
Comparing Score Aggregation
Approaches for Document Retrieval

with Pretrained Transformers

Xinyu Zhang1(B) , Andrew Yates2, and Jimmy Lin1

1 David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Canada

2 Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract. While BERT has been shown to be effective for passage
retrieval, its maximum input length limitation poses a challenge when
applying the model to document retrieval. In this work, we reproduce
three passage score aggregation approaches proposed by Dai and Callan
[5] for overcoming this limitation. After reproducing their results, we
generalize their findings through experiments with a new dataset and
experiment with other pretrained transformers that share similarities
with BERT. We find that these BERT variants are not more effective
for document retrieval in isolation, but can lead to increased effective-
ness when combined with “pre–fine-tuning” on the MS MARCO passage
dataset. Finally, we investigate whether there is a difference between fine-
tuning models on “deep” judgments (i.e., fewer queries with many judg-
ments each) vs. fine-tuning on “shallow” judgments (i.e., many queries
with fewer judgments each). Based on available data from two different
datasets, we find that the two approaches perform similarly.

1 Introduction

In the context of text retrieval, pretrained transformers such as BERT [6] have
been shown to substantially improve ranking effectiveness across many domains,
tasks, and settings [10]. Adapting BERT to passage retrieval is straightforward:
it can be used as a classifier to predict the relevance of a passage with respect to
a query, and such a relevance prediction model can be used to rerank candidate
passages retrieved by an efficient first-stage keyword-based ranking method like
BM25. However, BERT’s maximum length limitation of 512 tokens prevents this
approach from directly being applied to longer input texts like full-length doc-
uments. Several solutions have been proposed to address this issue by breaking
a document into passages and then aggregating passage-level relevance to arrive
at a document relevance score [1,5,9,12].

In this paper, we reproduce one such approach proposed by Dai and Callan
[5]. Their approach segments documents into passages that can each be scored
independently. At inference time, Dai and Callan [5] use one of three approaches
to aggregate passage-level scores, called FirstP, MaxP, and SumP, which either
c© Springer Nature Switzerland AG 2021
D. Hiemstra et al. (Eds.): ECIR 2021, LNCS 12657, pp. 150–163, 2021.
https://doi.org/10.1007/978-3-030-72240-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72240-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-72240-1_11


Comparing Score Aggregation Approaches 151

takes the score of the first passage as the document score, the score of the
maximum passage, or the sum of all passage scores, respectively. Dai and Callan
[5] considered title and description queries on the Robust04 and ClueWeb09 test
collections, finding that taking the maximum passage score as the document
score (i.e., MaxP) was the most effective approach except when using description
queries on ClueWeb09. However, the differences between MaxP and SumP were
small in all settings.

Instead of replicating these results using the code1 provided by Dai and
Callan [5], we first independently reproduce their findings on Robust04 by imple-
menting their approach with the Capreolus toolkit [18]. Note that our focus here
is not to exactly obtain the same ranking metrics as their paper, but to attempt
to reproduce their findings about the relative effectiveness of the various score
aggregation approaches. Our Tensorflow v2 implementation is completely inde-
pendent from the original code, which used Tensorflow v1 with an entirely dif-
ferent pipeline. In addition to the three approaches proposed in the paper, we
introduce a new aggregation approach, AvgP, to compare with SumP and inves-
tigate the impact of document length. Our results show that the original findings
are reproducible, though we observe much larger differences between MaxP and
SumP than in the original work. In our results, MaxP consistently and signifi-
cantly outperforms FirstP, SumP, and AvgP. As in the original work, we also find
that BERT is more effective with description queries than with keyword queries.

Given that we are able to reproduce the results of Dai and Callan [5] on
Robust04, we omit experiments on the ClueWeb09 collection. Instead, to further
generalize the above findings and to provide a reference for the community,
we apply the four aggregation approaches to the GOV2 test collection.2 While
we continue to observe a larger gap between MaxP and SumP than previously
reported, our findings on GOV2 are consistent with those on Robust04: (1) MaxP
is more effective than FirstP, SumP, and AvgP, and (2) description queries are
more effective than keyword queries.

Since Dai and Callan [5] first demonstrated the effectiveness of MaxP for
document retrieval, several BERT variants have been proposed that claim to
improve BERT’s effectiveness on NLP tasks by making architectural changes,
e.g., sharing the same weights across all transformer layers [8] and changes to
the pretraining setup such as removing the next sentence prediction task [11]. It
is natural to ask whether retrieval can benefit from these model improvements
and, if so, how much of an increase in effectiveness can be provided by using an
improved variant. To answer this question, we repeated the above experiments
with MaxP, the most effective aggregation approach, with different pretrained
neural language models: RoBERTa [11], ALBERT [8], and ELECTRA [4].

