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Abstract

In text ranking, it is generally believed that
the cross-encoders already gather sufficient to-
ken interaction information via the attention
mechanism in the hidden layers. However, our
results show that the cross-encoders can consis-
tently benefit from additional token interaction
in the similarity computation at the last layer.
We introduce CELI (Cross-Encoder with Late
Interaction), which incorporates a late interac-
tion layer into the current cross-encoder models.
This simple method brings 5% improvement
on BEIR without compromising in-domain ef-
fectiveness or search latency. Extensive experi-
ments show that this finding is consistent across
different sizes of the cross-encoder models and
the first-stage retrievers. Our findings suggest
that boiling all information into the [CLS] to-
ken is a suboptimal use for cross-encoders, and
advocate further studies to investigate its rele-
vance score mechanism.

1 Introduction

The two-stage retrieve-then-rerank pipeline has
been the de facto design for many information re-
trieval systems. Recently, both the retriever and the
reranker systems have benefited from the advance-
ment in pretrained language models (Lin et al.,
2022). When using the pretrained models as cross-
encoders, the model views the query and document
candidate together, allowing rich token interaction
via the attention mechanism at all hidden layers.
However, all the information then boils down to the
representation of [CLS] token at the final stage,
during the computation of the relevance score be-
tween the query and the document. This raises the
concern of whether the single token representation
is sufficient to capture all salient information.

Pretrained language models have also been
adopted in the retriever stage in various ways.
Karpukhin et al. (2020) pioneer in this direction
∗∗ Equal Contribution

Model MS MARCO
MRR@10

BEIR Avg.
nDCG@10

Search
Latency

monoBERT 0.390 0.467 1.18s
CELI 0.392 0.491 1.28s

Table 1: A preview of comparison between CELI and
monoBERT. Detailed results are shown in Table 2 and 3.

and find that the [CLS] token embedding could
well capture query or document representations,
whose similarity can be used to indicate the rele-
vance level between the query and document. This
line of methods (Karpukhin et al., 2020; Xiong
et al., 2021), named as single-vector dense retriev-
ers, while being effective for the in-domain sce-
narios, is found to be less robust on the out-of-
distribution (OOD) datasets (Thakur et al., 2021),
possibly due to inadequate information at token-
level granularity. Methods such as further pretrain-
ing or adding token-level interaction have been
applied to improve the OOD generalization, where
multi-vector retrievers (Khattab and Zaharia, 2020;
Santhanam et al., 2022; Li et al., 2023) perform the
best on both the in-domain and OOD effectiveness
among neural retrievers (Lin et al., 2023a). This
ability is usually credited to its design that com-
putes the similarity score based on contextualized
embeddings of all tokens, which provides richer
token interactions compared to the single-vector
dense retrievers.

Inspired by the success of token interaction in the
retriever systems, we ask the question: Can cross-
encoder also benefit from additional token interac-
tion when computing the final similarity? In this
work, we affirm this hypothesis, showing that addi-
tional token interaction in the final-stage similarity
computation indeed improves the OOD capacity
for cross-encoders. We name our method CELI
(Cross-Encoder with Late Interaction), which in-
corporates a late interaction layer into the current



cross-encoder models. As shown in Table 1, CELI
improves averaged nDCG@10 on BEIR by 5%
(from 0.467 to 0.491), while not sacrificing the
in-domain score (0.390 vs. 0.392) and the search
latency (1.18s vs. 1.28s). Extensive experiments
show that the improvement is consistent over larger-
sized models and reranking candidates from vari-
ous retrievers.

2 Methods

monoBERT. monoBERT (Nogueira and Cho,
2019) is one of the first cross-encoders (MacA-
vaney et al., 2019; Nogueira et al., 2020) that apply
pretrained transformers in passage retrieval. Given
concatenated query q and document d, the model
computes relevance scores sq,d from the [CLS]
representation on the final layer of BERT (Devlin
et al., 2019), formulated as follows (Lin et al., 2022;
Pradeep et al., 2022):

sm(q, d) = T[CLS]W + b, (1)

where T[CLS] ∈ RD is the [CLS] representation
on the final layer, and W ∈ RD×1 and b ∈ R are
the weight and bias for classification.

