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Introduction

● Domain Specific Modelling Languages (DSML) 
raise the level of abstraction
● Niche languages have high expressibility
● Domain specific constraints can be assumed
● Can translate to analyzable language

● All of the DSMLs in the study were used for 
code generation
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Purpose

● Very little work has previously looked at DSML 
creation
● Graphical DSML creation has seen even less 

● Goal is to investigate and categorize 
approaches for defining DSMLs
● Specific focus on automating variant creation
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Study

● 23 industrial applications of DSM explored
● Qualitative study performed

● Data gathered from Interviews and 
Discussions with language creators

● All languages were metamodel-based
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Study

● There were 4 different construction approaches 
discovered:
● Domain Expert's Concepts
● Generation Output
● Look and Feel
● Variability Space
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Domain Expert's Concepts

● Model is based upon the semantics of the 
domain

● Can be used by people with little to no 
programming experience
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Domain Expert's Concepts
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Domain Expert's Concepts

● Very abstract language
● Relatively easy to define
● Code generation guided by relationship 

between elements
● Need to be careful to ensure the domain is 

mature enough to handle this approach
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Generation Output

● Modelling constructs derived from the structure 
of the generated code

● Similar to languages like UML
● Level of abstraction is not much higher than 

programming languages
● Lower productivity improvement
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Generation Output
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Generation Output

● The easy part is describing the static constructs
● Defining the behaviour was much more difficult
● Work best when the output is a domain specific 

language
● The output should already be mature for this 

approach to work
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Look and Feel

● Modelling language applies end user concepts 
as modelling constructs
● UI widgets and behaviour

● The most common type of DSM studied
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Look and Feel
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Look and Feel

● The “simplest” language to create
● Everything is tangible and has an obvious meaning
● Can be created with little knowledge of domain

● The difficult part is relating the behaviour to the 
structural elements

● Code generation implemented:
● Per widget
● State based
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Variability

● Language based upon expressing variability
● Extremely useful for software product lining
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Variability

● Variability languages need to be flexible in 
order to support any new features

● Creation requires an in depth analysis of the 
domain

● Feature modelling is too general to be applied 
to DSM concepts

● Most difficult DSML to define
● Combines with the Look and Feel approach
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Conclusion

● In all cases DSMs lead to a productivity 
increase

● These languages can be used by developers 
with little programming experience

● In most cases the generated code interacted 
with a framework that was already created

● Combining multiple approaches seemed very 
common
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Impact

● 112 citations
● Experience Reports and Case Studies are 

important for informing others about MBSE
● The guidelines outlined in the paper were used 

during research to define a DSL for Service 
Oriented Architectures [3]
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Further Work

● Several more field studies and experience 
reports

● A majority of the work since 2005 looks like it 
has focused on variability DSMLs
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Systematic Approach (2009) [1]

● Uses an experimental approach to find a 
systematic method for creation

● The method used can be applied when creating 
DSMLs

● J.P. Tolvanen also describes guidelines for 
creating DSMLs [2] 
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Discussion

● Could these graphical approaches be applied to 
textual modelling languages?

● Why are there no cases that use 3 or more 
approaches?
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