A Systematic Approach to Domain-
Specific Language Design Using UML

By Bran Selic

Presenter
Henry Zaccak, MHI Candidate, HBSc
March 19 2012

* The Author
* Background Information
* The Problem

e The Solution

* Domain Specific Model Languages
 DSML Challenges

Outline Il

* Quick History of UML
* UML 2
* Stereotypes

* Profiles
* Using UML Profiles to Define a DSML
* Conclusion
* Discussion

About Bran Selic (Current)

Adjunct Professor — U. of Toronto (3Y+)
Adjunct Professor — Carleton U. (12Y)
Adjunct Research Scientist—=Simula Research Lab

(2Y)
Director of Advanced Technology — Zeligsoft (3Y)
President / Founder — Malina Software Corp (4Y+)

Source http://www.linkedin.com/pub/bran-selic/0/5b/a4

About Bran Selic (Past)

* Distinguished Engineer — IBM Canada
(Many many years, retired in 2007)

Background

* Increasing knowledge and experience brings
greater domain specialization
* In software engineering, this can be seen in the

development of many programming languages
(Fortran, Cobol, ..etc) built for specific domains
(numerical computing, data processing, statistical
processing..etc.)

Background I

* An essential feature of all these specialized domain
languages concepts is they are rendered as first
order language constructs as opposed to rendered

through a combination of one or more general
constructs
* This greatly eases a programmer’s task as it

enables direct expression of problem-domain
patterns and ideas

The Problem

Although new DSL’s are still being developed, the
vast majority of current software is written in
standard general purpose languages (Java, C++,

CH)
This is due to:

* Lack of support for highly specific languages
(compilers, editors, debuggers, linkers..etc)

The Problem ||

e Supported tools are not well designed, user
friendly

* Little economic incentive for major tool vendors

to invest in specialized languages for a small
community of users

e General purpose programming languages has a
readily available trained user base

The Problem Il

e DSUs lack pre-packed libraries
* Open source software community uses generic
programming languages

* Instead of replying on DSL's many organizations
rely on Domain specific program libraries (written
in general purpose languages).

* Provide a “similar” feel to first order language
e ..but tied to the same programming language

The Problem (Summary)

We want to define an expressive domain
specific language... but we want to keep

the benefits of existing libraries /
HEINEWITLE

The Solution

Use the UML Profile mechanism to define
your “expressive” domain specific modeling
language!

...but your DSL must be conformant to UML
(not in conflict with UML semantics / syntax).

Domain Specific Modeling Languages

* Modeling language design is still an
emerging discipline with few proven
guidelines / patterns

Some theory can be shared with
programming language design but some
challenges are unique

DSML Challenges

* The need to support different levels of
precision: different degree of formality
* The need to represent multiple consistent

views of certain elements of the model
 The graph-like nature of most modeling

languages can’t be easily reduced to linear
text-based representation

DSML Approaches

1. Refinement of an existing more general
modeling language by specializing some of
its general constructs to represent your

domain specific concepts

. Extension of an existing modeling
language by supplementing it with fresh
domain specific constructs

DSML Approaches |

3. Definition of a new modeling language
from scratch!

* The first option seems to be the most
practical and most cost-effective
approach. (Tool reuse!)

Quick History of UML

- State Charts | Harel 1987
(Ada/Booch)
Booch

1990
Booch "91

Methoden-

blite | Booch '93

OOPSLA 95, UM 0.8

1995
Praxisreife 3 o

1997

(UML 0.9)
OMG Akzeptanz Nov. 97

Unified
\ Proces

ISO Akzeptanz Okt. 200
Veroffentlichung Nov

Standar-
disierung

Marz 2003(UML 1.5)

2005

Sprachen-
bllte

RDD OO0SA

Wirfs-Brock Shlaer’Mellor

Fusion

Coleman

(SOMA

{ MOSES
I Henderson-Seifterg

" OPEN/OML RD)

Colemanu.a Open-Group

RUP, OEP

2007 UML 2.1.2
: J\>l SysML1.1) (BPMN 1.1) (DSLs
2008 [UML 2.2

Source http://en.wikipedia.org/wiki/File:00-historie-2.svg

UML 2 - Stereotypes

Stereotypes allow designers to extend the
vocabulary of UML in order to create new
model elements from existing ones but

specialized

«stereotype»
Server
Vendor: String

CPU: String
Memory: String

http://www.uml-diagrams.org/profile-diagrams.html#stereotype

UML 2 - Stereotypes ||

«metaclass»

UML::Class

Iconic
Representation

«stereotype»
Semaphore

limit : Integer
getSema : Operation
relSema : Operation

“Extension”

limit <= MAXlimit
AN

Constraints]

Source: The Theory || and Practice of Modeling Language Design for Model-Based

Software Engineering - Bran Selic

UML 2 - Stereotypes Il

Why not define a new element of a UML
model in the standard way?

1. To allow tool implementers flexibility in
choosing their preferred implementation
2. The need to support viewpoints, which

require the ability to dynamically apply/
un-apply stereotypes

UML 2 - Profiles

Profiles are packages of stereotypes, model
libraries and metamodels which defines
domain specific concepts and relationships

«profile» Servers

«Metaclass»
Device

«stereotype»
Server

Vendor: String
CPU: String
Memory: String

UML 2 — Profiles ||

Two ways to use a profile:

* Define a DSML (create all your domain
specific concepts)

* Define a domain specific viewpoint (ie.
Using a performance viewpoint to measure
the performance of your model)

UML 2 — Profiles Il

Can have formal constraints written in OCL
Can apply /un-apply stereotypes profiles to

UML models (can see model from different
viewpoints)

Can create relationships that don’t exist in
the metamodel

UML 2 — Performance Profile Example

T
Modeling T
Tool Model Analysis

I [e]e]}

e

QoS annotations Inverse M2M Transform

Source: The Theory || and Practice of Modeling Language Design for Model-Based Software
Engineering - Bran Selic

Using UML Profiles to define a DSML

Approach:
1. Create a domain model (or metamodel)

2. Map the domain model to a Profile (Map
to UML)

Using UML Profiles to define a DSML I

Create a domain model:
. A set of fundamental language constructs

. A set of valid relationships

. A set of constraints
. Concrete syntax or notation
. The semantics of meaning of the language

Using UML Profiles to define a DSML I

Map the domain model to a profile :
1. Select a base UML class whose semantics

are closest to the semantics of the domain

concept

. Check all the constraints that apply to the
selected base metaclass to ensure no
conflicting constraints

Using UML Profiles to define a DSML I

Map the domain model to a profile :
3. Check to determine if any of the attributes
of the selected base class need to be

refined.

4. Check to determine if the selected base
class has no conflicting associations to
other classes.

Conclusion

e The UML 2 Profile mechanism can provide
powerful capability to define DSMLs
* Allows reuse of standard UML tools

* Author provided a “methodology” to
produce technically correct profiles

e ... butstill need a proper theory for model
language design

Discussion

What type of DSMLs can we model with
profiles? What type wouldn’t be so useful?
Can our model use viewpoints for different

code generation paths?

Can all programming languages be
remodeled in profiles?

What is the future of modeling?

