
Model transformation testing: oracle issue
Presented by Philip Mitchell

Jean-Marie Mottu1 Benoit Baudry1 Yves Le Traon2

IRISA
Campus Universitaire de Beaulieu

35042 Rennes Cedex, France
{jmottu, bbaudry}@irisa.fr

TELECOM Bretagne
2 rue de la Chtaigneraie CS 17607

35576 Cesson Svign, France
yves.letraon@telecom-bretagne.eu

March 26, 2012

1 / 29



Outline

Outline

Motivation

Model transformation and testing

Oracle issue

Illustration

Findings

Discussion

2 / 29



Motivation

Model transformations

I Used for model-driven development (MDD)
I Automate critical operations:

I refinement
I code generation
I refactoring

3 / 29



Motivation

Verifying model transformations

I Need to verify correctness of transformation

I Two main concerns when choosing test cases:

test data a set of inputs to the model transformation that will
exercise as many code paths as possible

oracle function a function that analyzes the validity of models
produced by the model transformation

I We will focus on defining the oracle function

4 / 29



Motivation

Defining an oracle function

I Model transformations produce models that conform to a metamodel

I Models resulting from a transformation can be very complex

I Need to definitively determine whether the resulting model from a
test transformation is correct

I This generally requires at least some feedback from the tester

5 / 29



Model transformation and testing

Model transformation

Figure 1: General framework for model transformation T

6 / 29



Model transformation and testing

Model transformation

I Given an input model conforming to the source metamodel with
constraints

I Produce an output model conforming to the target metamodel with
expected properties

I Illustrative example used throughout this presentation:
I transform a class model to an RDBMS model as proposed in the MTIP

workshop
I requires complex operations on the input model, recursivity, navigations

with transitive closure, and several passes
I output model conforms to the RDBMS metamodel

7 / 29



Model transformation and testing

Input model for illustrative example

Figure 2: Input model Mt1

8 / 29



Model transformation and testing

Details of the illustrative example

I Additional constraints apply to the input class model, for example:
I Each class should have at least one primary attribute

I Additional constraints apply to the RDBMS metamodel, for example:
I An RDBMS model cannot contain two tables with the same name

I The transformation rule for T is as follows:

Ru The persistent classes, and only these ones, are
transformed into tables with the same names, except if
they inherit directly or not from another persistent class.

9 / 29



Model transformation and testing

Output model for illustrative example

Figure 3: Output model from T (Mt1)

10 / 29



Model transformation and testing

Output RDBMS metamodel for illustrative example

Figure 4: Output RDBMS metamodel

11 / 29



Model transformation and testing

Testing the transformation

I Need to define and create test data, i.e. build class models with
various properties, e.g.:

I with(out) inheritance
I with one persistent class
I with multiple persistent classes
I etc...

I Need to define an oracle that validates that the produced table is
correct for each input test data, e.g.:

I only 1 persistent class A in the input gives exactly 1 table called A in
the output model

I The oracle needs to manipulate the two models and check properties

I The expected properties need to be determined for each test case

12 / 29



Oracle issue

Validate the output models

I Checks the validity of the output model returned by the
transformation of one test model

I Often this is considered to be a model comparison problem (i.e.
expected outputs are known)

I Producing expected outputs for all test cases can be difficult and
error-prone

I The oracle can be considered as a parameterized function with
parameters as follows:

1. The output model returned by the transformation
2. “Oracle data” provided by the tester. e.g. the expected model or the

input test model

13 / 29



Oracle issue

Types of oracle functions

Model comparison Output model is compared directly to an expected
output model.

Contracts Pre- and post-conditions are applied to the models before
and after the transformation.

Pattern matching Look for the presence of specific patterns within the
model, either using OCL assertions or model snippets.

14 / 29



Oracle issue

Specific oracle functions
Model comparison

reference model transformation Compare the output model with one from
a reference model transformation. The tester to provide the
reference model transformation.

inverse transformation Compare input model with the result of applying
the transformation followed by the inverse transformation.
The tester must provide an inverse transformation that is
guaranteed to produce the same model, which may not exist.

expected output model Compare the output model with an expected
output model. The tester must provide the expected output
model.

15 / 29



Oracle issue

Specific oracle functions
Rule-based verification

generic contract Verify the output model based on the input model and a
generic contract (constraints that depend on the input
model). The tester must provide the generic contract.

OCL assertion Verify the output model based on an OCL assertion. The
tester must provide the assertion for each input model.

model snippets Verify the output model contains one or more model
snippets. The tester must provide the snippets for each input
model.

16 / 29



Illustration

Transformations

I The transformation rule for T , as described earlier, is as follows:

Ru The persistent classes, and only these ones, are
transformed into tables with the same names, except if
they inherit directly or not from another persistent class.