Some of the previous works term the models
as “mono{BACKBONE}” when initialized from
non-BERT pretrained Transformers, such as mono-
ELECTRA (Pradeep et al., 2022). However, since
the underlying model structure remains the same,
we refer to them all as monoBERT while specifying
the backbones where the models are initialized.

Mean-Pooling. To study whether the improvement
of CELI is attributed to the interaction between the
query and the documents tokens, or simply the addi-
tional token information, we add the Mean-Pooling
method as a baseline. Instead of computing the sim-
ilarity score based solely on the [CLS] represen-
tation as in Eq. (1), it uses the mean representation
of all the tokens:

sm(q, d) =
1

n

n∑
i

(TtokiW + b) , (2)

where Ttoki is the final-layer representation of the
i-th token, and n is the total number of tokens in
the input sequence. W ∈ RD×1 and b ∈ R are the
weight and bias for classification, same as Eq. (1).

CELI. In this work, we use the simplest version of
late interaction proposed by Khattab and Zaharia

(2020). We first obtain the representation of each
token in the query q and document d:

vqi = TqiW + b; vdj = TdjW + b, (3)

where qi and dj represent the i-th token of query
q and the j-th token of document d, respectively.
Similar to Eq. (1), T ∈ RD refers to each token
representation on the final layer. W ∈ RD×Dtok

and b ∈ RDtok are the weight and bias in a projec-
tion layer, projecting the Ttok to a lower dimension
Dtok < D.

With token representations vqi and vdj , the late
interaction first computes the inner product scores
between all pairs of query and document tokens,
then sums up the max similarity score for each
query token against all document tokens:

sl(q, d) =
∑
qi

max
dj

(vTqivdj ). (4)

Eq. (4) shares the same formulation as in the
first-stage retrievers, and only differ in that the to-
ken representations Tqi and Tdj embed information
from both the query and document, whereas in first-
stage retrievers, they are computed independently
from each other, with Tqi perceiving no informa-
tion from document d and vice versa.

During training, we compute the LCE loss on
sm and sl, respectively:

L = lce(sm(q, d+), sm(q, d−1 ), ..., sm(q, d−n ))

+ lce(sl(q, d
+), sl(q, d

−
1 ), ..., sl(q, d

−
n )),

where d+ is the positive document and {d−i }ni=1

are the negative documents to the query q.
At inference time, we sum the two scores as the

final relevance score, i.e., sfinal = sm + sl.1

3 Experimental Setup

All cross-encoders are trained on MS MARCO (Ba-
jaj et al., 2016), a dataset composed of queries
from Bing search log and a collection of passages
sourced from the general Web. It contains 8.8M
passages, over 500k query–document pairs for
training, and 6980 queries for inference.

We implement the model based on Capreo-
lus (Yates et al., 2020a,b), an IR toolkit for end-to-
end neural ad hoc retrieval. All training configu-
rations follow Pradeep et al. (2022): We train MS
1We have explored adding weighting terms for sm and sc, but
only observed marginal gains. Thus we report the simplest
formulation here.



Backbone Model MS MARCO
MRR@10

BEIR
nDCG@10

MiniLM
monoBERT 0.390 0.467
Mean-Pooling 0.390 0.481
CELI 0.392 0.491

ELECTRAbase

monoBERT 0.400 0.481
Mean-Pooling 0.402 0.483
CELI 0.402 0.494

ELECTRAlarge

monoBERT 0.413 0.507
Mean-Pooling 0.412 0.516
CELI 0.413 0.524

Table 2: In-domain (MRR@10 on MS MARCO) and
OOD (averaged nDCG@10 on BEIR) scores of CELI
and two baselines (i.e., monoBERT and Mean-Pooling).
*Detailed scores on BEIR are reported in Table 5.