In addition to the finding that pretrained language models improve effective-
ness on ranking tasks, Dai and Callan [5] found that “pre–fine-tuning” BERT
on Bing search log data further improves effectiveness (i.e., fine-tuning BERT
on Bing data before further fine-tuning on the target dataset). Li et al. [9] pro-

1 https://github.com/AdeDZY/SIGIR19-BERT-IR.
2 http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm.

https://github.com/AdeDZY/SIGIR19-BERT-IR
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm


152 X. Zhang et al.

vide further support for the benefit of pre–fine-tuning, and found that the MS
MARCO passage dataset is more effective for this task than the Bing search logs.
Furthermore, Zhang et al. [20] found that pre–fine-tuning BERTBase improves
effectiveness regardless of the amount of data used to fine-tune for the down-
stream task. To validate these findings and to compare the impact of pretraining
and pre–fine-tuning, we additionally consider whether the effectiveness of MaxP
increases with pre–fine-tuning on MS MARCO.

Finally, we investigate the impact of different strategies for gathering rele-
vance judgments on the effectiveness of MaxP. Traditionally, the Text REtrieval
Conferences (TRECs) build test collections with “deep” judgments, in which a
large number of judgments are obtained for a relatively small number of queries
(typically, around 50). However, neural models are often trained on relevant
query–document pairs or triples (queries with positive and negative instances),
so it is unclear whether the “deep” approach of TREC is preferable to using
many more queries but with fewer judgments per query (i.e., a “shallow” judg-
ment approach). The recent MS MARCO dataset takes this shallow approach by
providing a large number of queries that are associated with only one relevant
document on average [3]. This dataset has become popular for training neural
models. Similarly, the TREC 2007 Million Query dataset [2] provides shallow
judgments and has also been used to train neural models for this reason [7,14].
To provide a more comprehensive view of how to best apply the BERT–MaxP
model, we investigate the effectiveness of these two types of training data. Inter-
estingly, based on available data from two different datasets, we find that the
two approaches perform similarly (unlike Yilmaz and Robertson [19]).

In summary, the contributions of this work are:

1. We reproduce and confirm the findings of Dai and Callan [5] on Robust04
and further generalize the findings to the GOV2 test collection.

2. We investigate two approaches to obtaining “free” improvements in ranking
effectiveness: using improved BERT variants or “pre–fine-tuning” on another
retrieval dataset. The different BERT variants we examined bring no signifi-
cant improvements, but pre–fine-tuning with MS MARCO data does improve
effectiveness.

3. We investigate the impact of “deep” vs. “shallow” judgments on BERT–MaxP.
At least for the datasets and sample sizes we explore, both approaches obtain
similar levels of effectiveness.

2 Related Work

2.1 Passage Aggregation

Prior work has investigated several approaches for overcoming BERT’s maximum
length limitation by segmenting long documents into shorter passages. However,
no consensus has been reached on how per-passage results should be aggregated.
Dai and Callan [5] were the first to propose and evaluate different strategies



Comparing Score Aggregation Approaches 153

for aggregating document scores. To do so, Dai and Callan [5] segment each
document into N overlapping passages; each passage receives the relevance label
of the document at training time. They compared three approaches to aggregate
passage-level scores at inference time: FirstP, MaxP, and SumP. Given N passage
scores from the same document, FirstP uses the score of the first passage as the
document score, MaxP uses the highest passage score, and SumP uses the sum
of all passage scores. Even though FirstP only uses the first passage from the
document when computing document scores, it is not identical to truncating all
documents in the corpus since the model is trained using all passages from the
document. That is, although most passages do not directly contribute to the
document score, they contribute to model fine-tuning.

Birch [1], another approach for aggregating passage scores, improves effec-
tiveness by interpolating the top-k sentence-level scores, where k ∈ 1, 2, 3. To
train the Birch model, datasets with passage-level judgments are used (e.g., MS
MARCO and tweets). The model is then adapted for a target domain with
longer documents by learning only the weights for the top-k scores as well as an
interpolation weight for the first-stage ranker. Note that before these approaches,
monoBERT [13] considered passage datasets where all “documents” were shorter
than the model length limit, and thus the entire text can be fed into BERT at
both training and inference time.