I For comparison, a second transformation, T ′ is used

I The transformation rule for T ′ is as follows:

Ru′ The persistent classes, and only these ones, are
transformed into tables with the same names.

17 / 29



Illustration

Output models for illustrative example

Figure 5: Output model from T ′(Mt1)

18 / 29



Illustration

Reference model transformation

I Transformation implemented with Kermeta in 113 lines of code with
11 operations

I Reference transformation implemented with Tefkat in 94 lines of
code, 8 patterns, and 5 rules

I Both implementations have similar complexity

I Both implementations have to be maintained as requirements change

I Both implementations may have a steep learning curve

I Maintaining both models is too complex for a tester and must be a
developer task

19 / 29



Illustration

Inverse transformation

I The transformations are not injective

I There is no way to recover class A or C from the output model

I Comparison through inverse transformation is not possible for these
transformations

20 / 29



Illustration

Expected model

I The tester must produce both output models

I Both models are as complex as the input model

I Not possible to simply evolve expected output from T to the
expected output from T ′

I Maintaining both transformations T and T ′ requires twice the effort
as maintaining one transformation

21 / 29



Illustration

Generic contract
Contract for this example

post table correctly created :
result.table.size=inputModel.classifier

.select(cr|cr.oclIsTypeOf(Class))

.select(c|c.oclAsType(Class).is persistent)

.select(cp|not cp.oclAsType(Class).parents
.exists(p | p.is persistent)).size

and //note: the classes have different names
inputModel.classifier

.select(cr|cr.oclIsTypeOf(Class))

.select(c|c.oclAsType(Class).is persistent)

.select(cp|not cp.oclAsType(Class).parents
.exists(p | p.is persistent))

.forAll(csp|result.table
.exists(t |t.name = csp.name))

22 / 29



Illustration

Generic contract

I Contracts can be very complex compared to the textual description of
each rule

I Contracts are relatively simple to evolve

I Complexity in the contracts can be difficult to maintain and may hide
faults in the specification

23 / 29



Illustration

Model snippets
Snippets for this example

Figure 6: Five RDBMS model snippets

o1: (MF1 , 1 , =)
o2: (MF2 , 0 , =), (MF3 , 0 , =)
o3: (MF4 , 0 , =)
o4: (MF5 , 1 , =)

24 / 29



Illustration

Model snippets

I There are 5 model snippets and 4 oracle functions

I o1 validates “The persistent classes are transformed into tables with
the same names”

I o2 validates “and only these ones”

I o3 validates “except if they inherit directly or not from another
persistent class”

I o4 validates ’and only these ones” in a more generic way by checking
the total number of tables produced

I Oracle functions are easy to write, modularize, and adapt to a new
transformation

I For T ′, o3 and o4 each increment cardinality by 1

25 / 29



Illustration

OCL assertions

I Similar in concept to model snippets

I For example, o2 would be written:
result.table.select(t|t.name=A).size()=0 and
result.table.select(t|t.name=C).size()=0

I assertions are slightly less easy to write

I assertions are easy to modularize and adapt to a new transformation

26 / 29



Findings

Considering context

I Context is a significant consideration when choosing an oracle
function

I Context can differ based on

complexity of transformation Very complex transformations make
reference or inverse model transformations difficult to
produce and to maintain.

complexity of output models Very complex output models are
difficult to verify using full model comparison.

number of test models Very large numbers of test models make
overly-specific oracle functions hard to produce and
maintain.

reuse and evolution If the transformation is likely to change over
time, generic oracles such as reference or inverse model
transformations may not be reusable across versions.

27 / 29



Findings

Conclusion

I Motivated the desire to use oracle functions

I Motivated the difficulty of choosing a good oracle function

I Described several types of oracle functions with 6 concrete functions

I Illustrated each concrete oracle function within a single example

I Provided context-based guidance for choosing an oracle function

I Future work: provide strict criteria to measure the strengths and
weaknesses of each oracle function within several contexts

28 / 29



Discussion

Discussion

I How likely do you think it is that an inverse transformation can be
used (i.e. is this really a viable option)?

I How many reference implementations do we have to make before we
convince ourselves that any one of them is correct?

I How can we simplify the creation of a reference implementation?
I Are there any other advantages to creating a reference implementation?

I The paper only makes intuition-based observations within each
context. They admit that they need hard metrics.

I What was the point of the paper if only to give hand-wavey
observations?

I Do you agree with their observations?
I How might they apply metrics within each context?

29 / 29


	Outline
	Motivation
	Model transformation and testing
	Oracle issue
	Illustration
	Findings
	Discussion

