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MODULE REUSE BY INTERFACE ADAPTATION

James M. Purtilo Joanne M. Atlee

SUMMARY

This paper describes a language called NIMBLE that allows designers to declare how the actual parameters
in a procedure call are to be transformed at run time. Normally, programmers must edit an application’s
source in order to adapt it for reuse in some new context where the interfaces fail to match exactly (e.g., the
parameters may appear in a different order, data types may not exactly match, and some data may need
to be either initialized or masked out when the reusable module is integrated within a new application.)
But NIMBLE allows programmers to adapt the interfaces of existing software without having to operate on
the source manually. As a result, existing software may be easily reused in a broader range of applications,
and software libraries do not need to store many variants of a component that differ only in how the
interfaces are used. NIMBLE has been implemented on a variety of Unix hosts, and is part of a broader
reuse project at the University of Maryland. Our current system is suitable for use either in conjunction

with existing module interconnection languages, or stand-alone with C, Pascal and Ada source programs.
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INTRODUCTION

The ability to reuse components is an economic necessity within software development projects, and is
critical within prototyping efforts. Systems to help identify reusable components are increasingly able to
suggest application modules with the specified functionality [1]. However, often such modules must be
adapted in some manner before they can be used. For example, parameters may appear in a different
order, data types may not exactly match, and some data may need to be either initialized or masked out
when the reusable module is integrated within a new application. As the amount of adaptation increases,

the economic benefit of reusing that component is decreased.

In order to reduce the cost of adapting software for reuse, we turn to automatic techniques. Typically,
the emphasis has been upon transformation of abstract specifications into a valid implementation, where
tailoring of interfaces is performed during generation of the source programs, such as shown in References 2
and 3. A more recent development is a language for transforming control structures of an Ada-like language
[4]; in this way programmers can easily adapt algorithm implementations for application to elaborate data

sets, and tailoring of interfaces is again performed during the source to source transformation.

To complement the above techniques, we have developed a language called NIMBLE for programmers
to declare how actual parameters of a procedure invocation should be transformed at run-time. This
approach keeps the source programs of both components intact, and focuses on coercing parameters
instead. Programmers use NIMBLE to declare a map from the calling program’s actual parameter list to
the formal parameter list of the procedure being invoked. Then our system transforms the user’s map into

an execution-time module that performs the desired coercion at each invocation.

NIMBLE is oriented for use in the Polylith software interconnection system, a “software bus system” [5].
The combination of these two systems affords us a powerful resource for developing application structures,
and then reusing previously implemented modules to execute those designs. However, NIMBLE can also
be used stand-alone, and results are applicable to any software development environment that supports

separate compilation and packaging of reusable modules.

THE CASE FOR INTERFACE ADAPTATION

There are several reasons for programmers to consider adaptation of interfaces alone, not the least of
which is when only the object code is available for an existing component. In order to illustrate these
points, consider the example in Figure 1. The module on the left contains a set of employee records,
where each record holds pertinent data concerning one employee. This module makes a procedure call
to PRINTLABEL, defined on the right, which is a reusable envelope-printing routine. This second module

requires an interface consisting of only the sex, name, and address of the employee.



These components cannot be linked directly due to differences in their respective interface patterns. Not
only does the record structure expected by the called module contain fewer fields, but the order of the
fields has changed and the sex data field is now represented by an integer. Clearly some data manipulation

is required.

In order to interconnect these two software components, the programmer could rewrite one of the modules

to meet the interface of the other. But he could also adapt the interface externally, by either

e introducing a separate procedure, to catch the original call to PRINTLABEL with one set of parameters,

then make the actual call to it using the rearranged parameters; or

e changing the code generator so it will build the PRINTLABEL activation record with parameters in

the rearranged order at run-time.

In either case, the programmer needs some easy way to express how the parameters should be manipu-
lated, and this is the purpose of our language NIMBLE, as will be described. NIMBLE focuses upon the first
approach, that is, transforming parameters at run-time using a separate component linked into the appli-
cation. While introducing the potential for a minor performance loss in the form of an extra procedure

call, this approach does not require alteration of any of the user’s language compilation tools.

In the context of our example problem, we now review the principle reasons to consider external, automatically-

generated interface adaptation.