MARCO for 30k steps with a learning rate 1e− 5
and a batch size 16. We use linear warmup on
the first 3k steps, then linearly decay the learning
rate on the rest of the steps. Cross-encoders are
trained on LCE loss (Gao et al., 2021b; Pradeep
et al., 2022) with 7 negative samples.2 We experi-
mented with three backbones, all available on Hug-
gingFace (Wolf et al., 2020): MiniLM (Wang et al.,
2020),3 ELECTRAbase,4 and ELECTRAlarge (Clark
et al., 2020).5

We use MS MARCO (Bajaj et al., 2016) for
the in-domain evaluation and 13 datasets from
BEIR (Thakur et al., 2021) for OOD evaluation,
which covers 10 domains including Wikipedia, Fi-
nance, Scientific, Quora, and so on.

At the inference stage, we always rerank top-
1k results from the first-stage retrievers. On MS
MARCO, we use TCT-ColBERT (Lin et al., 2021b)
as the retriever following Pradeep et al. (2022).
On BEIR, we use an extensive list of retrievers
that covers the categories of sparse, single- and
multi-vector dense retrievers. Retrievers results
are produced using Pyserini (Lin et al., 2021a),
BEIR (Thakur et al., 2021), or ColBERT (Khat-
tab and Zaharia, 2020) repository.6 Following
the datasets standard, we report MRR@10 on MS
MARCO and nDCG@10 on BEIR.

2We use Quadro RTX 8000 GPUs and A6000 for the ex-
periments. On RTX 8000, the ELECTRAbase models took
approximately 8 hours for cross-encoder training.

3microsoft/MiniLM-L12-H384-uncased
4google/electra-base-discriminator
5google/electra-large-discriminator
6https://github.com/stanford-futuredata/
ColBERT

Model Sparse Multi-vector Dense

BM25 uniCOIL SPLADE ColBERT v2

monoBERT 0.467 0.426 0.469 0.467
CELI 0.491 0.452 0.492 0.493

Model
Single-vector Dense

DPR
(NQ)

DPR
(MS) ANCE TCT TAS-B

monoBERT 0.451 0.474 0.471 0.470 0.472
CELI 0.472 0.495 0.493 0.494 0.494

Table 3: Averaged nDCG@10 on BEIR, reranking
the top-1k candidates from each retriever. TCT:
TCT-ColBERT. DPR (NQ/MS): DPR fine-tuned on
NQ (Kwiatkowski et al., 2019) or MS MARCO, re-
spectively. *Detailed scores on BEIR are reported in Table 6.

4 Results and Analysis

Table 1 provides a preview of the efficacy of CELI.
In this section, we first demonstrate that such im-
provement is consistent over different model sizes
and the first-stage retrievers, then analyze how the
projected token dimension and the query length
impact the improvement.

4.1 Model Size

Previous papers find that models with a larger num-
ber of parameters can better generate on unseen
distribution (Ni et al., 2022). Motivated by this
observation, we examine whether the improvement
brought by late interaction diminishes with increas-
ing model sizes.

Results show that the contribution of late inter-
action is consistent over model size. Table 2 shows
in-domain and OOD scores with the models ini-
tialized from three different sizes of backbones:
MiniLM, ELECTRAbase, and ELECTRAlarge.7 The
MS MARCO results reranks the top-1k candidates
from TCT-ColBERT, and the BEIR results reranks
the top-1k candidates from BM25.

While we observe higher average scores on
BEIR as the model size increases, echoing the pre-
vious finding that larger models demonstrate bet-
ter OOD generalization ability, the improvement
brought by token information is consistent across
the backbones. On all three models, CELI consis-
tently improves over the two baselines. Addition-
ally, the in-domain scores on the other two back-
bones are not affected as well, suggesting that the
“free” gain is consistent over different model sizes.

