
Presented By: Steven Stewart, 2012-January-23

Alloy: A Lightweight Object
Modelling Notation
Daniel Jackson, ACM Transactions on Software Engineering, 2002

1

Monday, 23 January, 12

Alloy: 2002 to present

✤ Software Abstractions: Logic, Language, and Analysis (Revised Ed.)

! Daniel Jackson (MIT Software Design Group)

Software is built on abstractions. Pick the right ones,
and programming will flow naturally from design...

2

Monday, 23 January, 12

Modelling

Almost all recent development methods factor out the structural
aspect of a software system, usually called the ‘object model’

✤ Lightweight models

✤ description (or specification) of basic structures

✤ based on a small syntax

✤ automation and analysis

3

Monday, 23 January, 12

What is Alloy? (2002)

✤ Alloy is a lightweight object modelling notation for describing...

✤ basic structure

✤ intricate constraints

✤ operations (how structures change dynamically)

A modelling notation that can express
a useful range of structural properties

4

Monday, 23 January, 12

What is Alloy? (2012)

✤ Alloy is a “structural modelling language” based on first-order logic
for expressing complex constraints and behaviours

http://alloy.mit.edu/alloy/faq.html

✤ Alloy is a declarative specification language for expressing complex
structural constraints and behaviour in a software system

http://en.wikipedia.org/wiki/Alloy_(specification_language

A modelling notation that can express
a useful range of structural properties

5

Monday, 23 January, 12

http://alloy.mit.edu/alloy/faq.html
http://alloy.mit.edu/alloy/faq.html
http://en.wikipedia.org/wiki/Alloy_(specification_language
http://en.wikipedia.org/wiki/Alloy_(specification_language

What is Alloy? (2012)

✤ Logic:! all structures are represented as relations; structural
! ! ! properties are expressed with a few simple operators;
! ! ! ! states and executions both described using constraints

Logic, Language, and Analysis

6

Monday, 23 January, 12

What is Alloy? (2012)

✤ Logic:! all structures are represented as relations; structural
! ! ! properties are expressed with a few simple operators;
! ! ! ! states and executions both described using constraints

✤ Language:! syntax added to logic for structuring descriptions; a
! ! ! ! flexible type system; simple module system

Logic, Language, and Analysis

7

Monday, 23 January, 12

What is Alloy? (2012)

✤ Logic:! all structures are represented as relations; structural
! ! ! properties are expressed with a few simple operators;
! ! ! ! states and executions both described using constraints

✤ Language:! syntax added to logic for structuring descriptions; a
! ! ! ! flexible type system; simple module system

✤ Analysis:! constraint solving; simulation (finding instances of states
! ! ! ! or executions); checking (finding counterexamples)

Logic, Language, and Analysis

8

Monday, 23 January, 12

What is Alloy? (1997-2012)

✤ Logic:

✤ first-order logic + transitive closure (for describing reachability
constraints

Logic, Language, and Analysis

9

Monday, 23 January, 12

What is Alloy? (1997-2012)

✤ Logic:

✤ first-order logic + transitive closure (for describing reachability
constraints

✤ Language:

✤ declarative: describe the effect of a behaviour, not the mechanism

Logic, Language, and Analysis

10

Monday, 23 January, 12

What is Alloy? (1997-2012)

✤ Logic:

✤ first-order logic + transitive closure (for describing reachability
constraints

✤ Language:

✤ declarative: describe the effect of a behaviour, not the mechanism

✤ Analysis (we’ll get to this later)

Logic, Language, and Analysis

11

Monday, 23 January, 12

What Alloy is not?

✤ Alloy is not for describing...

✤ dynamic interactions between objects

✤ syntactic structure in an implementation (i.e., class hierarchy and
packages)

A modelling notation that can express
a useful range of structural properties

12

Monday, 23 January, 12

What Alloy is not?

✤ Alloy is not for describing...

✤ dynamic interactions between objects

✤ syntactic structure in an implementation (i.e., class hierarchy and
packages)

✤ DynAlloy (Frias, Galeotti, and Pombo, 2005-present), an extension to
Alloy to describe dynamic properties of systems using ‘actions’

A modelling notation that can express
a useful range of structural properties

13

Monday, 23 January, 12

Comparisons

✤ Alloy is based on Z, but simplifies the underlying semantics

✤ Z was not as amenable to analysis, so Alloy eliminates features that
make analysis hard

✤ OCL deemed too complicated -- a consequence of trying to
accommodate notions from object-oriented programming

...a large class of structural models can be described in Z without
higher order features, and can thus be analyzed efficiently

14

Monday, 23 January, 12

Alloy: Language (2002)

Language syntax, type rules, and semantics -- simple and concise.