¢ No source available. When the two components from Figure 1 are only available in object form,
then external adaptation of interfaces i1s the only option open to programmers. Often programmers
write the interfacing code manually. In our approach, the coercion of an interface structure may
be expressed abstractly, with the code to implement the coercion generated automatically. We can
easily envision how this situation might be exploited by software vendors who are concerned with
protecting intellectual property: they may deliver reusable software components in object form,
along with an interface adaptation resource to give customers greater leverage in using the product

set.

e Simpler source programs for remaining components. When source code is available for one
of the components from Figure 1, then currently most programmers would manually adapt it to
match the interface of the other component. But external adaptation may be valuable even in this
case. Introducing extra interfacing code into an existing component makes it more complex and
more costly to maintain. For example, Figure 2 illustrates how one of the routines from Figure 1
would grow in complexity just to have the interface structures correspond. In our approach, such
code would be generated automatically, allowing the application source to remain simpler and easier

to maintain — fewer non-functional constraints affect the application code.



TYPES ADAPTOR TYPES
Enpl oyeeRecord : {
Narme : string; To be PrintRecord : ({
Address : string[4]; gener at ed Sex : integer;
Sex : string; by the Nare : string, .
Age : integer; system Address : string[4]; e T N
SocSec : integer; not by } ,
Salary : float; progr anmer . e
\ ! PROCEDURE PrintLabel ( Label PrintRecord );
. \ : BEG N
VARI ABLES | F Label . Sex = 1 THEN
Enpl oyee : Enpl oyeeRecord; H H WRI TE("Ms. ");
. ELSE | F Label . Sex = 2 THEN
: : WRITE("M. ");
. ' : WRI TELN( Label . Nane) ;
BEG N H : WRI TELN( Label . Address[0]);
. : H WRI TELN( Label . Address[ 1], ",",
. H . Label . Address[2], " ", Label.Address[3]);
. : ' END
FOR Enpl oyee = Aaron TO Zel da DO H :
Print Label ( Enpl oyee ); : :
END HEY : f
/! EnployeeRecord : { ! LT
) Nanme : string; PrintRecord : { -
Address : string[4]; Sex : integer;
! Sex : string; Nane : string;
' Age : integer; MAP Address : string[4]; .-
\ SocSec : integer; }
* Salary : float;

Figure 1: Interface

patterns to be coerced at run-time.
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TYPES
EmployeeRecord : {

Name : string; BEGIN
Add . string[4];
ress : string[4]; FOR Employee = Aaron TO Zelda DO
Sex : string; BEGIN
Age : mte.ger; Temp.Name = Employee.Name;
SocSec : integer; FOR I =0 THRU 3 DO
Sal . float;
} alary oat; Temp_Address[I] = Emponee.Address[l];
_ . IF STRINGEQUAL(" male” ,Employee.Sex)
Prslr;iRec”?;: er{ THEN Temp.Sex = 1: ELSE
Nam.e . stgrin’- IF STRINGEQUAL(" female” ,Employee.Sex)
: & THEN Temp.Sex = 2; ELSE
Address : string[4]; Temp.Sex = 3;
} PrintLabel( Temp );
VARIABLES E,ESD

Employee : EmployeeRecord;
Temp : PrintRecord;
| : Integer;

Figure 2: Example of a manually-adapted component.

NIMBLE: { EVAL( Usermap, Sex) ; Name ; Address }

Figure 3: Nimble declaration for the introductory example.

Usermap( s )
char *s;
{
if (stremp('s , "male” ) == 0) {
return( 1 );
} else if (stremp( s, "female” ) == 0) {
return( 2 );
} else return( 3 );

Figure 4: Sample implementation of Usermap.
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e Reduced opportunity to introduce error. Even when source is available for all application
components, external adaptation has possible advantages. Whenever programmers must manually
adapt a module for reuse, there is a good chance they will break it. A single declaration concerning
rearrangement of parameters is easier to construct than are the changes to a (possibly large) appli-
cation component. (While our notation must still be explained, the NIMBLE map to adapt Figure 1’s
interfaces is shown in Figure 3.) The resulting simplification of remaining components may also

make them easier to reason about by automatic techniques.

¢ Reduced complexity for underlying configuration management (CM) system. Realistic
programs often have many data that are similar in their use, but which differ slightly in structure
for reasons of convenience or performance. When the implementation language does not support
inheritance, then the programmer is faced with implementing many similar variations of essentially
the same functions to operate on all variant structures. Implementation cost aside, managing these
variants in the configuration can be expensive over the life of the project. In our example, the
‘envelop printing operation’ (implemented on the right in Figure 1) may need to be performed for
many types of records in the database, each having the necessary information but laid out in different
structures. (In other words, there may be many routines such as on the left in Figure 1, each making
the call to PRINTLABEL() with a different record type.) With external interface adaptation, the
programmer only needs to create one abstract map to show correspondence between each pair of

records.

