004). Only fully degenerate equations are not well
understood. As such, it is clear that the strong comparison
property holds for all PDEs in this paper.

3.1. Consistency

In this section, we prove that the discretization scheme (12)
is a consistent approximation to the system of PDEs (2) in
the viscosity sense. Let Gl(.) be the discrete approximation to
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Fl
in for x ∈ 
D

in and xn+1
i, j = ((x1)i , (x2) j , τ

n+1). Then for

xn+1
i, j ∈ 
D

in , we rewrite (12) as

Gl

(
h, xn+1

i, j , (Vl)
n+1
i, j , {(Vl)

n+1
i ′, j ′ } i ′ �=i

or j ′ �= j

,

× {(Vl)
n
i ′, j ′ }, {(Vm)

n+1
i ′, j ′ }m �=l

)
= (Vl)

n+1
i, j − (Vl)

n
i, j

�τ
− suppl≥0

{
Lpl

h (Vl)
n+1
i, j

}
= 0,

l,m = 1, 2. (38)

For xn+1
i, j ∈ 
D

(x1)0
, we have

Gl

⎛⎝h, xn+1
i, j , (Vl )

n+1
i, j , {(Vl )

n+1
i ′, j ′ } i ′ �=i

or j ′ �= j

,

× {(Vl )
n
i ′, j ′ }, {(Vm)

n+1
i ′, j ′ }m �=l

)
=
⎧⎨⎩ V n+1

l = 0, l = 1,
(Vl )

n+1
i, j −(Vl )

n
i, j

�τ − suppl≥0

{
LM,pl

h (Vl )
n+1
i, j

}
= 0, l = 2.

(39)

Similarly, for xn+1
i, j ∈ 
D

(x2)0
, we have

Gl

(
h, xn+1

i, j , (Vl)
n+1
i, j , {(Vl)

n+1
i ′, j ′ } i ′ �=i

or j ′ �= j

,

× {(Vl)
n
i ′, j ′ }, {(Vm)

n+1
i ′, j ′ }m �=l

)
=
⎧⎨⎩
(Vl )

n+1
i, j −(Vl )

n
i, j

�τ
− suppl≥0

{
LM,pl

h (Vl)
n+1
i, j

}
= 0, l = 1,

V n+1
l = 0, l = 2

(40)

Finally, for xn+1
i, j ∈ 
D

τ0
, we have

Gl

⎛⎝h, xn+1
i, j , (Vl )

n+1
i, j , {(Vl )

n+1
i ′, j ′ } i ′ �=i

or j ′ �= j

,

× {(Vl )
n
i ′, j ′ }, {(Vm)

n+1
i ′, j ′ }m �=l

)
= (Vl )((x1)i , (x2) j , 0)− (Vl )0((x1)i , (x2) j ) = 0, l,m = 1, 2.

(41)

Definition 3 Let {dm}m �=l be a set of real values dm . We use
the notation

Gl

⎛⎝h, xn+1
i, j , (Vl )

n+1
i, j ,

{
(Vl )

n+1
i ′, j ′

}
i ′ �=i

or j ′ �= j

,
{
(Vl )

n
i ′, j ′
}
, {dm}m �=l

⎞⎠
to mean

Gl

(
h, xn+1

i, j , (Vl)
n+1
i, j ,

{
(Vl)

n+1
i ′, j ′
}

i ′ �=i
or j ′ �= j

,

×
{
(Vl)

n
i ′, j ′
}
,
{
(Vm)

n+1
i ′, j ′ = dm

}
m �=l

)
,

which implies that for a fixed m, (Vm)
n+1
i ′, j ′ all have the same

value dm .

Definition 4 (Consistency) For any C∞ function φl(x1, x2,

τ ) in
D with (φl)
n+1
i, j = φl

(
xn+1

i, j

)
= φl

(
(x1)i , (x2) j , τ

n+1
)
,

the discretization scheme Gl(.) is consistent in the viscosity

sense if ∀x̂ = (x̂1, x̂2, τ̂
)

with xn+1
i, j =

(
(x1)i , (x2) j , τ

n+1
)

and l,m = 1, 2 and for a small constant ψ , the following
holds

lim sup
h→0
ψ→0

xn+1
i, j →x̂

Gl

(
h, xn+1

i, j , (φl)
n+1
i, j + ψ,

{
(φl)

n+1
i ′, j ′ + ψ

}
i ′ �=i

or j ′ �= j

,

×
{
(φl)

n
i ′, j ′ + ψ

}
, {dm}m �=l

)
≤ Fl∗ (x̂, φl(x̂), Dφl(x̂), D2φl(x̂), {dm}m �=l

)
,

and

lim inf
h→0
ψ→0

xn+1
i, j →x̂

Gl

(
h, xn+1

i, j , (φl)
n+1
i, j + ψ,

{
(φl)

n+1
i ′, j ′ + ψ

}
i ′ �=i

or j ′ �= j

,

×
{
(φl)

n
i ′, j ′ + ψ

}
, {dm}m �=l

)
≥ Fl∗

(
x̂, φl(x̂), Dφl(x̂), D2φl(x̂), {dm}m �=l

)
.

Lemma 3.2 (Local consistency) Suppose the mesh and con-
trol discretization parameter h satisfies (8), then for any C∞
function φl(x1, x2, τ ) in 
D, with (φl)

n+1
i, j = φl

(
(x1)i , (x2) j ,

τ n+1
)
= φl

(
xn+1

i, j

)
, and for h and for a sufficiently small

constant ψ , we have that

Gl

(
h, xn+1

i, j , (φl)
n+1
i, j + ψ,

{
(φl)

n+1
i ′, j ′ + ψ

}
i ′ �=i

or j ′ �= j

×
{
(φl)

n
i ′, j ′ + ψ

}
, {dm}m �=l

)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Fl

in (φl)
n+1
i, j + O(h)+ O(ψ), xn+1

i, j ∈ 
D
in,

Fl
(x1)0

(φl)
n+1
i, j + O(h)+ O(ψ), xn+1

i, j ∈ 
D
(x1)0

,

Fl
(x1)0

(φl)
n+1
i, j + O(h)+ O(ψ), xn+1

i, j ∈ 
D
(x2)0

,

Fl
τ0
(φl)

n+1
i, j + O(ψ), xn+1

i, j ∈ 
D
τ0
.

(42)

Proof Let

Lpl (φl)
n+1
i, j ≡ Lplφl

(
(x1)i , (x2) j , τ

n+1
)
,

((φl)τ )
n+1
i, j = (φl)τ

(
(x1)i , (x2) j , τ

n+1
)
.

For xn+1
i, j ∈ 
D

in, Lpl
h (φl)

n+1
i, j given by (11) is a locally con-

sistent discretization of the linear operator Lpl , i.e. by use of
Taylor series, we get

Lpl
h (φl)

n+1
i, j = Lpl (φl)

n+1
i, j + O(h).

Further, we have

Lpl
h

(
(φl)

n+1
i, j + ψ

)
= Lpl

h (φl)
n+1
i, j − rψ,

(φl)
n+1
i, j − (φl)

n
i, j

�τ
= ((φl)τ )

n+1
i, j + O(h).
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From (38), we then have

Gl

(
h, xn+1

i, j , (φl)
n+1
i, j + ψ, {(φl)

n+1
i ′, j ′ + ψ} i ′ �=i

or j ′ �= j

,

× {(φl)
n
i ′, j ′ + ψ}, {dm}m �=l

)
= (φl)

n+1
i, j − (φl)

n
i, j

�τ
− suppl≥0

{
Lpl

h (φl)
n+1
i, j

}
+ O(ψ)

= ((φl)τ )
n+1
i, j − suppl≥0

{
Lpl (φl)

n+1
i, j

}
+ O(h)+ O(ψ)

= Fl
in(φl)

n+1
i, j + O(h)+ O(ψ), xn+1

i, j ∈ 
D
in .

The remaining results in (42) are proved similarly using Taylor
series and (39)–(41). �
Lemma 3.3 (Consistency) Provided all the conditions in
Lemma 3.2 are satisfied, the scheme (38)–(41) is consistent
according to the Definition 4.

Proof The proof follows in a straightforward fashion from
Lemma 3.2 and following the analysis in Huang and Forsyth
(2012) �

3.2. Stability

Definition 5 (Stability) Discretization (12) is stable if

||V n
l ||∞ ≤ C10,

for 0 ≤ n ≤ N and h→ 0, where C10 is independent of h.

Lemma 3.4 (Stability) Given the positive coefficient condi-
tions (14)–(16) are satisfied, the discretization (12) is uncondi-
tionally l∞ stable, as the mesh parameter (8) h→ 0 satisfying

||V n
l ||∞ ≤ ||V 0

l ||∞ + C11, (43)

where C11 = T (
a1+a3(p∗m )max)

2

4a2
and (p∗m)max = maxi, j

(p∗m)i, j .

