Configuring Software Product Lines using Clafer and multi-objective optimization

Rafael Olaechea

Outline

- Background.
- Methodology including Research Problem.

- ▶ Tool
- Evaluation.
- Future Work.
- Conclusions.

Software Product Lines

- Create family of software systems to be used in a specific domain.
 - Domain Model.
 - Reusable Assets.
 - Configuration Model:
 - Feature Model.
 - Product Derivation Process

Examples: Medical Imaging Systems Software.

Methodology

- Goal: Improve the product derivation process in Software Product Lines.
- I. Collect SPL feature model examples.
- Build on existing solutions (Clafer, Moolloy, Alloy partial instances)
- 3. Create extension to Clafer translator.
- 4. Evaluate Performance of tooling.

SPL Annotated Feature Models

- Annotate feature models with Quality Requirements:
 - Binary Footprint.
 - Performance
 - Code Complexity
 - Reliability

Tooling Pipeline

Clafer

Feature Model +Quality Objectives

Berkeley DB Feature Model in Clafer

10

abstract BerkeleyDbC

STATISTICS : IMeasurable ? [this.footprint = 285] **CRYPTO : IMeasurable ?** [this.footprint = 19] **INDEXES**: IMeasurable [this.footprint = 0] **xor** BTREE [this.footprint = 0] BTREE SMALL : Imeasurable [this.footprint = 340] BTREE_FAST : IMeasurable [this.footprint = 1800] HASH: IMeasurable ? [this.footprint = 113] QUEUE : IMeasurable ? [this.footprint = 58] REPLICATION : IMeasurable ? [this.footprint = 89]

Evaluation on Sample Feature Models

SPL	Features	Time (s)	Binary Footprint (kB)
LinkedList	18	71	4.43
LinkedList [Print and Measurement]	18	21	10.64
SQLite	80	32278	1200
Berkeleydb	8	23.6	1804
	12		

Other Feature Models

- Violet UML UML Diagramming Tool, ~ 200 features.
- ZipMe Zipping program.
- Prevayler Java Persistence framework.
- PKJab Instant Messenger Application.
- Apache Web Server.
- BerkeleyDB Java Version Database.

Extending Clafer with Objectives: LinkedList Feature

abstract LinkedList xor AbstractElement : IMeasurable [this.footprint = -12] ElementA : IMeasurable [this.footprint = 12] ElementB : IMeasurable [this.footprint = 0] **xor** AbstractSort : IMeasurable ? [this.footprint = 57] **BubbleSort** : IMeasurable [this.footprint = 17] MergeSort : IMeasurable [this.footprint = 32] print : IMeasurable ? [this.footprint = 44] Measurement : IMeasurable ? [AbstractSort] [this.footprint = 484]

<u>abstract</u> IMeasurable footprint : integer

config : LinkedList
[print && Measurement]
<< min config.total_footprint >>
<< max config.total_performance>>

total_footprint :integer = <u>sum(IMeasurable .footprint)</u> 14

Extending Clafer with Objectives

LL_Configuration: LinkedList_FeatureModel
 [print && Measurement]
 << min LL_Configuration.total_footprint >>

<< max LL Configuration.performance >>

Optimizing Footprint + Performance

objectives o_global { minimize [c229_simpleConfig.@r_c121_total_footprint. @c121_total_footprint_ref], maximize [c229_simpleConfig.@r_c122_total_performa nce.@c122_total_performance_ref] }

Get a set of solutions in the optimal front between performance and footprint.

Reasoning Optimization: Partial Instances in Alloy

- Alloy Extension to express scope in terms of concrete instances.

-Clafer translator generates a partial instance block to improve performance of reasoning in alloy.

17

inst partialinstance {
 12 int, // bitwidth
 relation_footprint in ...

Optimizing Footprint

Translate Clafer Objectives into Alloy:

> objectives o_global { minimize [c229_simpleConfig.@r_c121_total_footprint. @c121_total_footprint_ref] }

Execute using Multi-Objective Alloy:

Found base solution. At time: 3, Improving on [586] Found a better one. At time --: 3, Improving on [586] Found a better one. At time --: 6, Improving on [467] Found a better one. At time --: 27, Improving on [444] Found a better one. At time --: 43, Improving on [443] GIA ----: [443]

Future Work

Integrate Sparse Integer Support from Alloy.

- Breadth-Width Search could create set of all reachable integers.
- Integrate partial non-optimal results from the alloy solver before reaching the optimal answers.
 - For Sqlite it took 13 hours, but last 7 hours gave only marginal improvement.

Challenges

- Partial Instances in Alloy:
 - Ongoing work from Vajih Montaghami.
- Getting Realistic Software Product Line Models
 - Wrote translator to get real models from SPLConqueror work by Norbert Siegmund et al.

Conclusions

Product Configuration in Clafer

Explore Space of Product Configurations

Helps Stakeholders consider quality properties.

21

Quality of Annotated Feature Models.

References

- SPL Conqueror: Toward optimization of Non-functional Properties in Software Product Lines. N. Siegmund et Al. Software Quality Journal.
- Extending Alloy with Partial Instances. V. Montaghami, D. Rayside.
- Scalable Prediction of Non-functional Properties in Software Product Lines. N. Siegmund et Al. SPLC 2011.
- The Guided Improvement Algorithm for Exact, General-Purpose, Many-Objective Combinatorial Optimization. Rayside et al.
- Feature and Meta-Models in Clafer: Mixed, Specialized and Coupled. K. Bak, K. Czarnecki, Andrzej Wasowski.