There is an additional consideration. Before software components are baselined in a configuration
management system, they often undergo a costly validation activity. Once they are validated, each
change to the baseline requires revalidation, which is just as costly; this i1s true even if the change is
to adapt the interface for use in a new application. To avoid paying this cost, developers may elect

to leave the component intact within the CM system, and use external adaptation instead.

¢ Prototyping. Prototyping is an experimental activity intended to expose essential properties of an
application before design decisions become irreversible. The cost of creating prototyping apparatus
must be significantly less than the cost of creating the product, or else developers will gamble —
the first version of the product is, in effect, the prototype. Therefore, to keep prototyping costs
down, reuse of software is critical. External adaptation, based on abstract declarations, allows
programmers to drawn upon a broader range of existing components rapidly, and minimizes the

amount of interfacing code that must be written manually in order to construct the prototype.

The above list provides motivation for why a programmer would consider automatic, external interface
adaptation. But any time extra code is introduced into an application, there is the question of what
run-time performance cost must be paid. Our research has been to implement a notation for declaring

interface maps, create a translator to generate the interface codes based upon those maps, and then study



the effect of introducing such maps. After describing the language itself, we will present both the context

of use and our experiences with this system.

A NOTATION FOR ADAPTATING INTERFACES

NIMBLE is a declarative language whose tokens correspond to the actual parameters of a program’s interface
(at the point of a procedure call). Tts sentences express how those parameters should be rearranged and

transformed in order to match the formal parameters of the interface (where the procedure is defined).

The first step is for the programmer to create the desired map, as described below. Then this map is
compiled and used to generate an implementation of the map, called an adaptor. Finally, the adaptor is

integrated into the application system, as will be discussed.

COERCION OF INTERFACE PATTERNS

The programmer’s task i1s to declare a NIMBLE map based upon the pattern of parameters in both the
formal and actual interfaces, and so the first step is to isolate the type structure of these interfaces.
One way programmers can obtain these patterns is to simply transcribe them from the source. However,
programmers can be notoriously poor translators, so we usually employ automatic techniques for extracting
the interface patterns. Systems such as NEWYAccC can easily extract just this information from source
codes [6], and this is what we provide in NIMBLE. If source codes are unavailable, or if the programmers
use NIMBLE 1n an application language for which no interface extractor exists, then the programmers must
reproduce their own interface descriptions from program documentation. Regardless, it is clear that the

patterns must directly match the interfaces as they appear in the application source code.

In addition, the actual parameters — at the point of the call — must be given in terms of an annotated
interface pattern, that is, each parameter is assigned a unique name. This labeling allows the programmer
to refer to parameters individually when constructing a map from the actual list of parameters to the

formal interface pattern.

For example, the two sentences provided to the programmer for our introductory example are
ACTUAL PATTERN:
Name:STRING; Address:STRING[4]; Sex:STRING; Age:INTEGER; SocNum:INTEGER; Salary:FLOAT

FORMAL PATTERN:

Sex:INTEGER; Name:STRING; Address:STRING[4]
In this case, we have also annotated the formal pattern, for convenience to the programmer.

In general, the BNF for unannotated parameter lists appear as a sequence of one or more argument types



separated by semicolons, as shown below (with non-terminal symbols in italics):

arg-list = arg| arg; arg-list
arg = primitive | structured | matriz | pointer
primilive ::= BOOLEAN | INTEGER | FLOAT | STRING ...
structured = { arg-list }
malriz = arg [ index-list ]
index-list = number | number , indez-list
pointer = T arg

(Pointers to data are treated as just another set of data types, and in the next section we will discuss the
impact pointers have on interface manipulations.) The annotated parameter list is denoted by a list of
one or more labeled arguments separated by semicolons. The format is similar to that described above,

except that each argument is uniquely labeled.