8

and, for a given race r, the expression rides[r] would then denote a relation mapping jockeys to their
horses in that race. The current version of Alloy does not support arbitrary functions, but just func-
tions to relations; the above declaration would actually be written

rides [Race] : Jockey -> Horse
A function can be viewed as a curried form of a relation from a tuple; this function, for example,

might have been declared as Race × Jockey → Horse. Functions, however, give a simpler expression
syntax, since there are no tuples to construct and deconstruct. Of course, one can always introduce
tuples explicitly in Alloy (eg, a type Run with projections to Race and Jockey) although they have no
special syntactic support. In the file system example, D irEntry is such a tuple; instead, we might have
declared a function

contents [Object] : Name -> Object
so that contents[d] gives a mapping for a directory d from names to objects it contains.

Functions retain the binary flavour of the logic: they fit naturally into diagrams, and can accom-
modate multiplicity markings. In the full language, the question marks in

rides [Race] : Jockey? -> Horse?

problem ::= decl* formula
decl ::= var : typexpr
typexpr ::=
 type
 | type -> type
 | type = > typexpr

formula ::=
 expr in expr subset
 | ! formula negation
 | formula && formula conjunction
 | formula || formula disjunction
 | all v : type | formula universal
 | some v : type | formula existential

expr ::=
 | expr + expr union
 | expr & expr intersection
 | expr - expr difference
 | expr . expr navigation
 | ~ expr transpose
 | + expr closure
 | {v : t | formula} set former
 | Var

Var ::=
 | var variable
 | Var [var] application

E ! a: S , E ! b: S
E ! a in b

E, v: T ! F
E ! all v : T | F

E !"a: S → T, E !"b: S → T
E !"a + b : S → T

E ! a: S → T, E ! b: S → U
E ! a . b : U → T

E ! a: S → T
E ! ~ a : T → S

E ! a: T → T
E ! +a : T → T

E, v: T ! F
E ! {v: T | F} : T

E ! a: T ⇒ t, E ! v: T
E ! a[v]: t

M : formula → env → boolean
X : expr → env → value
env = (var + type) → value
va lue = P (atom × atom) + (atom → value)

M [a in b] e = X[a] e ⊆ X[b] e
M [! F] e = ¬ M [F] e
M [F && G] e = M [F] e ∧ M [G] e
M [F || G] e = M [F] e ∨ M [G] e
M [all v: t | F] e = # {M [F](e$ v ! x) | (x,unit) ∈ e(t)}
M [some v: t | F] e = % {M [F](e$ v ! x) | (x, unit) ∈ e(t)}

X [a + b] e = X [a] e ∪ X [b] e
X [a & b] e = X [a] e ∩ X [b] e
X [a - b] e = X [a] e \ X [b] e
X [a . b] e = {(x,z) | ∃y. (y,z) ∈ X [a] e ∧ (y,x) ∈ X [b] e}
X [~ a] e = {(x,y) | (y,x) ∈ X [a] e}
X [+ a] e = the sma llest r such that r ; r ⊆ r ∧ X [a] e ⊆ r
X [{v: t | F}] e = {(x,unit) ∈ e(t) | M [F](e$ v ! x)}
X [v] e = e(v)
X [a[v]] e = (e(a)) (e(v))

Figure 2: Kernel syntax, type rules and semantics

15

Monday, 23 January, 12

Alloy: Relations

✤ In fact, beneath the surface, everything in Alloy is a relation

16

Monday, 23 January, 12

Alloy: Relations

✤ In fact, beneath the surface, everything in Alloy is a relation

✤ Scalars are simply unary relations with a single tuple

✤ e.g., RootDir = {<d0>}

17

Monday, 23 January, 12

Alloy: Relations

✤ In fact, beneath the surface, everything in Alloy is a relation

✤ Scalars are simply unary relations with a single tuple

✤ e.g., RootDir = {<d0>}

✤ We can express structure with relations, using three different styles of logic
supplemented with set, relational, and logical operators

18

Monday, 23 January, 12

Alloy: Language (2012)

✤ Supports three styles of expressing logic

✤ predicate calculus, navigation expression, relational calculus

19

Monday, 23 January, 12

Alloy: Language (2011)

✤ Supports three styles of expressing logic

✤ predicate calculus, navigation expression, relational calculus

two kinds of expressions:

relation names (used as predicates) and tuples formed from quantified
variables

“names in an address book are mapped to at most one address”

all n: Name, d, d’: Address | n->d in address and n->d’ in address implies d = d’