Rather than aggregating passage scores, MacAvaney et al. [12] concatenate
the term representations BERT produces for each passage in order to form a
document vector. This document vector is then used to construct a similarity
matrix, which is used to compute a relevance score. Some variants of this app-
roach additionally include the average of BERT’s [CLS] representation of each
passage. Li et al. [9] investigate additional approaches for aggregating passage
representations instead of aggregating passage scores directly. They find that
several strategies can improve over score aggregation.

In this work, we reproduce and extend the experiments in Dai and Callan
[5] on different aggregation approaches. Note that since we apply other BERT
variants to initialize this model (see Sect. 2.2), we use MaxP when referring to
the general model architecture to avoid ambiguity and only use BERT–MaxP
when the model is initialized with BERTBase.

2.2 BERT Variants

While Devlin et al. [6] proposed several BERT variants with different model
sizes (e.g., 110M weights with BERTBase and 330M weights with BERTLarge),
additional variants have been proposed that purport to improve the model in
different ways. RoBERTa [11] found that BERT’s effectiveness on NLP tasks can
be improved by modifying the training data and tuning pretraining hyperparam-
eters. Additionally, RoBERTa eliminates the Next Sentence Prediction (NSP)
objective as it was found to be ineffective for improving downstream tasks.

ALBERT [8] proposed to reduce BERT’s parameters by factorizing word
embedding into smaller matrices and sharing the parameters of each BERT layer.
They found that, while these strategies compress the model size and accelerate



154 X. Zhang et al.

pretraining given the same model configuration, the pretrained model still per-
forms roughly on par with BERTBase. This work additionally replaced the NSP
task with Sentence Ordering Prediction (SOP), where the model is given two
segments from the same document and learns to discriminate whether the two
segments have been swapped. They found that the SOP task improves effective-
ness on most of the downstream NLP tasks considered.

ELECTRA [4] improved representation learning efficiency by replacing the
Masked Language Modeling (MLM) task with a new task called replaced token
detection. In this task the model classifies whether each output token was gener-
ated by another small “generator” model or was the original token. The generator
is a small two-layer BERT model that predicts masked tokens. While this app-
roach requires training the generator model as well as the ELECTRA model, the
new objective enables the model to learn from the output at all the positions,
rather than just the 15% of the positions that are randomly masked in BERT’s
pretraining.

3 Experimental Setup

In this section, we describe in detail the BERT score aggregation approaches
in our study, our approach for experimenting with other BERT variants, our
methodology for generating deep and shallow judgments, and finally the exper-
iment configurations.

3.1 BERT with MaxP, FirstP, SumP, and AvgP Aggregation

To apply BERT as a relevance classifier for text ranking, Nogueira and Cho
[13] proposed feeding a query q and passage p to BERT to obtain a vector ECLS
representing the interactions between them. To do so, a special [CLS] token is
prepended to the input sequence, and a special [SEP] token is placed before
and after the passage. This usage of the [CLS] vector follows the approach for
applying a pretrained BERT model to classification tasks proposed by Devlin et
al. [6]. This [CLS] vector is then fed to a fully-connected layer with two outputs
followed by a softmax. The score of the positive class serves as the relevance
score s used to rank the passages.

This approach is referred to as monoBERT. BERT’s maximum input length
limitation of 512 tokens3 prevents this strategy from being directly applied to
longer documents, however. In the work we are reproducing, Dai and Callan [5]
proposed overcoming this limitation by converting a document d into a series of
passages pi, applying BERT as a relevance classifier to each passage pi to obtain
a series of relevance scores si, and then applying a score aggregation approach

3 The length of BERT’s inputs cannot exceed 512 tokens. This includes the query,
the passage, and the three special tokens. This limitation comes from the fact that
position embeddings are used to encode BERT’s input; these position embeddings
were only pretrained for sequences up to length 512.



Comparing Score Aggregation Approaches 155

to arrive at a final document relevance score sd. To generate the passages, Dai
and Callan [5] used a sliding window of 150 terms with a stride of 75.

Given this sequence of passages, one of three aggregation approaches was
applied: taking the maximum passage score as the document score (MaxP), tak-
ing the first passage’s score (FirstP), or taking the sum of all passage scores
(SumP). We additionally consider an AvgP variant in which the sum of scores is
divided by the number of passages in the document.

