
 1

Defining Domain Specific Modelling Languages to
Automate Product Derivation:

Collected Experiences

Authors: Juha-Pekka Tolvanen and Steven Kelly

Presented By: David Dietrich
CS846

 2

Authors

● Juha-Pekka Tolvanen
● CEO of Metacase
● Blog:

http://www.metacase.com/blogs/jpt/blogView

● Steven Kelly
● CTO of Metacase
● Blog:

http://www.metacase.com/blogs/stevek/blogView

Metacase:
● Creators of MetaEdit+, a tool for creating
domain specific models

 3

Outline

● Introduction
● Study
● Conclusions
● Impact
● Further Work

 4

Introduction

● Domain Specific Modelling Languages (DSML)
raise the level of abstraction
● Niche languages have high expressibility
● Domain specific constraints can be assumed
● Can translate to analyzable language

● All of the DSMLs in the study were used for
code generation

 5

Purpose

● Very little work has previously looked at DSML
creation
● Graphical DSML creation has seen even less

● Goal is to investigate and categorize
approaches for defining DSMLs
● Specific focus on automating variant creation

 6

Study

● 23 industrial applications of DSM explored
● Qualitative study performed

● Data gathered from Interviews and
Discussions with language creators

● All languages were metamodel-based

 7

Study

● There were 4 different construction approaches
discovered:
● Domain Expert's Concepts
● Generation Output
● Look and Feel
● Variability Space

 8

Domain Expert's Concepts

● Model is based upon the semantics of the
domain

● Can be used by people with little to no
programming experience

 9

Domain Expert's Concepts

 10

Domain Expert's Concepts

● Very abstract language
● Relatively easy to define
● Code generation guided by relationship

between elements
● Need to be careful to ensure the domain is

mature enough to handle this approach

 11

Generation Output

● Modelling constructs derived from the structure
of the generated code

● Similar to languages like UML
● Level of abstraction is not much higher than

programming languages
● Lower productivity improvement

 12

Generation Output

 13

Generation Output

● The easy part is describing the static constructs
● Defining the behaviour was much more difficult
● Work best when the output is a domain specific

language
● The output should already be mature for this

approach to work

 14

Look and Feel

● Modelling language applies end user concepts
as modelling constructs
● UI widgets and behaviour

● The most common type of DSM studied

 15

Look and Feel

 16

Look and Feel

● The “simplest” language to create
● Everything is tangible and has an obvious meaning
● Can be created with little knowledge of domain

● The difficult part is relating the behaviour to the
structural elements

● Code generation implemented:
● Per widget
● State based

 17

Variability

● Language based upon expressing variability
● Extremely useful for software product lining

 18

Variability

● Variability languages need to be flexible in
order to support any new features

● Creation requires an in depth analysis of the
domain

● Feature modelling is too general to be applied
to DSM concepts

● Most difficult DSML to define
● Combines with the Look and Feel approach

 19

Conclusion

● In all cases DSMs lead to a productivity
increase

● These languages can be used by developers
with little programming experience

● In most cases the generated code interacted
with a framework that was already created

● Combining multiple approaches seemed very
common

 20

Impact

● 112 citations
● Experience Reports and Case Studies are

important for informing others about MBSE
● The guidelines outlined in the paper were used

during research to define a DSL for Service
Oriented Architectures [3]

 21

Further Work

● Several more field studies and experience
reports

● A majority of the work since 2005 looks like it
has focused on variability DSMLs

 22

Systematic Approach (2009) [1]

● Uses an experimental approach to find a
systematic method for creation

● The method used can be applied when creating
DSMLs

● J.P. Tolvanen also describes guidelines for
creating DSMLs [2]

 23

Discussion

● Could these graphical approaches be applied to
textual modelling languages?

● Why are there no cases that use 3 or more
approaches?

 24

References

[1] An Approach for the Systematic Development
of Domain Specific Languages

[2] http://www.devx.com/enterprise/Article/30550

[3] Domain Specific Languages for Service
Oriented Architectures: An Explorative Study

http://www.devx.com/enterprise/Article/30550

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