7MiniLM, ELECTRAbase, and ELECTRAlarge have 33M,
110M, and 340M parameters respectively.

https://github.com/stanford-futuredata/ColBERT
https://github.com/stanford-futuredata/ColBERT


Projected Token
Dimension (Dtok)

MS MARCO BEIR
MRR@10 nDCG@10

(1) Dtok = 1 0.3920 0.4890
(2) Dtok = 32 0.3920 0.4914
(3) Dtok = 128 0.3920 0.4910
(4) Dtok = 384 0.3900 0.4911

Table 4: MRR@10 on MS MARCO and nDCG@10
on BEIR of CELI with token representation in different
dimensions (Dtok in Eq. (3)). We report scores to 4
digits here as the values are close in all conditions.

4.2 First-Stage Retriever

We then extend the experiments into an extensive
list of first-stage retrievers, where the retrievers
are categorized as sparse, single-vector, and multi-
vector dense retrievers.

Table 3 shows the results on BEIR reranking
candidates from 9 different retrievers, covering all
three categories mentioned above. Looking at the
averaged nDCG@10 on BEIR, we find that late
interaction consistently improves the OOD capacity
when using retrievers of different natures, bringing
a similar degree of improvement of 0.02–0.03.

4.3 Token Dimensions

In first-stage retrieval, it is common to project the
token representation into lower dimensions as re-
stricted by indexing storage space and search effi-
ciency. However, the representations are computed
on the fly for cross-encoders, thus using token rep-
resentations in higher dimensions brings no addi-
tional storage cost and only minor searching latency
in the context of cross-encoders. We therefore ex-
amine whether using higher token dimensions Dtok
brings additional improvements.

Results are shown in Table 4, where row (2) cor-
responds to the BM25 results reported in Table 3.
Comparing rows (1–4), we find that the token di-
mensions have little impact on the OOD effective-
ness: surprisingly, using dim = 1 already obtains
0.4890 on average BEIR as shown in on row (1),
while increasing the dimension to dim = 32 and
onwards only provides marginal improvement.

4.4 Query Length

Finally, we present our analysis of how the late
interaction improves the OOD capacity of cross-
encoders, finding that query length is a prominent
indicator of the per-query improvement. Figure 1
plots the distribution of nDCG@10 improvement
by late interaction according to the query length
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Figure 1: nDCG@10 improvement from late interaction
on queries over different lengths. Each point represents
the average of nDCG@10 improvements over the query
of the corresponding length. The line is the least square
polynomial fit of the points.

on Quora and HotpotQA, two datasets included in
BEIR.8 Specifically, each point represents the av-
erage of nDCG@10 improvements over the query
of the same length (same coordinate on the x-axis).
We additionally plot an approximated polynomial
line based on the points to better reveal the relation-
ship between the query length and the improvement
on nDCG@10.

On both datasets, we observe a clear tendency
that the late interaction brings higher improvement
on longer queries. While Figure 1 is based on
results using BM25 as the retriever, we have similar
observations when reranking candidates from the
other retrievers.

5 Related Work

Nogueira and Cho (2019) is one of the first cross-
encoders that apply pretrained language models on
the passage retrieval task. It considers retrieval as
a classification task and uses transformer encoders
following the formulation of the next sentence pre-
diction (NSP) pretraining task in BERT, where only
the [CLS] vector is used to classify the query–
document pair and compute the relevant score. Af-
terward, CEDR (MacAvaney et al., 2019) proposes
to incorporate fine-grained token interaction. How-
ever, it requires extra complex computations at all
layers, which brings difficulty to implementation
and adds higher computational overhead.

This line of cross-encoders has been studied and
extended to other model architectures: Nogueira
et al. (2020) and Zhuang et al. (2023) build cross-
encoders on encoder-decoder architecture (e.g., T5,
Raffel et al., 2020), and Ma et al. (2023) extend it

8Length determined as the number of query tokens delimited
by whitespace.



to decoder-only architecture (e.g. LLaMA-2, Tou-
vron et al., 2023). Another line of cross-encoders
reranks the document candidates according to the
query likelihood given a passage, usually based
on generative models (Nogueira dos Santos et al.,
2020; Sachan et al., 2022).