20

Monday, 23 January, 12

Alloy: Language (2011)

✤ Supports three styles of expressing logic

✤ predicate calculus, navigation expression, relational calculus

expressions denote sets that are formed by navigating from quantified
variables along relations

“names in an address book are mapped to at most one address”

all n: Name | lone n.address

21

Monday, 23 January, 12

Alloy: Language (2011)

✤ Supports three styles of expressing logic

✤ predicate calculus, navigation expression, relational calculus

expressions denote relations,
and there are no quantifiers

“names in an address book are mapped to at most one address”

no ~address.address - iden

22

Monday, 23 January, 12

Alloy: Language (2011)

✤ Set operators:

✤ union, intersection, difference, subset, equality

23

Monday, 23 January, 12

Alloy: Language (2011)

✤ Set operators:

✤ union, intersection, difference, subset, equality

✤ Relational operators:

✤ product, join, transpose, transitive-closure, reflexive closure

24

Monday, 23 January, 12

Alloy: Language (2011)

✤ Set operators:

✤ union, intersection, difference, subset, equality

✤ Relational operators:

✤ product, join, transpose, transitive-closure, reflexive closure

✤ Logical operators:

✤ negation, conjunction, disjunction, implication, bi-implication

25

Monday, 23 January, 12

Alloy: Analysis

✤ The relational specification is translated into a boolean formula, which is
handed over to a backend SAT-solver

✤ If a model has at least one instance satisfying all constraints, then the model
is said to be consistent

✤ To check an assertion, we look for a model (or instance) of its negation in
order to produce a counter-example

✤ The Alloy Analyzer enables the ability to check models within a finite
scope -- failure to find a model within that scope does not prove that the
formula is inconsistent

✤ An exhaustive scope of 10 gives more coverage of a model than hand-
written test cases ever could! (D. Jackson: “small scope hypothesis”)

26

Monday, 23 January, 12

Alloy: Analysis

✤ Small-scope hypothesis (from Software Abstractions)
✤ Most bugs in code elude testing

Program testing can be used to show the presence of bugs,
but never to show their absence

Edsger W. Dijkstra

27

Monday, 23 January, 12

Alloy: Analysis

✤ Small-scope hypothesis (from Software Abstractions)
✤ Most bugs in code elude testing
✤ Instance finding has more extensive coverage than traditional

testing

Program testing can be used to show the presence of bugs,
but never to show their absence

Edsger W. Dijkstra

28

Monday, 23 January, 12

Alloy: Analysis

✤ Small-scope hypothesis (from Software Abstractions)
✤ Most bugs in code elude testing
✤ Instance finding has more extensive coverage than traditional

testing
✤ Most bugs have small counterexamples -- if you examine all small

cases, you’re likely to find a counterexample

Program testing can be used to show the presence of bugs,
but never to show their absence

Edsger W. Dijkstra

29

Monday, 23 January, 12

Alloy: Analysis

✤ Small-scope hypothesis (from Software Abstractions)
✤ Most bugs in code elude testing
✤ Instance finding has more extensive coverage than traditional

testing
✤ Most bugs have small counterexamples -- if you examine all small

cases, you’re likely to find a counterexample
✤ Summary: covering of ALL cases (potentially billions) in a small

scope will uncover most flaws!

Program testing can be used to show the presence of bugs,
but never to show their absence

Edsger W. Dijkstra

30

Monday, 23 January, 12

The Alloy Style of Modelling

✤ In this style of modelling, a model can be developed incrementally,
and explored at each step using the analyzer

Alloy is amenable to fully automatic semantic analysis that
can provide checking of consequences and consistency

31

Monday, 23 January, 12

Alloy: Analysis

✤ Simulation
✤ View instances of your model. Correct model. Fix them. Try again.

✤ Checking
✤ Check assertions against the specification.
✤ Find counterexamples. Correct model (fix bugs). Save yourself

from future hassles!

Alloy is amenable to fully automatic semantic analysis that
can provide checking of consequences and consistency

32

Monday, 23 January, 12

The clock is ticking...

✤ If we have enough time, I’ll show you a sample Alloy specification for
a file system -- somewhat similar to the one in the paper, but simpler...