3.2 BERT Variants

In the original work, Dai and Callan [5] used BERTBase as a relevance classifier
to obtain the scores si for aggregation. In addition to conducting experiments in
this setting, we also experiment with using the larger BERTLarge model provided
by Devlin et al. [6], as well as the RoBERTa [11], ALBERT [8], and ELECTRA
[4] models in their “base” sizes. Apart from the general-purpose pretrained mod-
els, we fine-tune BERTBase and ELECTRABase using the MS MARCO passage
dataset and add these pre–fine-tuned weights into our comparisons. These mod-
els can be viewed as drop-in replacements for BERT; to use them, we simply
replace BERTBase with a different variant when computing ECLS.

In the experiments investigating each pretrained model, we use the mod-
els available in the HuggingFace model hub [15], with names bert-base-uncased,
bert-large-uncased, google/electra-base-discriminator, albert-base-v2 and roberta-
base. For the experiment investigating the impact of MS MARCO pre–fine-
tuning, we use the BERTBase weights provided by Nogueira and Cho [13] and
the ELECTRABase weights provided by Li et al. [9].

3.3 Deep and Shallow Sampling

In order to investigate whether it is preferable to use “deep and narrow” or
“shallow and wide” judgments for training, we sample judgments from an exist-
ing test collection to simulate both cases. To accomplish this, we prepare ten
smaller datasets from each of the Robust044 and GOV25 datasets by sampling
the relevance judgments in a “shallow” or “deep” manner with a sampling rate
r, described below.

Given the same number of judgments, the shallow setting contains more
queries and fewer labeled documents per query, whereas the deep setting con-
tains fewer queries with more labeled documents per query. The shallow setting
is used in MS MARCO [3], whereas the deep setting is traditionally used in
TREC evaluations. Shallow and deep sampling are two sampling schemes that
we adopted to simulate these two labeling styles, respectively. The sampling app-
roach we adopted in previous work [20] can be viewed as deep sampling, which
provides a reference point for this paper.

4 https://trec.nist.gov/data/robust/04.guidelines.html.
5 http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm.

https://trec.nist.gov/data/robust/04.guidelines.html
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm


156 X. Zhang et al.

Specifically, given a dataset with Q queries, D documents per query, and M
judgments in total, where M = Q · D, the r-sampled dataset always contains
r·D judgments. Deep sampling accomplishes this by dropping queries with higher
priority, while shallow sampling only drops the documents associated with each
query and always preserves the original number of queries.

We achieve this with a two-step process. In the first step, deep sampling ran-
domly preserves around �r ·Q� queries, and shallow sampling randomly preserves
�r · D� documents per query. At this point, both sampling mechanisms should
produce slightly more than r · M judgments. In the second step, we eliminate
the extra judgments by looping over the queries and randomly dropping one of
its labeled documents until exactly r · D judgments are left.

Note that we use cross-validation in our experiments and the sampled
datasets are only used in the training and validation folds. Test folds always
contain the original judgments. That is, while the model is trained and vali-
dated on sampled data, it is evaluated with all available judgments to make fair
comparisons.

3.4 Experimental Details

All the configurations are run on both the Robust04 and GOV2 datasets.
Robust04 is a TREC collection with documents from the news domain that the
original work [5] used in their evaluation. GOV2 contains documents crawled
from .gov websites, which forms a different domain from Robust04. As in the
original work, we use 5-fold cross-validation for Robust04 collection, with three
folds for training, one fold for validation, and the other fold for evaluation.
While Dai and Callan [5] did make their Robust04 folds available,6 we opted
to instead use the folds from Yang et al. [17] in order to ensure that the choice
of folds does not affect the original findings. We randomly assign the queries in
GOV2 into three groups and applied 3-fold cross-validation, with one fold for
training, one fold for validation, and the other fold for evaluation.

We implement our experiments with the Capreolus toolkit [18]. To produce
candidate documents for reranking, we use the Anserini BM25 implementation
[16] with default parameters k1 = 0.9 and b = 0.4 (i.e., the first-stage ranker).
At training time we construct training instances from the top 1000 documents
retrieved by BM25. We consider the top 100 documents at inference time since
this setting is substantially more efficient (i.e., reranking 1000 documents takes
ten times longer). This setting differs from the original work, which used a query-
likelihood model as the first-stage ranker. As with the change in folds used, this
allows us to provide evidence that the original work’s findings are robust to
minor changes in the experimental setup.

