
Language Oriented Programming: The Next
Programming Paradigm

Paper Presentation by Tommy Carpenter

Original Author: Sergey Dmitriev

February 4, 2012

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 1



Outline

1 Motivation

2 LOP and the MPS

3 Conclusion/Discussion

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 2



What is this paper about?

The Problem
Generalized programming languages (Java/C++) force us to translate our
ideas on how to solve problems into restrictive PL constructs and
environments. Ideas are lost in this downconversion and this way of
programming is not natural or efficient.

The Solution
Language Oriented Programming (LOP) & Meta Programming System (MPS).
We should be able to work in terms of the concepts and notions of problems
we are trying to solve using DSLs (LOP). If we don’t have a DSL that fits our
needs, we should be able to easily modify one or create a new one (MPS).

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 3



What is this paper about?

The Problem
Generalized programming languages (Java/C++) force us to translate our
ideas on how to solve problems into restrictive PL constructs and
environments. Ideas are lost in this downconversion and this way of
programming is not natural or efficient.

The Solution
Language Oriented Programming (LOP) & Meta Programming System (MPS).
We should be able to work in terms of the concepts and notions of problems
we are trying to solve using DSLs (LOP). If we don’t have a DSL that fits our
needs, we should be able to easily modify one or create a new one (MPS).

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 3



Motivation

What’s wrong with our current programming methodology?

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 4



Motivation

Imagine if...

programming was closer to explaining the solution to a problem in NL
domain experts could program directly or better express their ideas to
programmers
it was easy to view a program years later and quickly extend it
we could eliminate time and Tom Ó

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 5



Motivation

Completion time is too long

Long time between mentally solving a problem and a working
implementation
We can explain the solution to a complex problem to others in minutes,
but it takes d/m/y to write it in a way computers understand. Why?
- PLs are much less expressive than NL
- Can’t give a computer high level ideas: must implement every detail
- We waste time converting NL ideas into PL constructs, e.g., OOD

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 6



Motivation

Maintenance is hard

Looking back at code is difficult!
Info about “what is going on” is lost in the downconversion from NL to PL
Looking back, its hard to build the mental model of the solution again
Extensive code documentation is time consuming and quickly becomes
out of sync
Wouldn’t it be awesome if code was self documenting?

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 7



Motivation

DS extensions are weak

Forex, specific class libraries in Java
Steep learning curve for domain experts to learn how to use these
libraries as opposed to DSLs
Can lose motivation when drudging through code documentation

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 8



LOP and the MPS

Proposed Solution: Language Oriented Programming (LOP) and the Meta
Programming System (MPS), a framework for LOP

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 9



LOP and the MPS

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 10



LOP and the MPS

LOP Uses

With LOP, we can:
think of programs as solutions to problems in their domains
“lay out” solutions like they are in our heads
represent different parts of code with their domain specific symbols, e.g.,
math equations, pictures...
edit a program’s “graphical structure” directly, instead of just editing text
easily create or extend a DSL if one isn’t available or sufficient

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 11



LOP and the MPS

LOP

An L in LOP has a structure, an editor, and semantics:
structure: “abstract syntax”. Defines what concepts are supported and
how they interact
editor: “concrete syntax”. Defines how we edit the structure (read:
program) and how it is displayed
semantics: defines how the structure is interpreted or compiled

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 12



LOP and the MPS

MPS

So how do we create these languages?
Need a “bootstrapping” DSL whose domain is the creation of languages
for other domains. “Language building languages”
A program in this bootstrapping domain is a DSL
MPS has a structure language, an editor language, and a transformation
language used to define other DSLs
Defining these new DSLs is “metaprogramming”: we are programming
the DSLs we will program in

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 13



LOP and the MPS

MPS Structure Language

We use the MPS Structure Language to:
define the types, like objects or “concepts” we want to represent
define the properties of the types, and define how instances of various
types interact with each other
- child/parent (like inheritance) vs. freeform relationships (define arbitrary
relationships between types)

To use the newly created language: define instances of types, populate
property values, link instances together

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 14



LOP and the MPS

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 15



LOP and the MPS

MPS Editor

confusion warning - vague

The MPS Editor is not a diagram editor even though programs are internally
represented as graphs

We use the MPS Editor to:
create a template of cells
- cells can hold anything
add features like autocomplete, refactoring, model checking...

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 16



LOP and the MPS

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 17



LOP and the MPS

MPS Transformation Language

We want our code to execute or be interpreted!
Could write a direct transformation from the DSL to machine code
(essentially a compiler), but thats hard.

MPS compilation approach:

Use the Transformation Language for the hard part. Employ three separate
DSLs that use: an iterative approach, templates/macros, and search patterns

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 18



LOP and the MPS

Iterative Approach

Enumerate code in DSL and produce target language directly
Forex, IBM’s Model Query Language. MQL essentially allows you to
search for DSL code and upon matches, generate target source code
Think of this as “find DSL code and replace with target code”

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 19



LOP and the MPS

Templates and Macros

Build a template in the target language, and write macros that are
executed when you run the transformation
Uses the iterative approach to inspect, then executes the macros that fill
in the templates
Forex, Velocity, XSLT

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 20



LOP and the MPS

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 21



LOP and the MPS

Patterns

Not described in detail
Can build a regex type of MQL

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 22



LOP and the MPS

Platforms, libraries, extensions...

Need some common functionality we never have to reimplement when
making new DSLs
In MPS libraries are languages you can use with your DSL
The base language provides arithmetic, variables, loops, conditionals etc
The collections language provides several container types, like those in
Java.util or C++.STD
The UI language provides the ability to design UIs, like java.swing
Others: networking, database connectivity...

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 23



Conclusion/Discussion

Conclusions

Mainstream programming has disadvantages we can all agree with
DSLs seem powerful, and people are starting to work on systems like
MPS
For DSLs to really take off, we need a good environment for building and
transforming them
“99% Java reimplemented with MPS. (wiki)” Professional GUI released in
Apr. 2010. Project seems alive, you can download V2. Documentation
and future articles were released. Q2 2012 MPS 3.0 release (Jetbrains)

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 24



Conclusion/Discussion

Conclusions

Mainstream programming has disadvantages we can all agree with
DSLs seem powerful, and people are starting to work on systems like
MPS
For DSLs to really take off, we need a good environment for building and
transforming them
“99% Java reimplemented with MPS. (wiki)” Professional GUI released in
Apr. 2010. Project seems alive, you can download V2. Documentation
and future articles were released. Q2 2012 MPS 3.0 release (Jetbrains)

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 24



Conclusion/Discussion

Discussion Points

Its not clear what the difference between the three types of
transformation DSLs are. They are fundamentally the same (search, find,
generate), just different ways of doing so.
Paper is motivated well, but not clear if this particular solution is the
answer. Using MPS seems like a lot of work; domains are small. Perhaps
awesome for a company with limited product scope
Some cool ideas. Perhaps a Maple like interface that compiles to the
language of your choice, useful!

Paper Presentation by Tommy Carpenter Original Author: Sergey DmitrievLanguage Oriented Programming: The Next Programming Paradigm 25


	Motivation
	LOP and the MPS
	Conclusion/Discussion