✤ Until then, we will move on to “Experience and Evaluation”

33

Monday, 23 January, 12

Experience and Evaluation

✤ 2000 - 2002

✤ analysis of a resource discovery system

✤ design of an air traffic control system component

✤ reformulation of some essential properties of Microsoft COM’s
query interface

✤ translation from OCL to Alloy of UML core metamodel, which was
shown to be consistent using the Alloy Analyzer

34

Monday, 23 January, 12

Experience and Evaluation

✤ 1997 - present

✤ addition of quantifiers, higher arity, relations, polymorphism,
subtyping, and signatures

✤ Alloy4 uses a model finder called Kodkod, demonstrating
significant improvements in performance and scalability

✤ Alloy has been used to model... name servers, network configuration
protocols, access control, telephony, scheduling, document
structuring, key management, cryptography, instant messaging,
railway switching, filesystem synchronization, semantic web

http://alloy.mit.edu/alloy/faq.html 35

Monday, 23 January, 12

http://alloy.mit.edu/alloy/faq.html
http://alloy.mit.edu/alloy/faq.html

Experience and Evaluation

✤ Over 600 citations (Google Scholar)

✤ Over 100 case studies

✤ A dozen languages translated to Alloy

✤ Select tools built on Alloy4 (Alloy + Kodkod)

✤ Forge, Squander, Alloy4Eclipse, DynAlloy, TACO, Equals Checker,
Nitpick, Margrave

http://alloy.mit.edu/alloy/applications.html 36

Monday, 23 January, 12

http://alloy.mit.edu/alloy/faq.html
http://alloy.mit.edu/alloy/faq.html

Concluding Remarks

✤ Alloy emerged from a series of observations
✤ a large class of structural models can be described in Z without

higher-order features, and can thus be analyzed ‘efficiently’

37

A modelling notation that can express
a useful range of structural properties

Monday, 23 January, 12

Concluding Remarks

✤ Alloy emerged from a series of observations
✤ a large class of structural models can be described in Z without

higher-order features, and can thus be analyzed ‘efficiently’
✤ Alloy combines familiar and well-tested ideas from existing notations

38

A modelling notation that can express
a useful range of structural properties

Monday, 23 January, 12

Concluding Remarks

✤ Alloy emerged from a series of observations
✤ a large class of structural models can be described in Z without

higher-order features, and can thus be analyzed ‘efficiently’
✤ Alloy combines familiar and well-tested ideas from existing notations
✤ Alloy’s kernel language represents an attempt to capture the “essence

of object modelling”

39

A modelling notation that can express
a useful range of structural properties

Monday, 23 January, 12

Concluding Remarks

✤ Alloy emerged from a series of observations
✤ a large class of structural models can be described in Z without

higher-order features, and can thus be analyzed ‘efficiently’
✤ Alloy combines familiar and well-tested ideas from existing notations
✤ Alloy’s kernel language represents an attempt to capture the “essence

of object modelling”
✤ The ability to experiment with a model and check properties changes

the very nature of modelling
40

A modelling notation that can express
a useful range of structural properties

Monday, 23 January, 12

✤ The model is divided into paragraphs...

✤ domain paragraph: declares sets of atoms (e.g., file system objects,
directory entries, names)

✤ state paragraph: declares state components, which are static sets
representing fixed classifications of objects (e.g., File and Dir)

✤ definition paragraph: used to define relations in terms of other state
components (e.g., the parent of o follows the entries relation backward)

✤ invariants: these are facts about the model (e.g., any two distinct
entries have different names)

Alloy Specification (2002)

41

Monday, 23 January, 12

Alloy Specification (2012)

✤ Signatures -- introduces a set of atoms

✤ Facts -- constraints that are assumed always to hold

✤ Assertions -- constraints that are expected to follow from the facts of
the model; the analyzer checks assertions to detect design flaws

✤ Predicates -- constraints that you don’t want to record as facts; (e.g.,
you might want to analyze a model with a particular constraint
included, and then excluded)

✤ Functions -- a named expression intended for reuse
42

Monday, 23 January, 12

✤ A file system is composed of file system
objects (FSObject), which are files (File) and
directories (Dir)

✤ A FileSystem has a root directory, a live set of
files and directories, a relation describing the
contents of directories, and a parent relation
that describes parent/sub-directory
relationships

Facts about our model:
no root has a parent
FSObjects are reachable from root
parent is the inverse of contents relation
contents only defined on live FSObjects

Example Alloy Specification

43

Monday, 23 January, 12

We expect that a file system will
have only one root directory, which
we can check via an assertion and a
check command.

Example Alloy Specification

If one exists, the analyzer will find a
counterexample within the specified
scope (5, here), which advises us to
revise our model.

44

Monday, 23 January, 12