Following the original work, we generate passages from each document using
a 150-term sliding window with a 75-term stride. The maximum number of
passages per document is set to 30. During training, passages after the first

6 http://boston.lti.cs.cmu.edu/appendices/SIGIR2019-Zhuyun-Dai/.

http://boston.lti.cs.cmu.edu/appendices/SIGIR2019-Zhuyun-Dai/


Comparing Score Aggregation Approaches 157

passage are randomly preserved with probability 0.1.7 We use pairwise hinge
loss and fine-tune the models over 36 epochs, with each epoch containing 256
batches of 16 training triples (i.e., a query, a positive document, and a negative
document). We run validation every 4 epochs and preserve the best model in
terms of nDCG@20 to mitigate overfitting. All experiments are fine-tuned using
the Adam optimizer with lr = 10−3 for non-BERT parameters and lr = 10−5

for BERT parameters. The dropout rate for all fully-connected layers8 is set to
0.1 except for ALBERT, where the dropout rate is set to 0.

For the reproduction and BERT variant experiments, we consider both key-
word queries (title field) and description queries (desc field) on both datasets
and report mAP, P@20, and nDCG@20, whereas for experiments comparing
sampling mechanisms, we only report nDCG@20 on keyword queries. Our code
and instructions are available on GitHub.9

4 Results and Discussion

4.1 Reproduction and Generalization of Aggregation Approaches

We report results from our attempts to reproduce Dai and Callan [5] in Table 1,
which consist of the FirstP, MaxP, SumP, and AvgP score aggregation approaches
with both keyword and description queries on the Robust04 and GOV2 datasets.
All models are initialized from BERTBase. Table 1a shows the Robust04 results
copied from the original paper; Table 1b presents our results.

The nDCG@20 column under Robust04 in Table 1b shows that the original
work’s finding that MaxP outperforms FirstP on Robust04 is reproducible. In
fact, we achieve slightly higher results for both methods, which confirms the
correctness of our implementation. While MaxP continues to outperform SumP,
the difference between these two methods is greater than in the original work.
That is, Table 1a shows a tiny difference between the two with both approaches
outperforming FirstP. However, in our results, SumP is not more effective than
FirstP. Given that the implementation differences between these approaches are
very small,10 we attribute this finding to changes in our experimental setup
(e.g., different folds and a different first-stage ranker). This suggests that MaxP
is a more robust approach. In our results, MaxP almost always significantly
outperforms the other approaches regardless of the query type or the dataset.

4.2 MaxP with BERT Variants

Results when initializing MaxP from different pretrained and pre–fine-tuned
(denote “pFT”) checkpoints are shown in Table 2. From the table, it can be

7 https://github.com/AdeDZY/SIGIR19-BERT-IR/blob/master/run qe classifier.
py#L468-L471.

8 The hidden dropout prob configuration in HuggingFace’s library.
9 https://github.com/crystina-z/MaxP-Reproduction.

10 See line 58 of tools/bert passage result to trec.py in the original code.

https://github.com/AdeDZY/SIGIR19-BERT-IR/blob/master/run_qe_classifier.py#L468-L471
https://github.com/AdeDZY/SIGIR19-BERT-IR/blob/master/run_qe_classifier.py#L468-L471
https://github.com/crystina-z/MaxP-Reproduction


158 X. Zhang et al.

T
a
b
le

1
.
R

es
u
lt

s
fr

o
m

th
e

o
ri

g
in

a
l
w

o
rk

a
n
d

o
u
r

ex
p
er

im
en

ts
fo

r
ea

ch
p
a
ss

a
g
e

sc
o
re

a
g
g
re

g
a
ti

o
n

a
p
p
ro

a
ch

.

T
it
le

D
e
s
c

F
ir
st
P

M
a
xP

S
u
m
P

F
ir
st
P

M
a
xP

S
u
m
P

0
.4
4
4

0
.4
6
9

0
.4
6
7

0
.4
9
1

0
.5
2
9

0
.5
2
4

(a
)
T
h
e
n
D
C
G
@
2
0

m
e
tr
ic
s
re

p
o
rt
e
d

b
y

D
a
i
a
n
d

C
a
ll
a
n

[5
]
o
n

R
o
b
u
st
0
4
.

