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Problem

● One kind of correctness of a state machine is a lack of 
conflicts when concurrent transitions are executed

● A conflict occurs when 2 transitions execute at the 
same time, but one of their post-conditions does not 
hold
● e.g., Changing the same object with 2 transitions may 

lead to a non-deterministic post state
● The goal of this project is to create a translator to Alloy 

that can use the Alloy Analyzer to locate conflicts when 
2 transitions execute concurrently
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The Cost of Requirements Errors

Image from http://www.stickyminds.com/sitewide.asp?ObjectId=12529&Function=edetail&ObjectType=ARTCOL

http://www.stickyminds.com/sitewide.asp?ObjectId=12529&Function=edetail&ObjectType=ARTCOL
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FORML

● Created by Pourya Shaker at the University of 
Waterloo

● Requirements modelling language that provides 
support for Software Product Lines and feature-
oriented modelling

● FORML is designed as a graphical language, 
but a plain text grammar has also been created

● There are 2 models: the World Model, and the 
Behaviour Model
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FORML – World Model
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FORML – Behaviour Model
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The Translator

● Takes a FORML model as input and produces an Alloy 
model

● Written in the Turing eXtender Language (TXL)

● I have only extended the translator, initial parts of it 
were written by Jan Gorzny (now at U of T)
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Translator Architecture
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Translation Overview
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Actions on Transitions

● A transition can have several World Change 
Actions (WCAs) on it

● The types of WCAs are:
● Adding an object
● Removing an object
● Changing an attribute on an object

● Each object has a predicate created for each of 
the possible WCAs
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How does the analysis take place?

(1) Two transitions are chosen
(2) Each transition has its action(s) executed, 
resulting in 2 new Future Instances

(3) The resulting futures are compared to find 
locations where the post conditions overlap
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WCA Example
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Transition Example
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3 Kinds of Analysis

● Pairs of transitions which can remove and 
change the same object

● Pairs of transitions which can both change the 
same attribute on an object

● Single transitions which violate world state 
constraints

● Each method is encoded as an Alloy assertion
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World State Constraints (WSC)

● pred WSC(world_state){...}
● Set of constraints over a single instance of the 

world model
● Implemented as a predicate in the Alloy model
● Contains:

● Encodes cardinality constraints
● Constraints specified by the user in their FORML 

model
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Assertion Example

● An example of an assertion to check that a transition does 
not violate a World State Constraint



18

World State Transition Constraints

● pred WSTC (world_state1, world_state2) {...}

● Needed when a transition moves to a future 
state

● These encode constraints such as:
● The parts of a composition must belong to the same 

whole over their lifetime

● Each transition must also encode its frame 
conditions
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Demo
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FORML – Behaviour Model
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Resulting Model
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Results

● Translating the entire World Model and 
important parts of the Behaviour Model

● Implemented 3 methods of finding conflicts 
between pairs of transitions:
● 2 transitions changing the same object
● 1 transition removing, 1 transition changing the 

same object
● 1 transition violating the World State Constraints
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Editor Support

● Created a simple Emacs Major Mode for 
FORML
● eLisp is just a DSL

● Provides syntax highlighting, code completion 
and (buggy) automatic indentation
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Limitations

● Triggers and Guards on transitions are not 
used
● The resulting model from the demo would still give 

a counterexample if re-translated and analyzed
● This leads to false positives in an otherwise conflict 

free model

● Naming conflicts may occur
● This is due to a limitation of TXL
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Future Work

● Multiple actions per transition
● Simplified expressions (probably can't be done 

in TXL)
● Generalize the idea of an interaction to 

generalize the assertions
● (Refactoring)
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TXL

● A fairly simple pattern matching Domain 
Specific Language

● Works with ambiguous grammars which is 
great

● Complex things need to be done in unintuitive 
ways
● There is an extension called eTXL (however, it is no 

longer active and the only documentation is a 
Masters thesis)
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Conclusion

● Using this method makes it possible to show 
correctness of a part of your model
● This does not prove correctness of your entire 

model, only a facet of it

● By using a DSL like TXL to create the translator 
the initial learning overhead was lowered, but it 
complicated things later on
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