
1

Translating the Feature Oriented Requirements 
Modelling Language (FORML) to Alloy

David Dietrich
CS846

For the purpose of automated analysis



2

Outline

● Problem and Motivation
● FORML
● The Translator
● The Analysis
● Demo
● Limitations
● Future Work
● Conclusions



3

Problem

● One kind of correctness of a state machine is a lack of 
conflicts when concurrent transitions are executed

● A conflict occurs when 2 transitions execute at the 
same time, but one of their post-conditions does not 
hold
● e.g., Changing the same object with 2 transitions may 

lead to a non-deterministic post state
● The goal of this project is to create a translator to Alloy 

that can use the Alloy Analyzer to locate conflicts when 
2 transitions execute concurrently



4

The Cost of Requirements Errors

Image from http://www.stickyminds.com/sitewide.asp?ObjectId=12529&Function=edetail&ObjectType=ARTCOL

http://www.stickyminds.com/sitewide.asp?ObjectId=12529&Function=edetail&ObjectType=ARTCOL


5

FORML

● Created by Pourya Shaker at the University of 
Waterloo

● Requirements modelling language that provides 
support for Software Product Lines and feature-
oriented modelling

● FORML is designed as a graphical language, 
but a plain text grammar has also been created

● There are 2 models: the World Model, and the 
Behaviour Model



6

FORML – World Model



7

FORML – Behaviour Model



8

The Translator

● Takes a FORML model as input and produces an Alloy 
model

● Written in the Turing eXtender Language (TXL)

● I have only extended the translator, initial parts of it 
were written by Jan Gorzny (now at U of T)



9

Translator Architecture



10

Translation Overview



11

Actions on Transitions

● A transition can have several World Change 
Actions (WCAs) on it

● The types of WCAs are:
● Adding an object
● Removing an object
● Changing an attribute on an object

● Each object has a predicate created for each of 
the possible WCAs



12

How does the analysis take place?

(1) Two transitions are chosen
(2) Each transition has its action(s) executed, 
resulting in 2 new Future Instances

(3) The resulting futures are compared to find 
locations where the post conditions overlap



13

WCA Example



14

Transition Example



15

3 Kinds of Analysis

● Pairs of transitions which can remove and 
change the same object

● Pairs of transitions which can both change the 
same attribute on an object

● Single transitions which violate world state 
constraints

● Each method is encoded as an Alloy assertion



16

World State Constraints (WSC)

● pred WSC(world_state){...}
● Set of constraints over a single instance of the 

world model
● Implemented as a predicate in the Alloy model
● Contains:

● Encodes cardinality constraints
● Constraints specified by the user in their FORML 

model



17

Assertion Example

● An example of an assertion to check that a transition does 
not violate a World State Constraint



18

World State Transition Constraints

● pred WSTC (world_state1, world_state2) {...}

● Needed when a transition moves to a future 
state

● These encode constraints such as:
● The parts of a composition must belong to the same 

whole over their lifetime

● Each transition must also encode its frame 
conditions



19

Demo



20

FORML – Behaviour Model



21

Resulting Model



22

Results

● Translating the entire World Model and 
important parts of the Behaviour Model

● Implemented 3 methods of finding conflicts 
between pairs of transitions:
● 2 transitions changing the same object
● 1 transition removing, 1 transition changing the 

same object
● 1 transition violating the World State Constraints



23

Editor Support

● Created a simple Emacs Major Mode for 
FORML
● eLisp is just a DSL

● Provides syntax highlighting, code completion 
and (buggy) automatic indentation



24

Limitations

● Triggers and Guards on transitions are not 
used
● The resulting model from the demo would still give 

a counterexample if re-translated and analyzed
● This leads to false positives in an otherwise conflict 

free model

● Naming conflicts may occur
● This is due to a limitation of TXL



25

Future Work

● Multiple actions per transition
● Simplified expressions (probably can't be done 

in TXL)
● Generalize the idea of an interaction to 

generalize the assertions
● (Refactoring)



26

TXL

● A fairly simple pattern matching Domain 
Specific Language

● Works with ambiguous grammars which is 
great

● Complex things need to be done in unintuitive 
ways
● There is an extension called eTXL (however, it is no 

longer active and the only documentation is a 
Masters thesis)



27

Conclusion

● Using this method makes it possible to show 
correctness of a part of your model
● This does not prove correctness of your entire 

model, only a facet of it

● By using a DSL like TXL to create the translator 
the initial learning overhead was lowered, but it 
complicated things later on


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