Argument components are also labeled, so that the programmer may access individual structure compo-
nents. When programmers provide the annotated pattern, they can choose descriptive labels for any of
the arguments or components, as long as the labels are unique. When programmers rely upon NIMBLE to
annotate the interfaces, the labels will look much more mundane. To illustrate the convention, consider
the parameter list described by:
a:INTEGER; b:{ a:INTEGER; b:BOOLEAN[10] }; c:{ a:INTEGER; b:STRING }[20]

This interface consists of three parameters: an integer, a structured argument (composed of an integer
followed by an array of ten booleans), followed by an array of twenty structures (each composed of an

integer followed by a string). One accesses the various elements by

a - first argument in the actual parameter list.

b.a - first component of the second actual parameter.
c[0].a - first component of the first array element of the last actual parameter.
c[1]l.a - first component of the second array element of the last actual parameter.
c[19].b - last component of the last array element of the last actual parameter.

Throughout this paper, we will use our system-provided labels in all examples, unless otherwise noted.

A map created by the programmer is in terms of the labels of the actual pattern. Maps are very simple, a
list of NIMBLE labels separated by semicolons, with optional brackets to indicate record structures. If the
target interface pattern in Figure 1 was defined solely as the string-valued parameter Name, then, based
on the annotated patterns given above, the NIMBLE map would be just that: Name. NIMBLE would then
generate the appropriate adaptor so that just the right ‘name’ field would be plucked out of the caller’s
interface and transmitted to the intended procedure for processing. As it is, the target interface is slightly

richer, so we would use the map in Figure 3, as will be described.

For the sake of consistency, the range of each map must match the structure in the formal pattern, and
the NIMBLE translator will check that this is true before generating any adaptor. Two parameter lists
are considered to be structurally equivalent if there exists a bijection between the lists such that (1) a

primitive actual parameter only maps onto a formal parameter of the same primitive type, and (2) a



composite actual parameter only maps onto a structurally equivalent formal parameter. If the bijection is
order-preserving, such that the i** actual argument maps onto the i'* formal argument, then the mapping
i1s an zsomorphism, and the parameter lists are said to be syntactically equivalent. We define the notion
of semantically equivalent parameter lists to be lists that convey the same information, i.e., the same
data values, though not necessarily in the same format or order. Henceforth, we use the general term

equivalence to mean syntactic equivalence. (We will continue to fully specify semantic equivalence).

For the remainder of this section we review the various coercion scenarios that can be handled by the
NIMBLE notation. Two parameter lists are semantically equivalent by the commutative property if there
exists a bijection between parameter structures, but the parameters do not appear in the same sequence.
Given the annotated actual interface pattern, one could use the NIMBLE notation to impose any reordering
of arguments, thus creating a new parameter list that is semantically equivalent to the original actual

parameter list, but is syntactically equivalent to the formal interface pattern:

Examples:

ACTUAL PATTERN:  a:INT; b:FLOAT
FORMAL PATTERN: FLOAT:; INT
NIMBLE: b; a

ACTUAL PATTERN: a:INT; b:{ a:FLOAT; b:STR; ¢:BOOL[10] }
FORMAL PATTERN: { BOOLJ[10]; FLOAT; STR }; INT
NIMBLE: { b.c:b.a; b.b }; a

Notice that in the second example, we need to reorder the components of the structured argument. Thus,

the commutative property is recursive, affecting both arguments and their components.

Similarly, the existence or absence of structure does not alter the data values being passed. Two parameter
lists are considered to be semantically equivalent by the associative property if, when we ignore all structure
and simply consider the sequence of data objects, the resultant lists are equivalent. Thus, all three of the
following interface patterns are considered to be associative.
{INT;INT};FLOAT INT;{INT;FLOAT} INT;INT;FLOAT

If the patterns are associative but not equivalent, the programmer must enforce the structural requirements
imposed by the formal parameter pattern using the notation we have provided. Record structure is
created by listing the components inside braces; matrix structure is formed by surrounding the array
elements by square brackets; by placing a | symbol before an argument, one creates a pointer to the
argument. Structure can be relaxed by simply listing an actual argument’s components without the

assoclated structure.



Examples:

ACTUAL PATTERN:
FORMAL PATTERN:

NIMBLE:

ACTUAL PATTERN:
FORMAL PATTERN:

NIMBLE:

ACTUAL PATTERN:
FORMAL PATTERN:

NIMBLE:

a:INT; b:BOOL[3]
{INT; BOOL; BOOL; BOOL }
{ a; blo]; b[1]; b[2] }

a:{ a:INT; b:STR }; b:INT[100]
{ INT; STR; [INT[100]}
{a.a;ab; b}

a:INT[3]; b:INTJ3]; c:{ a:INT; b:INT }; d:INT
INT[3,3]
[a;b;[ca;cb;d]]

Not all actual and formal parameter lists are initially semantically equivalent. It may be the case that the
invoking module transmits additional parameters that the invoked module will not accept. If the calling
module transmits extraneous information, the programmer will need to project only the required data

values out of the actual parameter list.

