Statecharts: A visual formalism for complex systems

David Harel

<u>Presented by: Taha Rafiq</u> <u>CS846: Model-Based Software Engineering</u>

WATERLOO

Image Source: Statecharts in the making: A personal account

Outline

- Motivation behind Statecharts
- What are Statecharts?
- Diving deeper
 - Clustering & Refinement
 - Orthogonality & Concurrency
 - Actions & Activities
- Additional features & possible extensions
- Trouble with semantics
- Discussion

Outline

- Motivation behind Statecharts
- What are Statecharts?
- Diving deeper
 - Clustering & Refinement
 - Orthogonality & Concurrency
 - Actions & Activities
- Additional features & possible extensions
- Trouble with semantics
- Discussion

Motivation

UNIVERSITY OF

WATERLOO

Source: Wikipedia

Motivation

- The author was a consultant for IAI
- Involved with design specification of fighter aircraft the Lavi
- Interactions with the avionics team
- What happens when you press a button under a certain set of circumstances?
 - Incomplete/Inconsistent/Incomprehensible specification who decides?

UNIVERSITY OF WATERLOO

Motivation

"How should an engineering team specify the behavior of such a complex reactive system in an intuitively clear yet mathematically rigorous fashion? This was what I aimed to try to answer."

- David Harel, Statecharts in the making: A personal account

Outline

- Motivation behind Statecharts
- What are Statecharts?
- Diving deeper
 - Clustering & Refinement
 - Orthogonality & Concurrency
 - Actions & Activities
- Additional features & possible extensions
- Trouble with semantics
- Discussion

What is a Reactive System?

- Main behavior Reactivity
- Event-driven, control-driven, event-response nature
- Often highly parallel behavior
- Behavior is specified by set of allowed
 - Input/Output events
 - Conditions
 - Actions
 - Timing constraints

Specifying the Behavior of a Reactive System

- States & Events natural medium
- General form

When event *a* occurs in state *A*, if condition *C* is true, the system transfers to state *B*

• <u>Finite State Machines</u> = formal mechanism for describing such interactions

Problems with FSMs

- Complex system (fighter aircraft)
 - Unmanageable, exponentially growing states
 - Flat, unstructured and chaotic diagram

What are Statecharts?

- Extension of traditional state diagrams
- Visual formalism for states and transitions
 Modular
 - Clustering
 - Concurrency
 - Levels of abstraction
- <u>Statecharts = state-diagrams + depth +</u> <u>orthogonality + broadcast-medium</u>

What are Statecharts?

Figure 3. The Conceptual Model

WATERLOO

Running Example

UNIVERSITY OF

WATERLOO

<u>Citizen Quartz Multi-</u> <u>Alarm III Wristwatch</u>

- 4 buttons: *a*, *b*, *c*, *d*
- Time + date
- Chime (hour beep)
- 2 alarms
- Stopwatch
- Light
- Weak battery indication
- Beeper test

Running Example

Main Events

- Depressing of button (*a*)
- Releasing of button (\hat{a})
- Internal events
 - Timed events
 - Battery events

Outline

- Motivation behind Statecharts
- What are Statecharts?
- Diving deeper
 - Clustering & Refinement
 - Orthogonality & Concurrency
 - Actions & Activities
- Additional features & possible extensions
- Trouble with semantics
- Discussion

Basics

- Encapsulation expresses hierarchy
- Arrows originate and terminate at any level
- Clustering represents XOR (Abstraction)
 D is XOR of A and C

UNIVERSITY OF

WATERLOO

Zooming In and Zooming Out

Zooming into *D*

Default States

Watch Example

Refinement of Displays State

History Connective

History Connective - Levels

Apply only at level K

Apply at all contained levels

WATERLOO

History Connective - Levels

Something between 'one' and 'all' extremes

Watch Example – History + Update Capability

Watch Example – Refinement of Update States

Common Source/Target Arrows

Subtle Contradictions - Example

Outline

- Motivation behind Statecharts
- What are Statecharts?
- Diving deeper
 - Clustering & Refinement
 - Orthogonality & Concurrency
 - Actions & Activities
- Additional features & possible extensions
- Trouble with semantics
- Discussion

Basics

- AND decomposition
- System must be in <u>all</u> of its *AND* components
- *Y* is an orthogonal product of *A* and *D*

Synchronization

AND-Free Equivalence

β

Much cleaner and easier to understand!

Example Application – Avionics System

AVIONICS SYSTEM

Orthogonal States -Exits and Entrances

Orthogonality – Watch Example

alive

Orthogonality – Watch Example

WATERLOO

Adding a Feature – Watch Example

Outline

- Motivation behind Statecharts
- What are Statecharts?
- Diving deeper
 - Clustering & Refinement
 - Orthogonality & Concurrency
 - Actions & Activities
- Additional features & possible extensions
- Trouble with semantics
- Discussion

Basics

- Expressing reactivity
 - Generating events
 - Changing conditions
- <u>Action</u>: Split second occurrence
 - Display balance
- <u>Activity:</u> Take non-zero time
 - Beep for 30 seconds
- Each activity *X* associated associated with two actions: *start(X)* and *stop(X)*

Basics

- Actions are allowed with
 - Transitions
 - Entering a state
 - Exiting a state
- Difficult to define semantics

Outline

- Motivation behind Statecharts
- What are Statecharts?
- Diving deeper
 - Clustering & Refinement
 - Orthogonality & Concurrency
 - Actions & Activities
- Additional features & possible extensions
- Trouble with semantics
- Discussion

Condition and Selection Entrances

Timeouts

Unclustering

Parametrized States

Overlapping States

UNIVERSITY OF

WATERLOO

Temporal Logic

• Specifying constraints in TL and verification of statecharts from constraint specification

OR

• Synthesizing 'good' statecharts from TL specifications

Outline

- Motivation behind Statecharts
- What are Statecharts?
- Diving deeper
 - Clustering & Refinement
 - Orthogonality & Concurrency
 - Actions & Activities
- Additional features & possible extensions
- Trouble with semantics
- Discussion

Some Problems

Cycles

WATERLOO

Outline

- Motivation behind Statecharts
- What are Statecharts?
- Diving deeper
 - Clustering & Refinement
 - Orthogonality & Concurrency
 - Actions & Activities
- Additional features & possible extensions
- Trouble with semantics
- Discussion

Discussion

- Impact
 - 6000+ citations
 - UML statecharts are a variant of the Harel statechart
- Problems
 - Easy to make errors that lead to undefined/contradictory states
 - Unintended consequences in complex systems

