
Reviewer: Sharon Choy

Paper Title: An Overview of the Scala Programming Language

Author(s): Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos
Gilles Dubochet, Burak Emir, Sean McDirmid, StÈphane Micheloud,
Nikolay Mihaylov, Michel Schinz, Erik Stenman, Lex Spoon, Matthias Zenger

1) Is the paper technically correct?
 [x] Yes
 [] Mostly (minor flaws, but mostly solid)
 [] No

2) Originality
 [] Very good (very novel, trailblazing work)
 [x] Good
 [] Marginal (very incremental)
 [] Poor (little or nothing that is new)

3) Technical Depth
 [] Very good (comparable to best conference papers)
 [x] Good (comparable to typical conference papers)
 [] Marginal depth
 [] Little or no depth

4) Impact/Significance
 [] Very significant
 [x] Significant
 [] Marginal significance.
 [] Little or no significance.

5) Presentation
 [] Very well written
 [] Generally well written
 [x] Readable
 [] Needs considerable work
 [] Unacceptably bad

6) Overall Rating
 [] Strong accept (award quality)
 [] Accept (high quality - would argue for acceptance)
 [x] Weak Accept (borderline, but lean towards acceptance)
 [] Weak Reject (not sure why this paper was published)

7) Summary of the paper's main contribution and rationale

 for your recommendation. (1-2 paragraphs)

The main contribution of this work is that it presents Scala language which
fuses object-oriented and functional programming into a statically typed
programming language. The Scala language is novel in its type system as it
supports parameterization and abstract members for the purpose of
abstraction. Additionally, Scala has flexible modular mixin-composition
constructs which allows programmers to reuse new class definitions that are
not inherited. Lastly, Scala has views (implicit conversion between types)
which enable component adaptation in a modular way. Scala attempts to
solve the external extensibility problem by having views which allow the
programmer to augment a class with new members and supported traits
(special form of an abstract class which does not have any value parameters
for its constructor). The motivation for Scala is to address the
shortcomings of programming languages that are used to define and integrate
components; ultimately, Scala was created to address the limited support
for component abstraction and composition in statically typed languages
such as Java and C#.

The contribution of Scala is significant because it provides a set of
constructions for composing, abstracting and adapting software components.
This ultimately allows the language to become extensible enough so that
users can model their domains in libraries and frameworks. Scalaís design
is influenced by many different languages (e.g. Smalltalk, Beta, ML, OCaml,
Haskell, Pizza, etc.). Thus, this paperís originality comes from its
efforts to amalgamate research efforts in the area of software abstraction
and component composition. Also, the paper argues that Scalaís class
abstraction and composition mechanisms can be seen as the basis for a
service-oriented software component model. This contribution is also
significant as it would allow pluggable software components; and thus,
Scala is able to allow simple assembly of large components that have many
recursive dependencies. Ultimately, the application of Scala would result
in a ìsmooth incremental software evolution process.î Overall, the paper
was technical and its depth was appropriate and comparable to typical
conference papers. Sufficient explanation was given to the presented
examples; however, an overall rating of weak accept was given since the
paper could have been presented and written more clearly (i.e. it was noted
that there were a number of grammar mistakes).

8) List 1-3 strengths of the paper. (1-2 sentences each,
identified as S1, S2, S3.)

S1 ñ This paper clearly outlines the features of Scala in a logical format
(e.g. Scalaís resemblance of Java, has a uniform object model, is also a
functional language, has abstraction concepts for both types and values,

has flexible modular mixin-composition constructors, allows decomposition
of objects by pattern matching, supports XML documents, and allows external
extensions of components using views).

S2 ñ The paper provides Scala examples which aid in comprehension of the
Scala programming language (although the paper is not intended as a
tutorial)..

S3 ñ The paper does a fair job in explaining how Scala is both an object-
oriented and functional programming language at the same time. The
background the paper provides for each feature of Scala is sufficient for
reader comprehension.

9) List 1-3 weaknesses of the paper (1-2 sentences each,
identified as W1, W2, W3.)

W1 ñ The paper postulates that ìscalable support for components can be
provided by a programming language which unifies and generalizes object-
orientated and functional programmingî; however, the paper fails to explain
the intuition behind this statement and how unifying object-oriented and
functional programming can result in better language support for component
software.

W2 ñ Though the paper provides a description of Scala, it fails to
acknowledge whether or not Scala is helpful in designing component
software. The paper indicates that the only way to evaluate the usefulness
of Scala is to apply it to an application; however, it does not give any
empirical evidence (or indicate of future work) that Scala eases the
designing of component software.

W3 ñ The purpose of Scala, as suggested by the introduction, is supposed to
help in designing component software; however, in each of the sections
describing the Scala language, the authors do not clearly provide a
rationale of how the described feature of Scala contributes to solving the
presented problem.