Proof The discrete equations given by (12) are

(Vl)
n+1
i, j = (Vl)

n
i, j −�τ

(
(αl)

x1
i, j + (βl)

x1
i, j

+ (αl)
x2
i, j + (βl)

x2
i, j − 2ξi, j + r

)
(Vl)

n+1
i, j

+�τ
(
(αl)

x1
i, j − ξi, j

)
(Vl)

n+1
i−1, j

+�τ
(
(βl)

x1
i, j − ξi, j

)
(Vl)

n+1
i+1, j

+�τ
(
(αl)

x2
i, j − ξi, j

)
(Vl)

n+1
i, j−1

++�τ
(
(βl)

x2
i, j − ξi, j

)
(Vl)

n+1
i, j+1

+ 1ρ≥0 �τξi, j

(
(Vl)

n+1
i+1, j+1 + (Vl)

n+1
i−1, j−1

)
+ 1ρ<0 �τξi, j

(
(Vl)

n+1
i+1, j−1 + (Vl)

n+1
i−1, j+1

)
+�τ(pl)

n+1
i, j

(
a1 − a2(pl)

n+1
i, j + a3(p

∗
m)i, j

)
.

(44)

To avoid notational clutter, we suppressed the pl dependence
of the discrete coefficients in (44). It is implied that the coeffi-
cients are the limiting values at the optimal pl . The following
inequality is obtained from (44)

∣∣∣(Vl)
n+1
i, j

∣∣∣ (1+�τ
(
(αl)

x1
i, j + (βl)

x1
i, j + (αl)

x2
i, j

+ (βl)
x2
i, j − 2ξi, j + r

))
≤ ||V n

l ||∞ +�τ
(
(αl)

x1
i, j + (βl)

x1
i, j + (αl)

x2
i, j

+ (βl)
x2
i, j − 2ξi, j + r

)
||V n+1

l ||∞
+�τ

∣∣∣(pl)
n+1
i, j

(
a1 − a2(pl)

n+1
i, j + a3(p

∗
m)i, j

)∣∣∣ . (45)

Let ||V n+1
l ||∞ = |(Vl)

n+1
i ′, j ′ |, then (45) becomes

||(Vl)
n+1
i, j ||∞ (1+ r�τ) ≤ ||U n

l ||∞
+�τ

∣∣∣(pl)
n+1
i ′, j ′

(
a1 − a2(pl)

n+1
i ′, j ′ + a3(p

∗
m)i ′, j ′

)∣∣∣ .
Letting (p∗m)max = maxi, j (p∗m)i, j and d̂n+1

max = maxi, j(
(pl)

n+1
i, j

(
a1 − a2(pl)

n+1
i, j + a3(p∗m)max

))
= (a1+a3(p∗m )max)

2

4a2
,

we get

||V n+1
l ||∞ ≤ ||V n

l ||∞ +�τ d̂n+1
max ,

which then results in (43). �

3.3. Monotonicity

The notion of monotonicity in Barles and Souganidis (1991)
needs to be extended for systems of PDEs. Quasi-monotone
property is an important assumption in the theory of viscos-
ity solution for systems of PDEs (Ishii and Koike 1991). We
first show that the system (37) satisfies the quasi-monotone
property.

Proposition 3.5 Let w1, w2 ∈ R2 and l ∈ {1, 2}. We use the
notation w1 ≥l w2, which means that w1 ≥ w2 component-
wise and (w1)l = (w2)l . The system of PDEs (37) is called
quasi-monotone Ishii and Koike (1991), if for all x ∈ 
D and
φl ∈ C∞, whenever w1 ≥l w2, then

Fl
(

x, (w1)l(x), Dφl(x), D2φl(x), {(w1)m(x)}m �=l

)
≤ Fl

(
x, (w2)l(x), Dφl(x), D2φl(x), {(w2)m(x)}m �=l

)
.

Proof This follows from a straightforward calculation by not-
ing that the coupling among the individual PDEs in (37) is only
due to the control and not the solution. �

We now prove that our discretization (38)–(41) is monotone.
Note that the definition of monotonicity with respect to the last
argument of Gl(.) in (46) below is a discrete version of the
quasi-monotone property given in proposition 3.5.

Definition 6 (Monotonicity) The discretization scheme
(38)–(41) is monotone if for any two R2-valued discrete func-
tions Wh and Uh defined on 
D such that Wh ≥ Uh and
(Wl)

n+1
i, j = (Ul)

n+1
i, j ,

Gl

(
h, xn+1

i, j , (Wl)
n+1
i, j ,

{
(Wl)

n+1
i ′, j ′
}

i ′ �=i
or j ′ �= j

,

×
{
(Wl)

n
i ′, j ′
}
,
{
(Wm)

n+1
i ′, j ′
}

m �=l

)
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≤ Gl

(
h, xn+1

i, j , (Ul)
n+1
i, j ,

{
(Ul)

n+1
i ′, j ′
}

i ′ �=i
or j ′ �= j

,

×
{
(Ul)

n
i ′, j ′
}
,
{
(Um)

n+1
i ′, j ′
}

m �=l

)
. (46)

Lemma 3.6 (Monotonicity) If the scheme (38)–(41) satis-
fies the conditions required for Lemma 3.4, then the discretiza-
tion is monotone according to Definition 6.

Proof Our discretization (38)–(41) satisfies positive coeffi-
cient conditions ∀pl ≥ 0, therefore monotonicity is proved
using the same steps from Forsyth and Labahn (2007). �

3.4. Convergence

Theorem 3.7 (Convergence) Assuming that the discretiza-
tion (38)–(41) satisfies all the conditions required by Lemma
3.3, 3.4 and 3.6 and that Assumption 3.1 holds for (37), then the
numerical scheme converges to the unique viscosity solution
of the system (37).

Proof Since the scheme is monotone, consistent and l∞ sta-
ble, the convergence follows from the results in Barles and
Souganidis (1991), Ishii and Koike (1991). �

4. Multigrid method for HJB and HJBI systems

We develop a multigrid method based on the FAS for solving
(32), (12) and (36). FAS is a multigrid method which directly
handles the nonlinearity of the underlying PDE (Brandt, 1977).
The idea of multigrid methods is to accelerate the convergence
of a relaxation scheme by removing the low frequency error
efficiently. First, an iterative method, such as Gauss–Seidel or
Jacobi relaxation, is applied to the fine grid problem. The re-
sulting error is smooth and hence can be accurately represented
on a coarser grid. Since the coarse grid is much smaller than the
fine grid, it is much less expensive to work on the coarse grid.
In addition, resolving the error on a coarser grid is effective for
low frequency error reduction. The fine grid solution is then
updated with the interpolated coarse grid error followed by
post-smoothing iterations.

We define the problem on the fine grid 
h as

N h (.) = Fh . (47)

For the HJB system (12) due to dynamic Bertrand oligopoly,

N h
(

V n+1,h
l

)
≡ V n+1,h

l −�τ sup
pl≥0

{
An+1 (pl , p∗m

)
V n+1,h

l

+ Bn+1 (pl , p∗m
)}
,

Fh ≡ V n,h
l , l,m = 1, 2; m �= l, (48)

where An+1
(

pl , p∗m
)

V n+1,h
l is the matrix form of the differ-

ential operator Lpl
h dependent on V n+1,h

l and Bn+1
(

pl , p∗m
)

is
the vector form of pl

(
a1 − a2 pl + a3(p∗m)i, j

)
in (12).

For HJB system (32) the operators are defined by

N h
(

V n+1,h
)
≡ V n+1,h −�τ max

ϕ∈{0,1}

{
An+1 (ϕ) V n+1,h

+ Bn+1 (ϕ)
}
, Fh ≡ V n,h, (49)

where An+1 (ϕ) V n+1,h is the matrix form of the objective
function dependent on V n+1,h and Bn+1 (ϕ) is the vector form
of di, j (ϕ) in (32).

For HJBI system (36), we have

N h
(

V n+1,h
)
≡ V n+1,h −�τ sup

ϕ∈{0,1}
inf

Q∈Q̂

{
An+1 (Q, ϕ) V n+1,h

+ Bn+1 (Q, ϕ)
}
, Fh ≡ V n,h (50)

where An+1 (Q, ϕ) V n+1,h is the matrix form of the objective
function dependent on V n+1,h and Bn+1 (Q, ϕ) is the vector
form of di, j (ϕ) in (36).

Given V n,h , the two-grid FAS V-cycle to compute V n+1,h

is given in algorithm 1. Recursively applying the two grid
method gives the multigrid method. The core components of
the multigrid algorithm are the smoothing procedure S(.), the
coarsening strategy, the restriction {Rv,Rr } and interpolation
operators P and the coarse grid operator NH (.), where 
H

denotes the coarse grid.

