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Introduction

 Domain Specific Modelling Languages (DSML)
raise the level of abstraction

e Niche languages have high expressibility
 Domain specific constraints can be assumed
« Can translate to analyzable language

* All of the DSMLs in the study were used for
code generation



Purpose

» Very little work has previously looked at DSML
creation

* Graphical DSML creation has seen even less

* Goal is to investigate and categorize
approaches for defining DSMLs

» Specific focus on automating variant creation



Study

» 23 industrial applications of DSM explored
« Qualitative study performed

» Data gathered from Interviews and
Discussions with language creators

* All languages were metamodel-based



Study

* There were 4 different construction approaches
discovered:

 Domain Expert's Concepts
« Generation Output
 Look and Feel
 Variability Space



Domain Expert's Concepts

 Model is based upon the semantics of the
domain

» Can be used by people with little to no
programming experience



Domain Expert's Concepts
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Domain Expert's Concepts

* Very abstract language
» Relatively easy to define

* Code generation guided by relationship
between elements

* Need to be careful to ensure the domain is
mature enough to handle this approach
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Generation Output

* Modelling constructs derived from the structure
of the generated code

» Similar to languages like UML

» Level of abstraction is not much higher than
programming languages

* Lower productivity improvement
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Generation Output

E‘ECPL method: Sample, August 20, 2002, 10:
iaraph Edit ‘iew Types Help

FES &R « o Q

e e e

Reference
| weather_info
Incoming

AN

N t} Subdomain-of acation - e
rigin
:t Example . com Fipjonesi@example. fi imeout: 10
0

/ Taflure

busy L timeout

oicemail Subaction

:3ti R di Reference
; zip: jones@yvoicemail. N radiract edirect
otherwise ——'- Fl @ redirection ﬂ Hella Warld

example.com

< | il &

Active: None Subgraph[s]: Mone Grid: 10@10 Zoom: 100%

12



Generation Output

 The easy part is describing the static constructs
* Defining the behaviour was much more difficult

* Work best when the output is a domain specific
language

* The output should already be mature for this
approach to work
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Look and Feel

* Modelling language applies end user concepts
as modelling constructs

« Ul widgets and behaviour
 The most common type of DSM studied
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Look and Feel
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Look and Feel

* The “simplest” language to create

* Everything is tangible and has an obvious meaning
* Can be created with little knowledge of domain

* The difficult part is relating the behaviour to the
structural elements

» Code generation implemented:

* Per widget
e State based
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Variability

 Language based upon expressing variability
» Extremely useful for software product lining
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Variability

» Variability languages need to be flexible in
order to support any new features

» Creation requires an in depth analysis of the
domain

* Feature modelling is too general to be applied
to DSM concepts

* Most difficult DSML to define
 Combines with the Look and Feel approach
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Conclusion

* |n all cases DSMs lead to a productivity
Increase

 These languages can be used by developers
with little programming experience

* |n most cases the generated code interacted
with a framework that was already created

 Combining multiple approaches seemed very
common
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Impact

e 112 citations

* Experience Reports and Case Studies are
important for informing others about MBSE

* The guidelines outlined in the paper were used
during research to define a DSL for Service
Oriented Architectures [3]
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Further Work

» Several more field studies and experience
reports

» A majority of the work since 2005 looks like it
has focused on variability DSMLs
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Systematic Approach (2009) [1]

* Uses an experimental approach to find a
systematic method for creation

 The method used can be applied when creating
DSMLs

* J.P. Tolvanen also describes guidelines for
creating DSMLs [2]
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Discussion

* Could these graphical approaches be applied to
textual modelling languages”?

 Why are there no cases that use 3 or more
approaches?
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