Defining Domain Specific Modelling Languages to
Automate Product Derivation:
Collected Experiences

Authors: Juha-Pekka Tolvanen and Steven Kelly

Presented By: David Dietrich
CS846

Authors

* Juha-Pekka Tolvanen < Steven Kelly
 CEO of Metacase CTO of Metacase
* Blog: * Blog:

http://www.metacase.com/blogs/jpt/blogView http://www.metacase.com/blogs/stevek/blogView

Metacase:
» Creators of MetaEdit+, a tool for creating
domain specific models

Outline

 |[ntroduction

o Study

* Conclusions
* |[mpact

e Further Work

Introduction

 Domain Specific Modelling Languages (DSML)
raise the level of abstraction

e Niche languages have high expressibility
 Domain specific constraints can be assumed
« Can translate to analyzable language

* All of the DSMLs in the study were used for
code generation

Purpose

» Very little work has previously looked at DSML
creation

* Graphical DSML creation has seen even less

* Goal is to investigate and categorize
approaches for defining DSMLs

» Specific focus on automating variant creation

Study

» 23 industrial applications of DSM explored
« Qualitative study performed

» Data gathered from Interviews and
Discussions with language creators

* All languages were metamodel-based

Study

* There were 4 different construction approaches
discovered:

 Domain Expert's Concepts
« Generation Output
 Look and Feel
 Variability Space

Domain Expert's Concepts

 Model is based upon the semantics of the
domain

» Can be used by people with little to no
programming experience

Domain Expert's Concepts

Eﬁpmductmodel[Vehicle Insurance, August 20, 2003, 17:40

Grq:uh Edt Vlew .T_}fDES Help
}-Q YR oo E Q i
IE“:' AH_H"_D QW&WDE'{Z ‘%i___iiAssDepEntGe

-
Comprehensive
Ca?%ler Takes Coverage
Theft /Flle Collision k 3rd Party
‘ I.
— — |_— 7 — 7 =
7 .\ ./J
| i | f
€+ 7 ™) €+9
| f Accident Accidant
\ / o \ o
[lunage \ I]arrnge 3rd \
Car Driver Passenger 3rd Party
b
< >
Active: None | Subgraph(s]: Nore || Grid: 10@10 Zoom: 100%

Domain Expert's Concepts

* Very abstract language
» Relatively easy to define

* Code generation guided by relationship
between elements

* Need to be careful to ensure the domain is
mature enough to handle this approach

10

Generation Output

* Modelling constructs derived from the structure
of the generated code

» Similar to languages like UML

» Level of abstraction is not much higher than
programming languages

* Lower productivity improvement

11

Generation Output

E‘ECPL method: Sample, August 20, 2002, 10:
iaraph Edit ‘iew Types Help

FES &R « o Q

e e e

Reference
| weather_info
Incoming

AN

N t} Subdomain-of acation - e
rigin
:t Example . com Fipjonesi@example. fi imeout: 10
0

/ Taflure

busy L timeout

oicemail Subaction

:3ti R di Reference
; zip: jones@yvoicemail. N radiract edirect
otherwise ——'- Fl @ redirection ﬂ Hella Warld

example.com

< | il &

Active: None Subgraph[s]: Mone Grid: 10@10 Zoom: 100%

12

Generation Output

 The easy part is describing the static constructs
* Defining the behaviour was much more difficult

* Work best when the output is a domain specific
language

* The output should already be mature for this
approach to work

13

Look and Feel

* Modelling language applies end user concepts
as modelling constructs

« Ul widgets and behaviour
 The most common type of DSM studied

14

Look and Feel

RE Application: Conference registration, May 26, 2004, 14:19

Graph Edit View Types Help
Ea ¥hiB o H QH
D@DB EEEEED.OEZ Bac Flo
-~
l Payment method
. Your name?
Con_feren;e 1 W fAbe A
Registration: 2> [nvoice
YWelcome Credit card
Please choose
View program ” ' text ¥
Cancel registration program 45 combo
combo 12345678 Registration
combo +Pershame+, +Payment
combo
Cancel :20(combo
registration \‘
Options
53 Registration made i’
12345678 Cancel Cancel
x Program
& on Wieb
¥
LS = ZWM Sy stemiAppsihPythoniWiificzatlh
‘.‘ L program.htm
SMS cancellation ﬁ <4
send 4)@
|
< i | > |
Active: None Subgraph(s): None | Grid: 10@10 Zoom: 100%

Look and Feel

* The “simplest” language to create

* Everything is tangible and has an obvious meaning
* Can be created with little knowledge of domain

* The difficult part is relating the behaviour to the
structural elements

» Code generation implemented:

* Per widget
e State based

16

Variability

 Language based upon expressing variability
» Extremely useful for software product lining

17

Variability

» Variability languages need to be flexible in
order to support any new features

» Creation requires an in depth analysis of the
domain

* Feature modelling is too general to be applied
to DSM concepts

* Most difficult DSML to define
 Combines with the Look and Feel approach

18

Conclusion

* |n all cases DSMs lead to a productivity
Increase

 These languages can be used by developers
with little programming experience

* |n most cases the generated code interacted
with a framework that was already created

 Combining multiple approaches seemed very
common

19

Impact

e 112 citations

* Experience Reports and Case Studies are
important for informing others about MBSE

* The guidelines outlined in the paper were used
during research to define a DSL for Service
Oriented Architectures [3]

20

Further Work

» Several more field studies and experience
reports

» A majority of the work since 2005 looks like it
has focused on variability DSMLs

21

Systematic Approach (2009) [1]

* Uses an experimental approach to find a
systematic method for creation

 The method used can be applied when creating
DSMLs

* J.P. Tolvanen also describes guidelines for
creating DSMLs [2]

22

Discussion

* Could these graphical approaches be applied to
textual modelling languages”?

 Why are there no cases that use 3 or more
approaches?

23

References

[1] An Approach for the Systematic Development
of Domain Specific Languages

2.

nttp://www.devx.com/enterprise/Article/30550

3

Domain Specific Languages for Service

Oriented Architectures: An Explorative Study

24

http://www.devx.com/enterprise/Article/30550

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