Algorithm 1 Two-grid FAS V-cycle.
(1) Pre-smoothing

Compute Ṽ n,h by applying ν1 smoothing iterations S(.) to V n,h :

Ṽ n,h = Sν1
(

V n,h , N h , Fh
)

(2) Coarse Grid Correction
Compute the residual: R̃n,h = Fh − N h(Ṽ n,h)

Restrict the residual using Rr : R̃n,H = Rr R̃n,h

Restrict the solution using Rv : V n,H = Rv Ṽ n,h

Compute the right hand side: F H = R̃n,H + NH (V
n,H )

Solve N H (Ṽ n,H ) = F H for Ṽ n,H

Compute correction: Ẽn,H = Ṽ n,H − V n,H

Interpolate the correction using P : Ẽn,h = P Ẽn,H

Correct the approximation: V̂ n
h = Ṽ n,h + Ẽn,h

(3) Post-smoothing
Compute V n+1,h by applying ν2 smoothing iterations S(.) to V̂ n,h :

V n+1,h = Sν2
(

V̂ n,h , N h , Fh
)

For HJB and HJBI systems, in addition to the solution and
residual, the control should also be carefully considered during
restriction and interpolation. Standard FAS techniques using
fully weighted restriction and linear interpolation, in general,
work well when the control is continuous and bounded. How-
ever, when the control is discrete with large jumps, the conver-
gence of the standard FAS deteriorates or it may not converge
at all in certain situations (Han and Wan 2013). For American
options formulated in HJB/HJBI form, there is typically a large
jump in control. For efficient convergence of the multigrid
method, it is important that the consistency of control between
the fine and the coarse grid is preserved during restriction
and interpolation. Also, the optimal control at the jump lo-
cations must be accurately captured during interpolation. We
address these issues and develop efficient multigrid methods
for the HJB and HJBI systems. A weighted relaxation scheme,
described in section 4.1, is used as the smoother. We pro-
pose novel interpolation techniques which are presented in
section 4.2. The restriction operator is chosen such that it
preserves consistency of the control, the details are presented in
section 4.3.
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4.1. Weighted relaxation smoother

Relaxation type iterative methods are efficient in damping the
high frequency error components (Trottenberg et al. 2001, Han
and Wan 2013). We use weighted relaxation scheme as the
smoother. Consider the HJB system resulting from American
options under regime switching. Rearranging (32), we have

max
ϕ∈{0,1}

{
�ταn+1

i, j (ϕ)V
n+1
i−1, j +�τβn+1

i, j (ϕ)V
n+1
i+1, j

−
(

1+�τ
(
αn+1

i, j (ϕ)+ βn+1
i, j (ϕ)+ cn+1

i, j (ϕ)
))

V n+1
i, j

+ �τdn+1
i, j (ϕ)+�τ [J h

j V n+1]i, j + V n
i, j

}
= 0. (51)

We note that the coefficient of V n+1
i, j in (51) is non-negative

and hence the equation can be rewritten as

max
ϕ∈{0,1}

⎧⎨⎩−V n+1
i, j +

�τ
(
αn+1

i, j (ϕ)V
n+1
i−1, j + βn+1

i, j (ϕ)V
n+1
i+1, j + dn+1

i, j (ϕ)+ [J h
j V n+1]i, j

)
+ V n

i, j

1+�τ
(
αn+1

i, j (ϕ)+ βn+1
i, j (ϕ)+ cn+1

i, j (ϕ)
)

⎫⎬⎭ = 0 (52)

Let Ṽ k be the kth estimate for V n+1. A relaxation scheme
can then be derived from (52) as

Ṽ k+1
i, j = max

ϕ∈{0,1}

⎧⎨⎩�τ
(
αn+1

i, j (ϕ)Ṽ
k
i−1, j + βn+1

i, j (ϕ)Ṽ
k
i+1, j + dn+1

i, j (ϕ)+ [J h
j Ṽ k]i, j

)
+ V n

i, j

1+�τ
(
αn+1

i, j (ϕ)+ βn+1
i, j (ϕ)+ cn+1

i, j (ϕ)
)

⎫⎬⎭ . (53)

This relaxation scheme is not efficient in reducing the high
frequency components. Therefore, we introduce a damping
factorω to obtain a weighted relaxation scheme, which is given
by

Ṽ k+1
i, j = (1− ω)Ṽ k

i, j + ω max
ϕ∈{0,1}

⎧⎨⎩�τ
(
αn+1

i, j (ϕ)Ṽ
k
i−1, j + βn+1

i, j (ϕ)Ṽ
k
i+1, j + dn+1

i, j (ϕ)+ [J h
j Ṽ k]i, j

)
+ V n

i, j

1+�τ
(
αn+1

i, j (ϕ)+ βn+1
i, j (ϕ)+ cn+1

i, j (ϕ)
)

⎫⎬⎭ (54)

Following similar derivation, the weighted relaxation scheme
for the HJB system (12) resulting from dynamic Bertrand
duopoly is obtained as

(Ṽl)
k+1
i, j = (1− ω) (Ṽl)

k
i, j

+ ω sup
pl≥0

⎧⎨⎩�τ
((
(αl)

x1
i, j − ξi, j

)
(Vl)

k
i−1, j +

(
(βl)

x1
i, j − ξi, j

)
(Vl)

k
i+1, j

)
1+�τ

(
(αl)

x1
i, j + (βl)

x1
i, j + (αl)

x2
i, j + (βl)

x2
i, j − 2ξi, j + r

)
+
�τ
((
(αl)

x2
i, j − ξi, j

)
(Vl)

k
i, j−1 +

(
(βl)

x2
i, j − ξi, j

)
(Vl)

k
i, j+1

)
1+�τ

(
(αl)

x1
i, j + (βl)

x1
i, j + (αl)

x2
i, j + (βl)

x2
i, j − 2ξi, j + r

)
+
�τ
(
1ρ≥0 ξi, j

(
(Vl)

k
i+1, j+1 + (Vl)

k
i−1, j−1

)
+ 1ρ<0 ξi, j

(
(Vl)

k
i+1, j−1 + (Vl)

k
i−1, j+1

))
1+�τ

(
(αl)

x1
i, j + (βl)

x1
i, j + (αl)

x2
i, j + (βl)

x2
i, j − 2ξi, j + r

)
+

�τ
(

pl

(
a1 − a2 pl + a3

(
p∗m
)k

i, j

))
1+�τ

(
(αl)

x1
i, j + (βl)

x1
i, j + (αl)

x2
i, j + (βl)

x2
i, j − 2ξi, j + r

)
⎫⎬⎭ , l,m = 1, 2; m �= l. (55)

Similarly, for HJBI systems, the weighted relaxation scheme
for (36) is given by

Ṽ k+1
i, j = (1− ω)Ṽ k

i, j + ω sup
ϕ∈{0,1}

inf
Q∈Q̂

×
⎧⎨⎩�τ

(
αn+1

i, j (Q, ϕ)Ṽ
k
i−1, j + βn+1

i, j (Q, ϕ)Ṽ
k
i+1, j + dn+1

i, j (Q, ϕ)+ [J h
j Ṽ k ]i, j

)
+ V n

i, j

1+�τ
(
αn+1

i, j (Q, ϕ)+ βn+1
i, j (Q, ϕ)+ cn+1

i, j (Q, ϕ)
)

⎫⎬⎭ .
(56)

LFA shows that ω = 0.67 results in efficient reduction of
the high frequency error components for both HJB and HJBI
systems. We present the details of the analysis in section 5.1.
We now prove that the weighted relaxation scheme is globally
convergent.
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Theorem 4.1 (HJBI Systems) Suppose the discretization
(36) satisfies a positive coefficient condition (Forsyth and Labahn
2007), then the weighted relaxation scheme (56) is globally
convergent for any initial condition given that 0 < ω <

2/(1+ γ ). Furthermore, we have

||Ṽ k+1 − Ṽ k ||∞ ≤ (|1− ω| + ωγ )||Ṽ k − Ṽ k−1||∞
where

γ = max
i, j

sup
φ∈{0,1}

sup
Q∈Q̂

⎧⎨⎩ �τ
(
αn+1

i, j (Q, ϕ)+ βn+1
i, j (Q, ϕ)+ λ j

)
1+�τ

(
αn+1

i, j (Q, ϕ)+ βn+1
i, j (Q, ϕ)+ cn+1

i, j (Q, ϕ)
)
⎫⎬⎭ .