Examples:

ACTUAL PATTERN:

FORMAL PATTERN:

NIMBLE:

a:INT; b:STR
INT
a

ACTUAL PATTERN:
FORMAL PATTERN:
NIMBLE:

a:INT; b:{ a:STR; b:FLOAT[5,3]; ¢:STR }; c:BOOL
{ STR; FLOAT[3] }; BOOL
{b.a, b.b[0] }; ¢

Of course, instead of manipulating existing actual arguments, the programmer may want to create new
values for any of the passed arguments, especially when the calling module does not provide the required
information. In this case, the programmer will need to eztend the actual parameter list to include the
missing data. The format for the creation of primitive data objects is the specification of the primitive

type followed by the quoted value of the new object inside parentheses.

Example:

ACTUAL PATTERN:
FORMAL PATTERN:
NIMBLE:

a:INT
INT:BOOL
a; BOOL('TRUE")

Facilities are provided to allow the programmer to coerce any primitive data object into an alternate

primitive type. We provide built-in functions for type conversions among all primitive types. The format



resembles that of the creation of new data objects: the programmer specifies the primitive type followed

by the actual data object inside parentheses.

Example:

ACTUAL PATTERN:  a:BOOL; b:FLOAT
FORMAL PATTERN: INT; INT
NIMBLE: INT(a); INT(b)

We have demonstrated how our NIMBLE notation can be used to permute an actual parameter list to match
almost any formal interface pattern. However, we have avoided examples that require major alterations of
array arguments. We can reference individual array elements and create small array structures, but most
matrix transformations are complex and any attempt to describe them in a simple notation would require

an enormous amount of patience. Consider the following example:
ACTUAL PATTERN:  a:INT[100]
FORMAL PATTERN: INT[50]

The actual parameter is an array of one hundred integers, and the invoked module is expecting a vector
of fifty integers. But which fifty integers? The first fifty? The last fifty? The components of the array
whose index is even? We have provided a rule that allows the programmer to create an array by listing

desired elements, but this is not feasible where large arrays are concerned.

We handle array manipulations with an EVAL statement, whose format is as follows:
EVAL ( id , parmlist)

The EVAL rule states that the code in module id is to be executed with parameters parm-[list, and the
resultant data structure will be passed as a parameter. All EVAL modules used in a particular NIMBLE
specification must be declared in an optional declarations section before the specification is given. These
declarations include the name of the module to be called in EVAL; the number, order and type of the
parameters the module is expecting; and the argument type of the result. NIMBLE checks that the parameter
list in the EVAL statement 1s syntactically equivalent to the interface pattern provided in the declarations
section. The resultant type is used when checking that the NIMBLE specification is syntactically equivalent

to the formal interface pattern of the invoked module.



Examples:

ACTUAL PATTERN:  a:INT[100]; b:INT[100]

FORMAL PATTERN: INT[200]

NIMBLE: DECLS concat : INT[4+];INT[4+] — > INT[+]; END
EVAL(concat,a,b)

ACTUAL PATTERN:  a:INT[10,10]

FORMAL PATTERN: INT[10]

NIMBLE: DECLS diagonal : INT[+,4] — > INT[+]; END
EVAL(diagonal,a)

ACTUAL PATTERN:  a:INT[20,5]
FORMAL PATTERN: INT[20]
NIMBLE: DECLS
slice : INT[4+,+];INT;INT;INT;INT — > INT[+];
END
EVAL(slice,a,0,19,0,0)

In the above examples, a module’s function can be inferred by it’s name. For example, the module
concat accepts two arrays of integers and combines them into a single array. Procedure diagonal takes a
square matrix and creates a vector consisting of the diagonal elements of the matrix argument. The slice
module produces a submatrix, given a multi-dimensional matrix and new lower and upper bounds for each
dimension of the original matrix. In our current implementation, the modules listed in the declaration
sections and used in EVAL statements must be provided by the programmer. After some performance
analysis, one could provide a library of commonly used coercion modules [7]. The reuse of these modules
is as profitable as the reusability of the program modules whose interconnection is made possible by

NIMBLE.

