Translating the Feature Oriented Requirements
Modelling Language (FORML) to Alloy

For the purpose of automated analysis

David Dietrich
CS846

Outline

Problem and Motivation
FORML

ne Translator

ne Analysis
Demo
Limitations
Future Work
Conclusions

Problem

e One kind of correctness of a state machine is a lack of
conflicts when concurrent transitions are executed

* A conflict occurs when 2 transitions execute at the
same time, but one of their post-conditions does not
hold

* e.g., Changing the same object with 2 transitions may
lead to a non-deterministic post state

* The goal of this project is to create a translator to Alloy
that can use the Alloy Analyzer to locate conflicts when
2 transitions execute concurrently

The Cost of Requirements Errors

90 80
80

70
60

20 O Relative Cost to Fix
40 (Requirements = 1)

30
20 15

4
Image from http://www.stickyminds.com/sitewide.asp?Objectld=12529&Function=edetail&Object Type=ARTCOL

http://www.stickyminds.com/sitewide.asp?ObjectId=12529&Function=edetail&ObjectType=ARTCOL

FORML

* Created by Pourya Shaker at the University of
Waterloo

 Requirements modelling language that provides
support for Software Product Lines and feature-
oriented modelling

« FORML is designed as a graphical language,
but a plain text grammar has also been created

 There are 2 models: the World Model, and the
Behaviour Model

FORML — World Model

PhysicalObject

position: Coord
shape: Shape

RoadObject

Steer{value: Int)

Accelerate(value: Int)

speed: Int
acceleration: Int |~ IsOn 1 | poadSegment
orientation: Int | . 40hj roadSeg| speedLimit: Int 1.+
direction: Direction

Oriver Drives AutoSoftCar - Contains i__.;l:tz)ét_)ﬁ_i
ignition: IgnitionState e

i w«AutoSofin

| BDS

i «inputs»

: Ign?te{]n{}

: Ignite Off{)

|

|

|

|

|

Decelerate(value: Int)

enum IgnitionState = {on, off} B{

Lane

FORML — Behaviour Model

SPL AutoSoft
feature BDS

feature-machine main B}

t1: IgniteOn() /
al: AutoSoftCar.ignition := on

acceleration

t3: Accelerate(value) /
al: AutoSoftCar acceleration ;= acceleration()

/

.9(waitAncelerateJ

deceleration

t4- Decelerate{value) /

off £2: IgniteOff() /
a1l: AutoSoftCar.ignition = off

a’l: AutoSoftCar.acceleration .= deceleration()

/

.9(wait[}ecelerate]

t5: Steer(value) /
al: AutoSoftCar.onentation = onentation()

/

waitSteer

The Translator

 Takes a FORML model as input and produces an Alloy
model

* Written in the Turing eXtender Language (TXL)

* | have only extended the translator, initial parts of it
were written by Jan Gorzny (now at U of T)

Translator Architecture

Step Step

.
., p;
", -
.
", .-
s
.++ +"
', o
" +
*, o
', o
" +
. o
)

(Glnbal Varia blEE)

FORML Parsing Alloy Creatiun]

Translation Overview

(FGRML MetamndEI] [Allny Metamndel]
A K A A
N /

Conforms Knows Knows Conforms
/

N
N /
(FGRML Mndel]—)[T}{L TranslatnrJ—)[AIIUy Mndel]
IN ouT

10

Actions on Transitions

* Atransition can have several World Change
Actions (WCAs) on it

* The types of WCAs are:
 Adding an object
« Removing an object
» Changing an attribute on an object

* Each object has a predicate created for each of
the possible WCAs

11

How does the analysis take place?

(1) Two transitions are chosen

(2) Each transition has its action(s) executed,
resulting in 2 new Future Instances

(3) The resulting futures are compared to find
locations where the post conditions overlap

Comparison

Future Instance l] ﬁ [Future Instance 2

Transtk Armtnn 2

Ir1|t|al Instance

12

WCA Example

AutoSoftCar
ignition: IgnitionState

pred remove AutoSoftCar (ws0, wsl : WS, ol : AutoSoftCar) {
ol in ws0.AutoSoftCars

wsl.AutoSoftCars = ws0.AutoSoftCars - ol Removing an ObJECt
}
pred add AutoSoftCar (ws0, wsl : WS, ol : AutoSoftCar) {

0l not in ws0.AutoSoftCars

wsl.AutoSoftCars = wslO.AutoSoftCars + ol Adding an object

}

pred change AutoSoftCar ignition (ws0O, wsl : WS, ol : AutoSoftCar, vl IgnitionState) {
0ol in ws0.AutoSoftCars _ o _
ol.(wsl.RAutoSoftCar ignition) = vl Changing the ignition attribute