Proof Using (56), we have |Ṽ k+1
i, j − Ṽ k

i, j | as

|Ṽ k+1
i, j − Ṽ k

i, j |
≤ |1− ω||Ṽ k

i, j − Ṽ k−1
i, j |

+ ω
∣∣∣∣∣∣ sup
ϕ∈{0,1}

inf
Q∈Q̂

⎧⎨⎩�τ
(
αn+1

i, j (Q, ϕ)Ṽ
k
i−1, j + βn+1

i, j (Q, ϕ)Ṽ
k
i+1, j + dn+1

i, j (Q, ϕ)+ λ j [J h
j Ṽ k]i, j

)
+ V n

i, j

1+�τ
(
αn+1

i, j (Q, ϕ)+ βn+1
i, j (Q, ϕ)+ cn+1

i, j (Q, ϕ)
)

⎫⎬⎭
− sup

ϕ∈{0,1}
inf

Q∈Q̂

⎧⎨⎩�τ
(
αn+1

i, j (Q, ϕ)Ṽ
k−1
i−1, j + βn+1

i, j (Q, ϕ)Ṽ
k−1
i+1, j + dn+1

i, j (Q, ϕ)+ λ j [J h
j Ṽ k−1]i, j

)
+ V n

i, j

1+�τ
(
αn+1

i, j (Q, ϕ)+ βn+1
i, j (Q, ϕ)+ cn+1

i, j (Q, ϕ)
)

⎫⎬⎭
∣∣∣∣∣∣

Using the properties of sup-inf operators (Forsyth and Labahn
2007) and replacing the regime switching term [J h

j Ṽ k]i, j by
(30) and (31), we have

|Ṽ k+1
i, j − Ṽ k

i, j |
≤ |1− ω||Ṽ k

i, j − Ṽ k−1
i, j |

+ ω sup
ϕ∈{0,1}

sup
Q∈Q̂

⎧⎨⎩
∣∣∣∣∣∣
�τ
[
αn+1

i, j (Q, ϕ)
(

Ṽ k
i−1, j − Ṽ k−1

i−1, j

)
+ βn+1

i, j (Q, ϕ)
(

Ṽ k
i+1, j − Ṽ k−1

i+1, j

)]
1+�τ

(
αn+1

i, j (Q, ϕ)+ βn+1
i, j (Q, ϕ)+ cn+1

i, j (Q, ϕ)
)

+
λ j�τ

( ∑
m �= j

λ jm
λ j

[
wm

(
Ṽ k

im ,m
− Ṽ k−1

im ,m

)
+ (1− wm)

(
Ṽ k

im+1,m − Ṽ k−1
im+1,m

)])
1+�τ

(
αn+1

i, j (Q, ϕ)+ βn+1
i, j (Q, ϕ)+ cn+1

i, j (Q, ϕ)
)

∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
≤ |1− ω||Ṽ k

i, j − Ṽ k−1
i, j |

+ ω sup
ϕ∈{0,1}

sup
Q∈Q̂

⎧⎨⎩ �τ
(
αn+1

i, j (Q, ϕ)+ βn+1
i, j (Q, ϕ)+ λ j

)
1+�τ

(
αn+1

i, j (Q, ϕ)+ βn+1
i, j (Q, ϕ)+ cn+1

i, j (Q, ϕ)
)
⎫⎬⎭ |Ṽ k

i, j − Ṽ k−1
i, j |.

Therefore,

||Ṽ k+1 − Ṽ k ||∞ ≤ (|1− ω| + ωγ ) ||Ṽ k − Ṽ k−1||∞.
Note that γ < 1 as αn+1

i, j (ϕ), β
n+1
i, j (ϕ), cn+1

i, j (ϕ) and λ j are
all non-negative. Therefore, the weighted relaxation scheme
converges if 0 < ω < 2/(1+ γ ). �

By a similar argument, it can be shown that the relaxation
schemes (55) and (54) are globally convergent. We omit the
proof here.

4.2. Interpolation

We use the HJB system (49) resulting from American options
under regime switching as an example to explain the inter-
polation and restriction operators, but they work well for the
Bertrand duopoly (48) and the unequal lending/borrowing (50)
cases as demonstrated in the numerical results.

Consider a two grid method. Given {Sh
i }, i = 0, 1, . . . , N −

1, the grid points with even indices are selected as coarse grid
points, i.e. {SH

i }, i = 0, 2, . . . , N − 1. Given the coarse grid
solution Ṽ n,H

i, j , i = 0, 2, . . . , N −1, we want to interpolate the
solution on Sh

i , i = 0, 1, . . . , N − 1 for all j = 1, 2, . . . , Nm .
Let the interpolated solution be denoted by V̂ n,h .

For the example problem (49), the solution after interpola-
tion must satisfy theAmerican constraint V̂ n,h ≥ V ∗. Consider
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figure 2, where Ṽ n,H
i−1, j and Ṽ n,H

i+1, j denoted by black circles are
solutions from the coarse grid at SH

i−1 and SH
i+1, respectively.

Suppose the payoff function is a hat function as shown in figure
2. If linear interpolation is used for the noncoarse grid point
Sh

i , then the solution V̂ n,h
i, j , denoted by the white circle, lies

below the payoff function. It is clear from this example that
standard linear interpolation fails to capture the optimal control
and hence the correct solution. In the following sections, we
present two novel interpolation techniques which address this
issue.

4.2.1. Direct interpolation of the solution. We propose a
new interpolation technique which is derived from the relax-
ation scheme and hence we can ensure that the optimal control
is accurately captured. We first copy the coarse grid solution to
the fine grid points which coincide with the coarse grid points,
i.e.

V̂ n,h
i, j = Ṽ n,H

i, j , i=0, 2, . . . , N − 1, j=1, 2, . . . , Nm .(57)

For the noncoarse grid points, i = 1, 3, . . . , N − 2, j =
1, 2, . . . , Nm we interpolate V̂ n,h

i, j using one iteration of the
relaxation scheme (53). We rewrite it here for convenience:

V̂ n,h
i, j = max

ϕ∈{0,1}

⎧⎨⎩�τ
(
αn+1

i, j (ϕ)V̂
n,h
i−1, j + βn+1

i, j (ϕ)V̂
n,h
i+1, j + dn+1

i, j (ϕ)+ [J h
j V̂ n,h]i, j

)
+ V n,h

i, j

1+�τ
(
αn+1

i, j (ϕ)+ βn+1
i, j (ϕ)+ cn+1

i, j (ϕ)
)

⎫⎬⎭ (58)

where V̂ n,h
i−1, j , V̂ n,h

i+1, j are given by (57). Whenever there is a

switch from regime j to regime m, the term [J h
j V̂ n,h]i, j is

approximated with the values V̂ n,h
im ,m

and V̂ n,h
im+1,m (See (31)). If

im is odd and m > j , then V̂ n,h
im ,m

is an unknown. In such cases,

we use standard linear interpolation to approximate V̂ n,h
im ,m

, i.e.

V̂ n,h
im ,m
= Ṽ n,h

im ,m
+ 0.5

(
en,H

im−1,m + en,H
im+1,m

)
,

where Ṽ n,h
im ,m

is the solution after presmoothing and

en,H
im−1,m = Ṽ n,H

im−1,m − V n,H
im−1,m .

Similar approximation is used when for V̂ n,h
im+1,m when im

is even and m > j . This approximation does not hamper the
convergence of our multigrid method. Since we use the relax-
ation iteration (58), it is guaranteed that the optimal control is
accurately captured. We theoretically prove that the constraint
V̂ n,h ≥ V ∗ is satisfied when (57)–(58) is used and the resulting
multigrid method is monotone in section 5.3. Similarly, for the
HJB system (48) and HJBI system (50), we use their respective
relaxation iterations for interpolation.

Note that this interpolation is different from the standard
interpolation, where the fine grid solution is corrected with the
interpolated coarse grid error. Instead, we directly interpolate
the solution and the interpolation formula depends on the un-
derlying PDE. We also develop another interpolation technique
which is based on the traditional idea of interpolating the coarse
grid error. This approach again depends on the underlying PDE
as detailed in the following section.

4.2.2. Interpolation of the error. Let the exact solution for
time step n+1 be V̄ and the approximate solution after the kth
iteration be V̂ k = V̄ + εk , where εk is the error after the kth
approximation. Using the relaxation scheme (53), we obtain

V̄ k+1
i, j + εk+1

i, j

= max
ϕ∈{0,1}

⎧⎨⎩�τ
[
αn+1

i, j (ϕ)(V̄ k
i−1, j + εk

i−1, j )+ βn+1
i, j (ϕ)(V̄ k

i+1, j + εk
i+1, j )

]
1+�τ

(
αn+1

i, j (ϕ)+ βn+1
i, j (ϕ)+ cn+1

i, j (ϕ)
)

+
�τ
[
dn+1

i, j (ϕ)+ λ j [J h
j (V̄

k + εk )]i, j

]
+ V n

i, j

1+�τ
(
αn+1

i, j (ϕ)+ βn+1
i, j (ϕ)+ cn+1

i, j (ϕ)
)
⎫⎬⎭ . (59)

Let ϕk
i, j = ϕ̄i, j for all i, j , where ϕ̄i, j is the optimal control

of the exact solution V̄i, j . Then (59) reduces to

εk+1
i, j

=
�τ
[
αn+1

i, j (ϕ̄i, j )ε
k
i−1, j + βn+1

i, j (ϕ̄i, j )ε
k
i+1, j + λ j [J h

j ε
k]i, j

]
1+�τ

(
αn+1

i, j (ϕ̄i, j )+ βn+1
i, j (ϕ̄i, j )+ cn+1

i, j (ϕ̄i, j )
) .

(60)

Given the coarse grid error en,H = Ṽ n,H − V n,H , we first
copy the error to the fine grid points that coincide with the
coarse grid points, i.e.

en,h
i, j = en,H

i, j , i = 0, 2, . . . , N − 1, j = 1, 2, . . . , Nm .

For interpolation at noncoarse grid points, Sh
i , i = 1, 3, . . . , N−

2, j = 1, 2, . . . , Nm , we use (60), i.e.

en,h
i, j

=
�τ
[
αn+1

i, j (ϕ̄i, j )e
n,h
i−1, j + βn+1

i, j (ϕ̄i, j )e
n,h
i+1, j + λ j [J h

j en,h]i, j

]
1+�τ

(
αn+1

i, j (ϕ̄i, j )+ βn+1
i, j (ϕ̄i, j )+ cn+1

i, j (ϕ̄i, j )
) .