The EVAL statement is not intended to be a “catch-all” for situations that cannot be handled by the
structure symbols and casting functions that comprise the NIMBLE notation. Our notation is complete,
and can describe any combination of the algebraic permutations listed above. EVAL is provided because
it is impractical to use the simple notation when dealing with large structures, such as matrices — 1t is
feature of convenience. Along these lines, we also extended the above notation to allow arithmetic and
boolean expressions wherever a primitive was allowed, with the exception of the declaration section of
EVAL modules This allows semantic coercions of the arguments when needed. For example, if the actual
interface pattern contains an array of 10 integers, and the called module is expecting a single integer, the
expected integer may be the sum of the array elements rather than a particular array entry. This also
provides the means to compute the index of the array element to be passed at run-time. Note that the use
of expressions is not necessary for the solution of the parametric coercion problem (a syntactic problem);
it simply provides a shorthand notation for simple computations that avoid the overhead associated with

the use of EVAL.



If the module being invoked is a function (as opposed to a procedure), then NIMBLE is also responsible for
coercing the function result, since NIMBLE controls all communication between the modules. We use the

reserved word RETURN to separate the parameters from the resultant arguments.

Example:

ACTUAL PATTERN:  a:lint; b:{a:str;b:bool[2][3]}[2] RETURN T{int;int }
FORMAL PATTERN: Tbool:str RETURN a:str
NIMBLE: 1b[1].b[0,2];str(al]) RETURN {{int(foo);int('42")}

The ACTUAL PATTERN specifies the pattern of the parameters that the calling module is sending and the
type of the result that it expects in return. The FORMAL PATTERN describes the parameters expected
by the invoked module and the resultant type of the function. The NIMBLE specification describes the
transformation from actual parameters to formal parameters, and the return transformation from the
formal result to the actual result. Thus, we annotate the return portion of the FORMAL PATTERN. The
above format must be used whenever the invoked module has a return value, since all data transfers
between the two modules is managed by the NIMBLE module; this is true even if there 1s no need to coerce

the resultant type.

A NIMBLE map to interconnect our example from Figure 1 is shown in Figure 3. This map combines several
of the features just enumerated in this section. The Name and Address fields from the calling procedure are
extracted from the record provided by the calling module. In addition, the Sex field coercion is performed
by a programmer-provided function Usermap, which is applied by EVAL. This function must accept a single
STRING valued parameter, and return an integer; the range of the function must match the semantics of
the called function. Usermap can be written in any available application language. One example of such a

map is given in Figure 4.

EXECUTION ENVIRONMENT

Once a map is constructed in NIMBLE, it may be used to generate an adaptor interconnecting two software
components. With the NIMBLE declaration in a file, the user may now invoke the NIMBLE translator. But
how NIMBLE proceeds from this point depends upon the target execution environment. Software developers
integrate components within many different contexts (for example, components may be linked into a single
process, or they may be distributed in a network). Information concerning the context of use affects how

each adaptors is to be generated.

In order to support this diversity, we have implemented NIMBLE as a two phase translation process. Qutput

from the translator’s first phase is an operational specification of the execution-time steps necessary to
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transform the actual parameters into a structure that conforms with the formal interface pattern. This
specification is given in a ‘pseudo code’ that is suitable for input to any of several possible implementations
of the second NIMBLE phase. (Programmers ordinarily do not manipulate this intermediate form of the
NIMBLE translation map.) The final result is an adaptor appropriate for the programmer’s particular

context of use, as described below.

CONTEXTS OF USE

The most common use of NIMBLE is to assist integration of components into a single, same-language
process. The adaptor is created statically, and linked into the application appropriately. For example, the

code generated for our example problem would be translated into the C program:

struct Employee { xlate( a )
char *Name; struct Employee a;
char *Address[4]; {
int Sex; int nimble_i;
int Age; struct Addressee b;
int SocNum; b.Sex = Usermap(a.Sex);
float Salary; }; b.Name = a.Name;
struct Addressee { for(nimble_i=0;nimble_i<4;nimble_i++){
int Sex; b.Address[nimble_i] = a.Address[nimble_i];
char *Name; }
char *Address[4]; xlate_inner( b );

k; }
Creating the source for an adaptor is a straight forward task, but its use involves some subtleties. Extensive
aliasing which may occur: the procedure initiating the call will only know the name of the ‘real” procedure
to be called, not the intermediate NIMBLE procedure. The linkage editor 1s responsible for insuring that
the actual calls performed will be first to the xlate routine above (or its equivalent, depending on the

environment), and also for binding the xlate_inner call to the target procedure.