Recent works on first-stage retrieval have demon-
strated the effectiveness of adding sparse informa-
tion into dense retrieval (Chen et al., 2022). The
combination of the token information and dense
[CLS] vector could also be done explicitly, by ei-
ther adding the scores computed from [CLS] and
token information or concatenating aggregated to-
ken vectors to the [CLS] vector (Gao et al., 2021a;
Lin et al., 2023b). The multi-vector dense models
could also be viewed under this category, where the
token representation vectors jointly contribute to
the relevancy computation along with the [CLS]
vector (Khattab and Zaharia, 2020; Li et al., 2023).

Our work is also connected to the interaction-
based methods predating pretrained language mod-
els, where the text relevance is usually predicted
based on the fine-grained similarity matrix between
queries and document tokens (Socher et al., 2011;
Lu and Li, 2013; Hu et al., 2014; Pang et al., 2016).

6 Conclusion

In this work, we show that adding late interaction to
existing cross-encoders brings visible improvement
to its OOD capacity without hurting in-domain ef-
fectiveness, even though the cross-encoder already
processes the token interaction in earlier layers. Ex-
tensive experiments on different model sizes and
first-stage retrievers show that this improvement
is consistent, and according to our analysis, the
improvement is more prominent on longer queries.
Our findings suggest that boiling all information
into the [CLS] token is a suboptimal use for cross-
encoders, and further studies are required to better
explore their capacities.

7 Limitations

While CELI serves as a simple yet effective ap-
proach to improve the OOD generalization capacity
for cross-encoders, it is not a novel architectural
innovation. Instead, it draws inspiration from first-
stage retrievers (Khattab and Zaharia, 2020). That
said, We prioritize this simple design approach be-
cause we value ease of use and simplicity over
novelty in this context.
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A Results on BEIR

Due to the space limitation, we only report the
averaged scores on BEIR in the main paper. In
this section, Table 5 and Table 6 presents the full
nDCG@10 scores on each BEIR dataset, corre-
sponding to the Table 2 in Section 4.1 (Model Size),
and Table 3 in Section 4.2 (First-Stage Retriever).

B License

The MS MARCO dataset is licensed under Creative
Commons Attribution 4.0 International, whereas
BEIR datasets and Capreolus toolkit are under
Apache License 2.0. The usage of the artifacts
in this work is consistent with their intended use.
Since our codebase is extended from Capreolus, it
would inherit the Apache License 2.0.



Backbone Model
MS

MARCO
(MRR@10)

BEIR (nDCG@10)

Avg TREC-
COVID

NF
Corpus

NQ
Hotpot

QA
FiQA

Argu
Ana

Touche-
2020

Quora
DB

Pedia
SCI

DOCS
FEVER

Climate-
FEVER

Sci
Fact

MiniLM
monoBERT 0.390 0.467 0.699 0.355 0.504 0.620 0.359 0.335 0.308 0.722 0.426 0.151 0.754 0.164 0.679
Mean-Pooling 0.391 0.481 0.707 0.351 0.502 0.690 0.356 0.364 0.308 0.807 0.429 0.154 0.721 0.185 0.681
CELI 0.392 0.491 0.705 0.349 0.501 0.673 0.360 0.527 0.324 0.784 0.424 0.155 0.723 0.172 0.691

ELECTRAbase

monoBERT 0.400 0.481 0.727 0.362 0.523 0.660 0.389 0.291 0.317 0.773 0.436 0.152 0.748 0.112 0.669
Mean-Pooling 0.403 0.483 0.732 0.358 0.519 0.718 0.389 0.323 0.321 0.747 0.439 0.149 0.738 0.155 0.689
CELI 0.402 0.494 0.736 0.368 0.527 0.714 0.401 0.443 0.320 0.690 0.449 0.162 0.740 0.152 0.715