(61)

A major challenge in using (61) is that the exact solution is
unknown and hence its optimal control ϕ̄ is also unknown.
We address this issue by approximating ϕ̄ using the relax-
ation iteration, i.e. for every noncoarse grid point Sh

i , i =
1, 3, . . . , N − 2, we set ϕ̄i, j to be the optimal control which
maximizes

max
ϕ∈{0,1}⎧⎨⎩�τ

[
αn+1

i, j (ϕ)Ṽ n,H
i−1, j + βn+1

i, j (ϕ)Ṽ n,H
i+1, j + dn+1

i, j (ϕ)+ λ j [J h
j Ṽ n,H ]i, j

]
+ V n,h

i, j

1+�τ
(
αn+1

i, j (ϕi, j )+ βn+1
i, j (ϕi, j )+ cn+1

i, j (ϕi, j )
)

⎫⎬⎭
(62)

The regime switching terms [J h
j Ṽ n,H ]i, j and [J h

j en,h]i, j
are handled as described in section 4.2.1. The fine grid solution
is then updated using the standard procedure as

V̂ n,h
i, j = Ṽ n,h

i, j + en,h
i, j , i = 0, 1, . . . , N − 1, j = 1, 2, . . . , Nm ,

(63)
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Figure 2. Illustration of a scenario where standard linear
interpolation fails to capture the accurate optimal control.

Figure 3. The different possibilities for restriction of control.

Similar derivation applies for interpolation of the error for (12)
and (36) as well. We skip the details here.

4.3. Restriction

In the FAS scheme, we restrict the solution and the residual
from the fine to the coarse grid. For HJB and HJBI problems,
with jumps in the control, the control also needs to be carefully
considered while performing restriction. Given the solution
and its optimal control on the fine grid, we have to perform
restriction such that the optimal control on the coarse grid is
consistent with that on the fine grid. Let the fine grid control be
given by the first plot of figure 3, with a jump in control between
grid points 4 and 5. The coarse grid control may assume one of
the three possible values shown in the last three plots of figure
3 based on the choice of the restriction operator. The coarse
grid controls in the third and fourth plots of figure 3 are off by
one grid point from that of the fine grid. The desired coarse grid
control is the one which is consistent with the fine grid control
as given in the second plot of figure 3. This can be justified by
the FAS coarse grid right hand side F H , which from algorithm
1 is given by

F H = Rr R̃n,h + N H (Rv Ṽ n,h). (64)

Suppose N H (.) is a direct discretization on the coarse grid.
Then N H (Rv Ṽ n,h) depends on the optimal control on the
coarse grid, ϕ∗,H , which is computed from the restricted fine
grid solution, Rv Ṽ n,h . Whereas, the fine grid residual R̃n,h

depends on the optimal control on the fine grid, ϕ∗,h . When
ϕ∗,h �= ϕ∗,H as shown in the third and fourth plots of figure
3, then the two components of F H are inconsistent with each
other, leading to slow convergence of the multigrid method
(Han and Wan 2013). This inconsistency can occur due to
improper choice of the restriction operator and is most visible
near the jumps in control. Hence preserving consistency of
control from the fine to the coarse grid is important.

There are two possible ways to achieve the consistency in
control. One is to choose the restriction operator of the solution
Rv such that the optimal control remains consistent. The other
is to fix the controls on the coarse grid to be consistent with
that on the fine grid and solve a local linear problem to update
the coarse grid solution accordingly. The latter approach was
used by Han and Wan (2013). We choose Rv to be the injection
operator, which in a certain sense is constraint preserving as
given in theorem 4.2.

Theorem 4.2 Let ϕ∗,h and ϕ∗,H be the optimal control on
the fine and coarse grids respectively for problems discretized
using penalty method. Let Rv be an injection operator to
restrict the solution V h, then ϕ∗,H = ϕ∗,h for all the coarse
grid points.

Proof The optimal control for the HJB and HJBI systems in
the penalty form (26) and (34) is determined by

max
ϕ∈{0,1}

[ϕ
ε
(V ∗i − V n

i, j )
]
. (65)

We note that the optimal control at the grid point (Si , τ
n)

depends only on V n
i, j for any regime j . By choosing Rv to

be an injection operator, we have

V n,H
i, j = V n,h

i, j , i = 0, 2, . . . , N − 1; j = 1, 2, . . . , Nm .

(66)

Using (66), the solution at the coarse grid points is unchanged
from that of the fine grid points. Therefore, the optimal control
given by (65) on the coarse grid is consistent with that of the
fine grid, i.e. ϕ∗,H = ϕ∗,h . �

The residual restriction operator Rr can either be a fully
weighted restriction or an injection operator.

5. Theoretical analysis

In this section, we perform LFA to analyse the smoothing
property of the weighted relaxation scheme and a two grid
Fourier analysis to analyse the convergence behavior of the
multigrid method. We also prove that the multigrid method
using direct interpolation of the solution is monotone.

5.1. Smoothing analysis

We perform LFA for the weighted relaxation scheme to de-
termine its efficiency as a smoother. LFA is a popular tool
for the quantitative analysis of multigrid methods (Trottenberg
et al., 2001). It is applied on linear discrete operators with
constant coefficients, which are obtained by locally linearizing
the nonlinear discrete operators with non-constant coefficients.
LFA is based on grid functions of the form ψ(θ, x) = eiθx/h ,
where i = √−1.
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We present a detailed smoothing analysis of the weighted
relaxation scheme (54) for the HJB system resulting from
American options under regime switching. We transform (26)
into the log domain for simplicity of the analysis, which is a
common practice in option pricing literature. Using X = log S,
we rewrite (26) in the log domain as

Vj,τ = max
ϕ∈{0,1}

{
σ 2

j

2
Vj,X X +

(
r − ρ j −

σ 2
j

2

)

× Vj,X − (r + λ j + ϕ
ε
)Vj + ϕ V ∗

ε
+ λ jJ X

j V

}
,

where

J X
j V =

∑
m �= j

λ jm

λ j
Vm(ξ jmeX , τ ).

The coefficients for (27) in the log domain are given by

a j (τ, ϕ) =
σ 2

j

2
, b j (τ, ϕ) = r − ρ j −

σ 2
j

2
,

c j (τ, ϕ) = r + λ j + ϕ
ε
, d j (τ, ϕ) = V ∗

ε
. (67)

We note that the coefficients on the log grid are independent
of X , which is a desirable property for LFA.

Let V̄ be the exact solution for time step n + 1 and let the
approximate solution after the kth smoothing iteration be Ṽ k =
V̄ + εk , where εk is the error after the kth iteration. Since
LFA is applied on linear operators, we will assume the optimal
control for every grid point will not change from iteration to
iteration. Let ϕ̄l be the optimal control corresponding to the
exact solution V̄ . Let ϕk

l = ϕ̄l be the optimal control for Ṽ k
l

and let α∗l = αn+1
l (ϕk

l ), β
∗
l = βn+1

l (ϕk
l ), c∗l = cn+1

l (ϕk
l ) and

κ∗l = α∗l + β∗l + c∗l . Then using (53), we obtain the error
equation as

εk+1 = Sk · εk,

where Sk is an N Nm×N Nm matrix. For l = ( j−1)N+i, i =
0, 1, . . . N − 1, j = 1, 2, . . . , Nm and lm = (m − 1)N +
im, m = 1, 2, . . . , Nm, m �= j , the elements of Sk are given
by

Sk
l,l−1 =

�τα∗l
1+�τκ∗l

, Sk
l,l+1 =

�τβ∗l
1+�τκ∗l

,

Sk
l,lm =

�τwmλ
∗
jm

1+�τκ∗l
, Sk

l,lm+1 =
�τ(1− wm)λ

∗
jm

1+�τκ∗l
, (68)

Sk
l,l ′ = 0, l ′ �= l − 1, l + 1, lm, lm + 1.

Using (68), we obtain the symbol of the smoothing operator
for the relaxation scheme (53) as

S̃k
l (θ) =

�τ

[
α∗l e−iθ + β∗l eiθ + ∑

m �= j
λ∗jm

(
wmei(lm−l)θ + (1− wm)ei(lm−l+1)θ

)]
1+�τκ∗l

.

Since we use the weighted relaxation scheme (54) for
smoothing, the symbol of its smoothing operator is given by

S̃k
l (θ, ω) = (1− ω)

+ ω
�τ

[
α∗l e−iθ + β∗l eiθ + ∑

m �= j
λ∗jm

(
wm ei(lm−l)θ + (1− wm)ei(lm−l+1)θ

)]
1+�τκ∗l

(69)

We are interested in the smoothing effect, i.e. the reduction
of high frequency error components. Hence, the smoothing
factor μ(Sk

l ) is defined as

μ(Sk
l ) = sup

{
|S̃k

l (θ, ω)| : θ ∈ [−π, π) \
[
−π

2
,
π

2

)}
.