In general, designers have a great deal of flexibility in how the coercion routine is installed, but the use
of NIMBLE in this environment relies upon the existence having a linkage editor that can handle aliased
bindings. This requirement is satisfied (almost by definition) by most reasonable module interconnection
languages and related facilities. The system we use for this capability is the Polylith software intercon-
nection system [5]. The sequence of steps taken by a user to produce the above example is shown in

Figure 5.

An alternative to the compiler-oriented, single process space execution environment described above is to
interpret the pseudo-code directly. The NIMBLE map may be incorporated directly into the application
design, as is typically expressed in the MIL in systems such as Polylith. At execution time, an interpreter

is used to process the pseudo-code specification and perform the required parametric coercion. This
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SOURCE A SOURCE B STEPS:

¢ ¢

1. Obtain patterns

ACTUAL PATTERN User FORMAL PATTERN

' ' '

C map creation ) 2. Create map

NIMBLE SOURCE

nimble 3. Call nimble

mapgen 4. Generate translator

XLATE SOURCE

Description of steps:

1. Either user or support system invokes patgen, a filter created via newyacc, to extract the interface patterns
for named procedures in a given application language. Alternately, the user can directly enter the pattern.

2. The user creates a desired map based on the two patterns. This step can be performed using normal text
editors, or with a Suntools-based editor designed specifically to assist in this step.

3. The user invokes nimble to create the operational specification for this map. Equivalence checking between
the formal pattern and the range of the map is performed here.

4. The user invokes one of a set of post-processors to generate a language-specific translation routine. Fither
the user or the support system must notify the interconnection system so that bindings of the call in A to B
wil go through the translator.

Figure 5: Sample sequence of steps for preparing a translation with Nimble.
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POLYLITH SPEC A

User

POLYLITH SPEC B

¢

¢

!
C

map creation

¢

NIMBLE SOURCE

nimble

4—.4—

PSEUDO CODE

Description of steps:

)

STEPS:

1. Create map

2. Call nimble

3. Interpret directly

1. A map is created as before. Fewer preprocessing steps are needed since the patterns are directly available in
the Polylith structural specifications.

2. The user invokes nimble as before.

3. The operational specification is directly executable by an interpreter available for this task in the Polylith
system. Only one such tool is needed since all representation questions are handled directly in Polylith’s

toolbus.

Figure 6: Sample interaction for using Nimble in a prototyping environment.
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approach is especially effective in prototyping environments. NIMBLE can facilitate the direct (re)use of
library modules with a minimal investment in ‘pipe fitting.” The sequence of steps a user would take in

order to obtain this effect in an interpretive environment is shown in Figure 6.

A unique use of the NIMBLE tool is one of data conversion of host files. The NIMBLE pseudo-code can be
translated directly into a standalone tool which can be applied directly to data files. This is useful when
a large file of data must be transformed in more elaborate ways than can be effected by tools such as, for
instance in the Unix domain, sed [8] or awk [9]. Used in conjunction with a heterogeneous interconnection
system such as Polylith, NIMBLE can be used to transfer and coerce data files across different system

architectures.

TYPE CONSIDERATIONS

The question of how well we have chosen our set of primitive data types is an important one. Even for a
‘simple’ datum of type integer there are many, and often inconsistent, assumptions made about semantics.
The host architecture’s binary encoding scheme, the range of values possible, and behavior of operations
on elements of the type are all potential sources of error, should our NIMBLE processors deal with the data

differently than do the object codes for an application.

When all procedures are implemented in the same language and are linked into the same process space,
the correspondence between NIMBLE’s semantics for a type and the application language’s semantics does
not need to be strong. This is because the names of primitive types in NIMBLE end up acting simply as
place holders for the declarations of that application language. The post-processor will simply generate a
source code in the same language of interest. This also makes it easy to add new primitive types, as long

as the implementor is able to correctly provide datum size information to the appropriate post-processor.