ELECTRAlarge

monoBERT 0.413 0.507 0.801 0.380 0.559 0.733 0.453 0.250 0.339 0.772 0.468 0.181 0.791 0.149 0.719
Mean-Pooling 0.412 0.516 0.784 0.378 0.554 0.748 0.444 0.332 0.325 0.791 0.456 0.180 0.799 0.215 0.706
CELI 0.413 0.524 0.786 0.378 0.559 0.735 0.457 0.436 0.335 0.800 0.460 0.182 0.769 0.179 0.733

Table 5: MRR@10 on MS MARCO and nDCG@10 scores on BEIR of CELI and two baselines (i.e., monoBERT
and Mean-Pooling). Cross-encoders are initialized from MiniLM, ELECTRAbase, and ELECTRAlarge. Results on
BEIR rerank the top-1k passages from BM25.

First Stage Model

BEIR (nDCG@10)

Avg TREC-
COVID

NF
Corpus

NQ
Hotpot

QA
FiQA

Argu
Ana

Touche-
2020

Quora
DB

Pedia
SCI

DOCS
FEVER

Climate-
FEVER

Sci
Fact

Sparse

BM25 monoBERT 0.467 0.699 0.355 0.504 0.620 0.359 0.335 0.308 0.722 0.426 0.151 0.754 0.164 0.679
CELI 0.491 0.705 0.349 0.501 0.673 0.360 0.527 0.324 0.784 0.424 0.155 0.723 0.172 0.691

uniCOIL monoBERT 0.426 0.711 0.337 0.556 0.576 0.271 0.335 0.277 0.727 0.426 0.152 0.375 0.116 0.680
CELI 0.452 0.713 0.328 0.552 0.625 0.272 0.555 0.285 0.784 0.423 0.156 0.360 0.128 0.691

SPLADE monoBERT 0.469 0.706 0.336 0.563 0.617 0.362 0.320 0.278 0.728 0.434 0.152 0.758 0.160 0.682
CELI 0.492 0.699 0.330 0.560 0.671 0.361 0.526 0.288 0.786 0.432 0.157 0.717 0.173 0.691

Single-vector Dense

DPR (NQ) monoBERT 0.451 0.699 0.335 0.571 0.600 0.341 0.333 0.285 0.523 0.433 0.154 0.753 0.175 0.662
CELI 0.472 0.715 0.330 0.568 0.643 0.339 0.524 0.296 0.557 0.432 0.156 0.721 0.180 0.673

DPR (MS) monoBERT 0.474 0.737 0.334 0.562 0.613 0.364 0.336 0.278 0.718 0.434 0.153 0.771 0.181 0.677
CELI 0.495 0.738 0.329 0.557 0.655 0.364 0.528 0.287 0.782 0.434 0.156 0.738 0.186 0.687

ANCE monoBERT 0.471 0.724 0.331 0.554 0.594 0.360 0.338 0.285 0.717 0.419 0.155 0.781 0.192 0.676
CELI 0.493 0.740 0.327 0.550 0.626 0.363 0.529 0.291 0.781 0.418 0.157 0.750 0.192 0.687

TCT-
ColBERT

monoBERT 0.470 0.719 0.336 0.564 0.620 0.360 0.319 0.281 0.714 0.437 0.154 0.767 0.170 0.676
CELI 0.494 0.725 0.330 0.560 0.665 0.360 0.524 0.291 0.780 0.438 0.157 0.733 0.177 0.689

TAS-B monoBERT 0.472 0.714 0.338 0.565 0.623 0.361 0.333 0.281 0.727 0.436 0.153 0.760 0.167 0.680
CELI 0.494 0.713 0.331 0.560 0.670 0.358 0.527 0.292 0.787 0.435 0.157 0.729 0.176 0.689

Multi-vector Dense

ColBERT v2 monoBERT 0.467 0.707 0.333 0.564 0.621 0.360 0.316 0.278 0.716 0.434 0.152 0.756 0.156 0.679
CELI 0.493 0.709 0.327 0.560 0.672 0.361 0.525 0.291 0.780 0.431 0.157 0.724 0.178 0.691

Table 6: nDCG@10 scores on BEIR, reranking the top-1k passages from each first-stage retriever.