Since generating a useful analytical expression for μ(Sk
l ) is

very complicated, we consider specific frequency values and
analyse the behavior of the smoother. In addition, we demon-
strate the efficiency of the smoother for the entire frequency
range by plotting |S̃k

l (θ, ω)| for θ ∈ [−π, π) and different ω.
Consider a high frequency point θ = −π . We note that

lm− l is an integer. We then have cos(zθ) = −1 if z is odd and
cos(zθ) = 1 if z is even and sin(zθ) = 0 for all z. Using these
values in (69), we have

S̃k
l (θ, ω)

=
(1− ω)[1+�τκ∗l ] + ω�τ

[
−(α∗l + β∗l )+

∑
m �= j

λ∗jmwm

]
1+�τκ∗l

,

(70)

where

w∗m =
{

2wm − 1 if lm − liseven,
1− 2wm if lm − lisodd,

with |w∗m | ≤ 1 since wm ∈ [0, 1]. Adding and subtracting
ω�τc∗l from the numerator of (70), we get

S̃k
l (θ, ω)

=
(1− ω)[1+�τκ∗l ] + ω�τ

[
− (α∗l + β∗l + c∗l

)+ c∗l +
∑

m �= j
λ jmw

∗
m

]
1+�τκ∗l

=
(1− ω)[1+�τκ∗l ] + ω�τ

[
−κ∗l + c∗l +

∑
m �= j

λ jmw
∗
m

]
1+�τκ∗l

=
(1− 2ω)[1+�τκ∗l ] + ω + ω�τ

[
c∗l +

∑
m �= j

λ jmw
∗
m

]
1+�τκ∗l

= (1− 2ω)+
ω

[
1+�τ

(
c∗l +

∑
m �= j

λ jmw
∗
m

)]
1+�τκ∗l

(71)
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Using (B10), (B11) and (67) in (71), we have

S̃k
l (θ, ω) = (1− 2ω)

+
ω

[
1+�τ

(
r + λ j + ϕk

l
ε
+ ∑

m �= j
λ jmw

∗
m

)]

1+�τ
(

2σ 2
j

h2 + r + λ j + ϕk
l
ε

) . (72)

We consider a three regime model with the following parame-
ters:

r = 0.02, �τ = 10−3, ε = 10−4�τ,

σ =
⎡⎣ 0.2

0.15
0.3

⎤⎦ , λ =
⎡⎣−3.2 0.2 3.0

1.0 −1.08 0.08
3.0 0.2 −3.2

⎤⎦ ,
ξ =

⎡⎣ 1.0 0.9 1.1
1.2 1.0 1.3
0.95 0.8 1.0

⎤⎦ . (73)

As h → 0 and for the parameters given in (73), equation (72)
reduces to S̃k

l (θ, ω) = 1 − 2ω. For convergence, we should
have |S̃k

l (θ, ω)| < 1, which is satisfied when ω ∈ (0, 1). The
smoothing factor is minimized when ω = 0.5. Similarly, for
low and medium frequency components, |S̃k

l (θ, ω)| < 1 when
ω ∈ (0, 2). Optimal smoothing is obtained with the ω which
satisfies

min
ω

sup
θ

{
|S̃k

l (θ, ω)| : θ ∈ [−π, π)\
[
−π

2
,
π

2

)}
.

Since analytically evaluating this expression is very compli-
cated, we numerically determine the optimal ω by plotting
|S̃k

l (θ, ω)| against θ for different ω ∈ (0, 1] and for different
grid sizes as h → 0. Figure 4(a) shows the smoothing factor
when ϕ = 0 and h = 0.0125 and for different ω ∈ (0, 1].
The relaxation scheme is convergent for the entire frequency
range. Furthermore, ω = 0.67 and 0.8 have small smoothing
factors for the high frequency range. We now analyse the
smoothing property for ω = 0.5, 0.67 and 0.8 as h → 0. We
are interested in ω = 0.5 as it minimizes the smoothing factor
at θ = ±π as h → 0. Figure 4(b)–(d) shows the smoothing
factors for ω = 0.5, 0.67 and 0.8, respectively. Among the
different choices,ω = 0.67 has small smoothing factor, i.e. for
all θ ∈ [−π, π)\[−π2 , π2 ) and different h, |S̃k

l (θ, 0.67)| ≤ 1/3.
The smoothing factor has the same upper bound withω = 0.67
for ϕ = 1 as well. Therefore, we use ω = 0.67 as the damping
parameter.

Similar results are obtained for the weighted relaxation
schemes for the dynamic Bertrand oligopoly and the HJBI
systems. Therefore, we use ω = 0.67 for all model problems.

5.2. Two-grid analysis

We apply LFAto the two grid operator to study the convergence
properties of the multigrid method. An analysis of the two grid
method in general provides sufficient insight into the behavior
of multigrid methods. Let εk be the error after the kth two grid
iteration, then

εk+1 = M H
h ε

k,

where M H
h is the two grid operator,

M H
h = Sh,ν1 K H

h Sh,ν2 ,

where Sh is the smoothing operator and ν1 and ν2 are the
number of pre and post smoothing iterations, respectively. K H

h
is the coarse grid correction operator given by

K H
h = I h − P(L H )−1RLh,

where I h is an identity matrix, Lh is the fine grid discrete
operator, L H is the coarse grid operator, P and R are the
interpolation and restriction operators. The spectral radius of
M H

h gives an indication of the asymptotic rate of multigrid
convergence. The convergence factors of M H

h are computed
by analyzing how the operators Sh , Lh , R, L H and P act on
the Fourier components ψ(θ, x) = eiθx/h . Let xh = {ih, i ∈
Z} be the infinite fine grid and x H = {i H, i ∈ Z} be the
corresponding coarse grid with H = 2h.

The Fourier space Eh = span{eiθx/h : θ ∈ (−π, π ]} con-
tains any infinite grid function on xh (Trottenberg et al. 2001).
The current approximation V k,h and the error εk,h can be rep-
resented as linear combinations of the basis functions eiθx/h ∈
Eh . We note that Eh can be divided into two dimensional
subspaces, also called the harmonics:

Eθ,h = span
[
ψ(θγ , x) : γ ∈ {0, 1}] , x ∈ xh,

where

θ0 ∈ (−π/2, π/2] , θ1 = θ0 − sign
(
θ0
)
π.

For an arbitrary θ ∈ (−π/2, π/2]\{θ : L̂ H (2θ0) = 0}, Eθ,h

is invariant under the coarse grid correction operator K H
h and

the smoother,

K H
h : Eθ,h → Eθ,h, Sh : Eθ,h → Eθ,h .

Hence M H
h is orthogonally equivalent to a 2× 2 block matrix

given by

M̂ H
h (θ, ω) = Ŝh,ν2 (θ, ω) K̂ H

h (θ) Ŝh,ν1 (θ, ω) , (74)

where

K̂ H
h (θ) = I h − P̂ (θ)

(
L̂ H (2θ)

)−1 R̂ (θ) L̂h (θ) ,

where L̂h , R̂, L̂ H , P̂ and Ŝh are matrices built with the Fourier
symbols of their respective multigrid operators. We present
these matrices for the case of American options under regime
switching (32).

5.2.1. Discrete fine grid operator L̂h(θ). L̂h(θ) is a 2× 2
matrix given by

L̂h (θ) =
(

L̃h
(
θ0
)

L̃h
(
θ1
)) ,

where

L̃h (θγ ) = −�τα∗,hl e−iθγ +
(

1+�τκ∗,hl

)
−�τβ∗,hl eiθγ

−�τ
∑
m �= j

λ jm

(
wmei(lm−l)θγ + (1− wm)e

i(lm−l+1)θγ
)

(75)

5.2.2. Restriction operator R̂(θ). The restriction operator
is denoted by the following 1× 2 matrix

R̂ (θ) = [R̃ (θ0
) R̃ (θ1

)]
. (76)
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(a) (b)

(d)(c)

Figure 4. Smoothing factor for (54) with ϕ = 0. (a) h = 0.0125 and ω ∈ (0, 1], (b) ω = 0.5, (c) ω = 0.67, (d) ω = 0.8.

For injection the Fourier symbols R̃(θγ ) for all frequencies
are 1.

5.2.3. Interpolation operator P̂ . The interpolation matrix
is in general given by

P̂ (θ) =
(P̃ (θ0

)
P̃ (θ1

)) = 1

2

(
1+ δ
1− δ

)
where for (32), we have

δ =
�τ
[
α
∗,h
l e−iθ0 + β∗,hl eiθ0 +∑m �= j

(
wmei(lm−l)θ0 + (1− wm)ei(lm−l+1)θ0

)]
1+�τκ∗,hl

. (77)

5.2.4. Smoothing operator Ŝh . The smoothing operator is
a 2× 2 matrix,

Ŝh (θ, ω) =
(

S̃h
(
θ0, ω

)
S̃h
(
θ1, ω

)) ,
where S̃h is given by (69).