}

13

Transition Example

pred AutoSoft BDS main tl (wsO, wsl : WS, al vl : IgnitionState, al ol : AutoSoftCar) {
wsl.AutoSoftCars = wslO.AutoSoftCars
wsl.AutoSoftCar orientation = ws0.AutoSoftCar orientation

wsl.AutoSoftCar acceleration = ws0.AutoSoftCar acceleration ..
s Frame Conditions

wsl.Decelerate value = ws0.Decelerate value
change AutoSoftCar_ ignition [ws0, wsl, al _ol, al vl] Change Ignition WCA

14

3 Kinds of Analysis

Pairs of transitions which can remove and
change the same object

Pairs of transitions which can both change the
same attribute on an object

Single transitions which violate world state
constraints

Each method is encoded as an Alloy assertion

15

World State Constraints (WSC)

e pred WSC (world_state) {...}

» Set of constraints over a single instance of the
world model

* Implemented as a predicate in the Alloy model
e Contains:

* Encodes cardinality constraints

» Constraints specified by the user in their FORML
model

16

Assertion Example

 An example of an assertion to check that a transition does
not violate a World State Constraint

assert WSC AutoSoft BDS main tl {
all al vl : IgnitionState, al ol : AutoSoftCar |
WSC [ws0] and AutoSoft BDS main tl [ws0O, wsl, al vl, al ol] implies WSC [wsl]
}

17

World State Transition Constraints

e pred WSTC (world_statel, world_state?2) {...}

e Needed when a transition moves to a future
state

e These encode constraints such as:

* The parts of a composition must belong to the same
whole over their lifetime

e Each transition must also encode its frame
conditions

18

THE TECHNOLOGY DEMO

THE SOFTWARE
ISN'T 1003
COMPLETE.

www. dilbert.com scotfadams @ aal com

Demo

|.I IF IT HAD A USER

INTERFACE YOU
WOULD SEE SOME-
THING HERE. ..
HERE. . .AND SOME-
L‘I‘[M‘EE HERE.

a :.-|_|,p¢. 2000 United Fasture Sysdicals, na.

(" AND THEN YOUD
BE SAYING, I
GOTTA GET ME

, SOME OF THAT .

1

ANY

QUESTIONS?

~\

19

FORML — Behaviour Model

SPL AutoSoft
feature BDS

feature-machine main B}

t1: IgniteOn() /
al: AutoSoftCar.ignition := on

acceleration

t3: Accelerate(value) /
al: AutoSoftCar acceleration ;= acceleration()

/

.9(waitAncelerateJ

deceleration

t4- Decelerate{value) /

off £2: IgniteOff() /
a1l: AutoSoftCar.ignition = off

a’l: AutoSoftCar.acceleration .= deceleration()

/

.9(wait[}ecelerate]

t5: Steer(value) /
al: AutoSoftCar.onentation = onentation()

/

waitSteer

20

Resulting Model

SPL AutoSoft
feature BDS

feature-machine main B}

t1: IgniteOn() /
a1l: AutoSoftCar.ignition := on

acceleration

t3: Accelerate(value) /
al: AutoSoftCar acceleration ;= acceleration()

/

.9(waitAmelerate]

deceleration Seta

transition priority to resolve conflict

Decelerate(value) /

off t2: IgniteOff() /
al: AutoSoftCar.ignition = off

a'l:. AutoSoftCar acceleration = deceleration()

/

.9(wait[}ecelerate]

t5: Steer(value) /
al: AutoSoftCar.onentation = onentation()

/

waitSteer

21

Results

* Translating the entire World Model and
important parts of the Behaviour Model

* Implemented 3 methods of finding conflicts
between pairs of transitions:

» 2 transitions changing the same object

* 1 transition removing, 1 transition changing the
same object

1 transition violating the World State Constraints

22

Editor Support

e Created a simple Emacs Major Mode for
FORML

» elLispisjusta DSL

* Provides syntax highlighting, code completion
and (buggy) automatic indentation

23

Limitations

* Triggers and Guards on transitions are not
used

* The resulting model from the demo would still give
a counterexample if re-translated and analyzed

* This leads to false positives in an otherwise conflict
free model

 Naming conflicts may occur

 This is due to a limitation of TXL

24

Future Work

* Multiple actions per transition

» Simplified expressions (probably can't be done
in TXL)

e Generalize the idea of an interaction to
generalize the assertions

» (Refactoring)

25

TXL

* A fairly simple pattern matching Domain
Specific Language

* Works with ambiguous grammars which is
great

 Complex things need to be done in unintuitive
ways

* There is an extension called eTXL (however, it is no
longer active and the only documentation is a
Masters thesis)

26

Conclusion

* Using this method makes it possible to show
correctness of a part of your model

* This does not prove correctness of your entire
model, only a facet of it

* By using a DSL like TXL to create the translator
the initial learning overhead was lowered, but it
complicated things later on

27

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