For mixed language programming, a system such as Polylith is necessary. In this situation, the NIMBLE
type names again act as place holders, but for abstract data types rather than for predefined language
types. The interconnection system is then responsible for providing representation functions at the point
of the call to map the elements from the host and language specific representation to a ‘standard’ rep-
resentation, and for providing inverse representation functions to map the formal arguments from the
‘standard’ representation to the specific representation expected by the procedure. NIMBLE merely coerces
parameters within the ‘standard’ representation, without concern or knowledge of the specific data rep-
resentation used by either the source or the destination module. This approach also makes distribution
of the two procedures transparent; the call can be turned into an RPC with no change to the procedure

implementation themselves. Techniques of this type are described in detail in Reference 5.

In each of the execution environments described above, pointers are handled ‘as can be expected’ depending
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upon the context. When all data passed is in the same process space, then the NIMBLE place holders for
pointer data can be installed in a translated call consistently. When the call crosses process boundaries,
then the pointer will only be correct if the underlying execution environment supports the additional
address translation needed for non-local referencing. Few systems provide this capability. However, even
without it, NIMBLE will allow correct dereferencing of pointers at the point of the call should the user’s
map direct that referenced data be accessed to build an immediate object for transmission to the non-local
service (as long as the resultant coercion module lies in the same process space as the invoking module).
The success of mapping from a data object to a referenced object does depend on the address translation

capabilities of the underlying environment.

Finally there is the question of how well NIMBLE translation routines support the calling conventions of the
application language domains involved. This is primarily dependent on the post-processor which generates
source code based on our NIMBLE pseudo-code. In general, single address space environments can return
values as one would expect when parameters are passed by reference. The exception to this occurs when
simultaneously a parameter is passed by reference and the user directs that the value being referenced
must in fact be accessed and coerced by NIMBLE before transmission to the callee. In this case, the post-
processor can implement a ‘copy back’ scheme, where all changes to the parameter variable made by the
procedure module are inversely coerced (to the actual’s data representation) and placed in the caller’s
variable references. Thus, subsequent non-local references to the actual parameter made by the process

executing the called procedure will accurately report the changed variable value.

Unfortunately, there are situations involving pointers where, when a user specifies that immediate data
be created for transmission to the callee, the post-processor may allocate temporary storage to hold the
intermediate values constructed by NIMBLE. Should a pointer to this storage be imprudently returned as
the value of some other parameter in the pattern, then a ‘core leak’ can be established with disastrous
consequences: the calling routine would have pointers to storage which the run-time environment might
then reallocate for other uses. This type of error can really be classified as a heap management problem,

and in many ways is a difficulty independent of any use of NIMBLE.

RELATED WORK

Related module interconnection language research has focused more closely on semantic correspondence
of interfaces, e.g. the Inscape environment. However, there has been very little related work on the

intermediate ‘syntactic’ level addressed by NIMBLE.

One data restructuring system called “CONVERT” was described in Reference 7. Expressed using our
terminology, this was really an investigation into what functions one could want to have around to use via

in an EVAL operation. It did not address transformations of interface patterns themselves. More recently,
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the ‘Q’ representation system in Arcadia does handle some aspects of interface adaptation between C and

Ada [11], as does SLI [12].

Finally, some data transformation work has been performed in the database community. The PAL language
(PRECT Algebraic Language) was developed to integrate information stored in different databases [13].
Although some of the data integration problems that PAL solves are similar to our coercion problem (type
differences, missing data and structural differences), their solutions could not be adapted to the contexts

of use which require substantial data transfer during invocation.

CONCLUSION

NIMBLE has been implemented in C and runs on most any 4.2BSD and 4.3BSD Unix systems. The
output from NIMBLE is an adaptor written in C that can be linked into an application to perform the
desired translations when called. To integrate components written in other languages, NIMBLE adaptors
can employed via a mixed-language programming facility such as Polylith, although 1t would be simple to
alter NIMBLE’s post-processor to generate source in other languages directly. Our experience with use of
NIMBLE adaptors in tightly-coupled systems is that the performance costs are low — approximately the
cost of performing one extra procedure call at each point where the adaptor is employed. This compares

favorably with the extra development costs that would be needed to adapt those same interfaces manually.

The economic advantage of reusing software rather than reimplementing 1t is highly sought after. Most
investigations in this line focus on ways to adapt software (or design specifications) to meet a new context
of use. NIMBLE demonstrates that it is easy and valuable to also be able to adapt the context of use to

meet the needs of our existing modules.
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