5.2.5. Coarse grid discrete operator L̂ H (2θ). L̂ H (2θ) is
a 1× 1 matrix whose symbol is given by

L̃ H (2θ)

= −�τα∗,Hl e−i2θ +
(

1+�τκ∗,Hl

)
−�τβ∗,Hl ei2θ

−�τ
∑
m �= j

λ jm

(
wmei(lm−l)2θ + (1− wm)e

i(lm−l+1)2θ
)
.

(78)

We then construct M̂ H
h (θ) using (69), (75), (76), (77) and (78).

We can now determine the spectral radius of M H
h by calculating

the spectral radius of M̂ H
h (θ):

ρ
(

M H
h

)
= max
θ∈(−π/2,π/2]

ρ
(

M̂ H
h (θ)

)
.

We recall that Fourier analysis is exact only for linear operators
with constant (or frozen) coefficients (Trottenberg et al. 2001).
Therefore, we fix the parameters as given in (73) and ϕ = 0.
Figure 5(a) shows the plot of ρ(M̂ H

h (θ)) against θ for different

h for the HJB system (32). As h→ 0, ρ
(
M H

h

)→ 0.12, which
is a very satisfactory convergence rate. Figure 5(b) shows
the convergence rates for HJBI systems. Similar results are
observed for ϕ = 1, the details are omitted here.

5.3. Monotonicity

Monotonicity properties often result in smooth and fast con-
vergence of the multigrid solution (Amarala and Wan 2013). In
this section, we present detailed analysis of the monotonicity
property for the HJB system resulting from American options
under regime switching (25). We note that (25) can also be
formally stated in a linear complementarity form:

Vj,τ − L j V j − λ jJ j V ≥ 0,

Vj − V ∗ ≥ 0, (79)(
Vj,τ − L j V j − λ jJ j V

) (
Vj − V ∗

) = 0.
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(a) (b)

Figure 5. Convergence rate of the two-grid algorithm for different grid sizes and ϕ = 0. (a) HJB system and (b) HJBI system.

Table 1. Multigrid convergence for the HJB system (12).

N1 × N2 65 × 65 129 × 129 257 × 257 513 × 513 1025 × 1025

γ = 0.1 3 3 4 5 9
γ = 0.5 3 3 4 6 9

We use the linear complementarity formulation to define the
monotonicity property.

Definition 7 (Holtz and Kunoth 2007) A multigrid method
for the linear complimentary problem (79) is monotone if, as
ε → 0, the interpolated fine grid solution V̂ n,h satisfies the
constraint

V̂ n,h − V ∗,h ≥ 0. (80)

Theorem 5.1 The multigrid method using direct interpola-
tion for the solution for the HJB system (32) is monotone as
ε → 0.

Proof Given V n,h , let V̂ n,h be the solution after interpolation,
which is given by (57) and (58). The updated coarse grid
solution Ṽ n,H

i, j is obtained by solving the following coarse grid
problem:

Ṽ n,H
i, j − �τ

[
α

n,H
i, j Ṽ n,H

i−1, j + βn,H
i, j Ṽ n,H

i+1, j

−
(
α

n,H
i, j + βn,H

i, j + cn,H
i, j

)
+ λ j

[
J H

j Ṽ n,H
]

i, j

+ max
ϕ∈{0,1}

(
ϕ

n,H
i, j

ε

(
V ∗,Hi, j − Ṽ n,H

i, j

))]
= Fn,H

i, j , i = 0, 2, . . . , N − 3, (81)

where Fn,H
i, j is the coarse grid right hand side (See algorithm

1) and V ∗,Hi, j is the payoff function on the coarse grid, which is
given by

V ∗,Hi, j = V ∗,hi, j , i = 0, 2, . . . , N − 3. (82)

Suppose we use relaxation scheme to solve the coarse grid
problem. Let (Ṽ n,H )0 = V n,H , then the relaxation iteration
for (81) is given by

(
Ṽ n,H

i, j

)k+1 = max
ϕ∈{0,1}

⎡⎢⎢⎣�τ
(
α

n,H
i, j

(
Ṽ n,H

i−1, j

)k + βn,H
i, j

(
Ṽ n,H

i+1, j

)k + dn,H
i, j +

[
J H

j

(
Ṽ n,H

)k]
i, j

)
+ Fn,H

i, j

1+�τ
(
α

n,H
i, j + βn,H

i, j + cn,H
i, j

)
⎤⎥⎥⎦ (83)

i = 0, 2, . . . , N − 3; j = 1, 2, . . . , Nm; k = 0, 1, . . . , until convergence.

Using cn,H
i, j and dn,H

i, j from (28) in (83), we obtain

(
Ṽ n,H

i, j

)k+1 = max

⎡⎢⎢⎣�τ
(
α

n,H
i, j

(
Ṽ n,H

i−1, j

)k + βn,H
i, j

(
Ṽ n,H

i+1, j

)k +
[
J H

j

(
Ṽ n,H

)k]
i, j

)
+ Fn,H

i, j

1+�τ
(
α

n,H
i + βn,H

i + r + λ j

) ,

�τ

(
α

n,H
i, j

(
Ṽ n,H

i−1, j

)k + βn,H
i, j

(
Ṽ n,H

i+1, j

)k + 1
ε

V ∗,Hi, j +
[
J H

j

(
Ṽ n,H

)k]
i, j

)
+ Fn,H

i, j

1+�τ
(
α

n,H
i, j + βn,H

i, j + r + λ j + 1
ε

)
⎤⎥⎥⎦
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As ε → 0, we have

(
Ṽ n,H

i, j

)k+1 = max

⎡⎢⎢⎣�τ
(
α

n,H
i, j

(
Ṽ n,H

i−1, j

)k + βn,H
i, j

(
Ṽ n,H

i+1, j

)k +
[
J H

j

(
Ṽ n,H

)k]
i, j

)
+ Fn,H

i, j

1+�τ
(
α

n,H
i + βn,H

i + r + λ j

) , V ∗,Hi, j

⎤⎥⎥⎦ (84)

From (84), it is clear that(
Ṽ n,H

i, j

)k+1 ≥ V ∗,Hi, j , i = 0, 2, . . . , N − 3 (85)

for any k. From (57), (82) and (85), we have

V̂ n,h
i, j ≥ V ∗,hi, j , i = 0, 2, . . . , N − 3. (86)

For the noncoarse grid points, the interpolated fine grid solution
is given by (58), which as ε → 0 becomes:

V̂ n,h
i, j = max

⎡⎢⎢⎣�τ
(
α

n,h
i, j V̂ n,h

i−1, j + βn,h
i, j V̂ n,h

i+1, j +
[
J h

j V̂ n,h
]

i, j

)
+ V n,h

i, j

1+�τ
(
α

n,h
i, j + βn,h

i, j + r + λ j

) , V ∗,hi, j

⎤⎥⎥⎦ , i = 1, 3, . . . , N − 2,

which results in

V̂ n,h
i, j ≥ V ∗,hi, j , i = 1, 3, . . . , N − 2. (87)

From (86), (87) and definition 7, the two grid method us-
ing direct interpolation for the solution is monotone. Using
induction, we can prove that a L-grid method (L ≥ 2) is
monotone. �

6. Numerical results

We test our multigrid method with two pre and post-smoothing
steps on the model problems presented in section 2. We present
the results using direct interpolation of the solution (58). The
convergence using interpolation of the error (63) is very similar
and hence we omit the details here.

Example 6.1 2D HJB System: Dynamic Bertrand Duopoly
(12).

We use the parameters T = 0.25, r = 1, σ1 = σ2 =
0.6, ρ = 0.1, γ = 0.1, κ = 6, η = 1, �τ = 0.025 and
a convergence tolerance of 10−6. The two dimensional grid
is coarsened using the multiple coarsening strategy (Amarala
and Wan 2013). We use multiple grids such that the coarsest
grid has 17× 17 grid points. Since the convergence is similar
in each time step, we only show the convergence results for
the very first time step in table 1. The relaxation scheme alone
takes 877 iterations for the grid size of 1025× 1025, whereas
our multigrid method converges in only 9 iterations.

Example 6.2 HJB System: American Options under Regime
Switching (32).

We consider a three regime model for evaluating the multi-
grid method. The transition probabilities λ, jump amplitudes
ξ and the volatilities are given in (88). The other parameters
are given in table 2. We consider American options with three
different payoffs: put, straddle and butterfly. Numerical tests

are performed on a uniform log grid. Multiple grids are used for

different grid sizes such that the coarsest grid had only 9 grid
points. The convergence results for the very first timestep for
different grid sizes are given in table 3. The multigrid method
converges in a very small number of iterations irrespective of
the grid size.

λ=
⎡⎣−3.2 0.2 3.0

1.0 −1.08 0.08
3.0 0.2 −3.2

⎤⎦ ; ξ =
⎡⎣ 1.0 0.9 1.1

1.2 1.0 1.3
0.95 0.8 1.0

⎤⎦ ; σ =
⎡⎣ 0.2

0.15
0.3

⎤⎦ .(88)

Example 6.3 HJBI System: American Option and Stock Borrowing
Fees (36).

We use the parameters given in table 2 and (88) for the HJBI
systems under a three regime model. The borrowing rate rb = 0.05,
lending rate rl = 0.03 and the stock borrowing fee r f = 0.004.
The convergence results for different initial conditions are given in
table 4. Similar to the case of HJB systems, the multigrid method
for HJBI system also converges in a very small number of iterations
independent of the grid size.

Table 2. Parameters used for American options.

Expiry time, T 0.5
Exercise American
Strike, K 100
Butterfly parameters, K1, K2 90, 110
Risk free interest rate, r 0.02
Time step, �τ 10−3

Penalty parameter, ε 10−4�τ

Convergence tolerance 10−6

Table 3. Multigrid convergence for the HJB system (32).

N 65 129 257 513 1025 2049

Put 2 3 3 3 3 4
Straddle 3 3 3 3 3 4
Butterfly 3 3 3 3 3 5

Table 4. Multigrid convergence for the HJBI system (36).

N 65 129 257 513 1025 2049

Put 2 3 3 3 3 4
Straddle 3 3 3 3 3 4
Butterfly 3 3 3 3 4 5
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7. Conclusion

We constructed fully implicit, consistent, unconditionally l∞ sta-
ble and monotone discretization schemes that converge to the vis-
cosity solution for the HJB PDE resulting from dynamic Bertrand
monopoly and the two-dimensional systems of nonlinear HJB PDEs
from duopoly. We developed multigrid methods for discrete systems
of nonlinear HJB and HJBI PDEs associated with dynamic Bertrand
duopoly and regime switching applications. A weighted relaxation
scheme is used as the smoother. We show that the smoother is con-
vergent for both HJB and HJBI systems, in contrast to policy iteration
which may not converge for HJBI problems. A smoothing analysis
shows that the weighted relaxation scheme with ω = 0.67 effectively
damps the high frequency error components. We choose injection for
restriction, which preserves the consistency of the control from the
fine to the coarse grids. We introduce new interpolation techniques
which efficiently capture the optimal control in the presence of jumps.
We analyze the convergence behavior of the multigrid method through
a two grid Fourier analysis, which gives a convergence factor as low
as 0.12 as h → 0. Numerical tests on practical examples show that
the multigrid method converges in a very small number of iterations
irrespective of the grid size.
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Appendix 1. Dynamic Bertrand oligopoly

A.1. Monopoly problem: discrete equation coefficients

The discrete coefficientsαi andβi for (6) are presented here. Standard
central differencing for all derivatives of (4) results in

αcent
i = σ 2

2�x2
− κ − p

2η�x
,

βcent
i = σ 2

2�x2
+ κ − p

2η�x
.

Using upstream differencing for first order terms and central for
second order terms, we have

α
ups
i = σ 2

2�x2
+max

{
0,−κ − p

2η�x

}
,

β
ups
i = σ 2

2�x2
+max

{
0,
κ − p

2η�x

}
.

A combination of central and upstream differencing is then chosen
according to algorithm 2 on a node by node basis.

Algorithm 2 Differencing method for monopoly problem
if αcent

i ≥ 0 and βcent
i ≥ 0 then

αi ← αcent
i

βi ← βcent
i

else

αi ← α
ups
i

βi ← β
ups
i

end if

A.2. Duopoly problem: discrete equation coefficients

The coefficients of the discrete equations (12) are given here. Using
standard central differencing for the first and second order derivatives,
we have for player 1,

(α1)
x1,cent
i, j = σ 2

1

2�x2
1

+ a1 − a2 p1 + a3(p∗2)i, j

2�x1

(β1)
x1,cent
i, j = σ 2

1

2�x2
1

− a1 − a2 p1 + a3(p∗2)i, j

2�x1

(α1)
x2,cent
i, j = σ 2

2

2�x2
2

− 1

2�x2

(
γ

η

(
a1 − a2 p1 + a3(p∗2)i, j

)
−κ − (p∗2)i, j

η

)
(β1)

x2,cent
i, j = σ 2

2

2�x2
2

+ 1

2�x2

(
γ

η

(
a1 − a2 p1 + a3(p∗2)i, j

)
−κ − (p∗2)i, j

η

)
Similarly for player 2, we have

(α2)
x1,cent
i, j = σ 2

1

2�x2
1

− 1

2�x1

(
γ

η

(
a1 − a2 p2 + a3(p∗1)i, j

)
−κ − (p∗1)i, j

η

)
(β2)

x1,cent
i, j = σ 2

1

2�x2
1

+ 1

2�x1

(
γ

η

(
a1 − a2 p2 + a3(p∗1)i, j

)

−κ − (p∗1)i, j

η

)
(α2)

x2,cent
i, j = σ 2

2

2�x2
2

+ a1 − a2 p2 + a3(p∗1)i, j

2�x2

(β2)
x2,cent
i, j = σ 2

2

2�x2
2

− a1 − a2 p2 + a3(p∗1)i, j

2�x2

Using upstream for first order derivatives and central for second order
derivatives results in

(α1)
x1,ups
i, j = σ 2

1

2�x2
1

+max

{
0,

(
a1 − a2 p1 + a3(p∗2)i, j

)
�x1

}
(A1)

(β1)
x1,ups
i, j = σ 2

1

2�x2
1

+max

{
0,−

(
a1 − a2 p1 + a3(p∗2)i, j

)
�x1

}
(A2)

(α1)
x2,ups
i, j = σ 2

2

2�x2
2

+max

{
0,− 1

�x2

(
γ

η

(
a1 − a2 p1 + a3(p∗2)i, j

)
−κ − (p∗2)i, j

η

)}
(A3)

(β1)
x2,ups
i, j = σ 2

2

2�x2
2

+max

{
0,

1

�x2

(
γ

η

(
a1 − a2 p1 + a3(p∗2)i, j

)
−κ − (p∗2)i, j

η

)}
(A4)

(α2)
x1,ups
i, j = σ 2

1

2�x2
1

+max

{
0,− 1

�x1

(
γ

η

(
a1 − a2 p2 + a3(p∗1)i, j

)
−κ − (p∗1)i, j

η

)}
(A5)

(β2)
x1,ups
i, j = σ 2

1

2�x2
1

+max

{
0,

1

�x1

(
γ

η

(
a1 − a2 p2 + a3(p∗1)i, j

)
−κ − (p∗1)i, j

η

)}
(A6)

(α2)
x2,ups
i, j = σ 2

2

2�x2
2

+max

{
0,

(
a1 − a2 p2 + a3(p∗1)i, j

)
�x2

}
(A7)

(β2)
x2,ups
i, j = σ 2

2

2�x2
2

+max

{
0,−

(
a1 − a2 p2 + a3(p∗1)i, j

)
�x2

}
.

(A8)

The coefficient due to the cross derivative term for both the players
is given by

ξi, j =
{

ρσ1σ2
�x1�x2

, if ρ ≥ 0
−ρσ1σ2
�x1�x2

, if ρ < 0
(A9)

A combination of central and upstream differencing is then chosen
according to algorithm 3.

Algorithm 3 Differencing in the xk , k = 1, 2 and for each
player l = 1, 2.

if (αl )
xk ,cent
i, j − ξi, j ≥ 0 then

(αl )
xk
i, j ← (αl )

xk ,cent
i, j

(βl )
xk
i, j ← (βl )

xk ,cent
i, j

else

(αl )
xk
i, j ← (αl )

xk ,ups
i, j

(βl )
xk
i, j ← (βl )

xk ,ups
i, j

end if
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Appendix 2. American option under regime switching:
discrete equation coefficients

The coefficients of the discrete equations (29) and (36) are given
here. Using standard three point stencil and central differencing for
the first and second order derivatives, we have

αcent
i, j =

2ai, j (S, τ, ϕ)(
Si − Si−1

) (
Si+1 − Si−1

) − bi, j (S, τ, ϕ)(
Si+1 − Si−1

) , (B10)

βcent
i, j =

2ai, j (S, τ, ϕ)(
Si+1 − Si

) (
Si+1 − Si−1

) + bi, j (S, τ, ϕ)(
Si+1 − Si−1

) .(B11)

Using upstream (forward/backward) differencing for the first order
derivative and central differencing for the second order derivative, we
have

α
ups
i, j =

2ai, j (S, τ, ϕ)(
Si − Si−1

) (
Si+1 − Si−1

)
+ max

{
0,− bi, j (S, τ, ϕ)(

Si+1 − Si−1
)} , (B12)

β
ups
i, j =

2ai, j (S, τ, ϕ)(
Si+1 − Si

) (
Si+1 − Si−1

)
+ max

{
0,

bi, j (S, τ, ϕ)(
Si+1 − Si−1

)} . (B13)

A weighted average of central and upstream differencing is used
on a node by node basis such that a positive coefficient discretization
is obtained as detailed in algorithm 4.

Algorithm 4 Differencing method.
for i = 1, 2, . . . do

ω = 1
if αcent

i, j < 0 then

ω = α
ups
i, j

α
ups
i, j −αcent

i, j

else

if βcent
i, j < 0 then

ω = β
ups
i, j

β
ups
i, j −βcent

i, j

end if

end if
αi, j = ωαcent

i, j + (1− ω)αups
i, j

βi, j = ωβcent
i, j + (1− ω)βups

i, j

end for
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