R
o
b
u
s
t
0
4

G
O
V

2

m
A
P
@
1
0
0

P
@
2
0

n
D
C
G
@
2
0

m
A
P
@
1
0
0

P
@
2
0

n
D
C
G
@
2
0

T
it
le

F
ir
st
P

0
.2
1
6
3
†

0
.3
8
2
1

0
.4
4
9
3

0
.1
7
3
0

0
.5
5
6
4

0
.4
9
1
1

M
a
xP

0
.2

3
8
4

0
.4

0
6
8

0
.4

7
6
7

0
.1

8
5
5

0
.6

0
3

0
.5

1
7
5

S
u
m
P

0
.2
1
2
3
†

0
.3
8
3
7

0
.4
4
7
6
†

0
.1
6
7
9

0
.5
4
2
3

0
.4
6
7
9

A
vg

P
0
.2
0
8
3
†

0
.3
7
4
9

0
.4
3
8
3

0
.1
7
3
2

0
.5
5
9
4

0
.4
8
2
6

D
e
s
c

F
ir
st
P

0
.2
4
4
5
†

0
.4
2
3
9
†

0
.5
0
9
5

0
.1
8
1
1
†

0
.5
8
0
3
†

0
.5
2
1
3

M
a
xP

0
.2

6
4
6

0
.4

5
0
4

0
.5

3
0
3

0
.1

9
4
2

0
.6

2
9
2

0
.5

4
8
0

S
u
m
P

0
.2
1
1
3
†

0
.3
8
2
1
†

0
.4
4
3
6

†
0
.1
6
8
6
†

0
.5
5
6
7
†

0
.4
8
2
5
†

A
vg

P
0
.2
3
5
6
†

0
.4
1
6
1
†

0
.4
9
3
1
†

0
.1
7
9
6
†

0
.5
8
9
6

0
.5
0
9
9

(b
)
O
u
r
re

su
lt
s
w
it
h

B
E
R
T
–
F
ir
st
P
,
B
E
R
T
–
M
a
xP

,
B
E
R
T
–
S
u
m
P
,
a
n
d

B
E
R
T
–
A
vg

P
.
T
h
e
u
n
d
e
rl
in

e
d

sc
o
re

s
c
o
rr
e
sp

o
n
d

to
th

e
v
a
lu

e
s
re

p
o
rt
e
d

in

T
a
b
le

1
a

(i
.e
.,

n
D
C
G
@
2
0

o
n

R
o
b
u
st
0
4
).

T
h
e
b
e
st

re
su

lt
s
a
re

in
b
o
ld

.
T
h
e
†
sy

m
b
o
l
in

d
ic
a
te

s
th

e
sc

o
re

is
si
g
n
ifi

c
a
n
tl
y

lo
w
e
r
th

a
n

th
e

c
o
rr
e
sp

o
n
d
in

g
M
a
xP

sc
o
re

a
c
c
o
rd

in
g

to
a

tw
o
-t
a
il
e
d

t-
te

st
(p

<
0
.0
1
)
a
ft
e
r
B
o
n
fe
rr
o
n
i
c
o
rr
e
c
ti
o
n
.



Comparing Score Aggregation Approaches 159

Table 2. Results of MaxP models initialized with various pretrained or pre–fine-tuned
weights. The † symbol indicates the score is significantly higher than the corresponding
BERTBase score (p < 0.01) after Bonferroni correction. The best results among all
pretrained models are underlined, and the best among all are in bold. Note that the

Base subscript is omitted when there is no ambiguity.

Robust04 GOV2

mAP@100 P@20 nDCG@20 mAP@100 P@20 nDCG@20

Title BERTBase 0.2384 0.4068 0.4767 0.1855 0.6030 0.5175

BERTLarge 0.2424 0.4120 0.4875 0.1865 0.5990 0.5161

ELECTRA 0.2437 0.4253 0.4959 0.1810 0.5718 0.4841

RoBERTa 0.2425 0.4259 0.4938 0.1696 0.5591 0.4679

ALBERT 0.2326 0.4006 0.4632 0.1925 0.6114 0.5354

BERTBase (pFT) 0.2401 0.4207 0.4857 0.1958 0.6322 0.5473

ELECTRA (pFT) 0.2575 0.4482† 0.5225† 0.1998 0.6466 0.5624

Desc BERTBase 0.2646 0.4504 0.5303 0.1942 0.6292 0.5480

BERTLarge 0.2672 0.4655 0.5448 0.1968 0.6272 0.5420

ELECTRA 0.2726 0.4584 0.5480 0.1895 0.6081 0.5152

RoBERTa 0.2692 0.4671 0.5489 0.1928 0.6195 0.5370

ALBERT 0.2637 0.4542 0.5400 0.1977 0.6309 0.5459

BERTBase (pFT) 0.2719 0.4624 0.5476 0.2046† 0.6550 0.5788

ELECTRA (pFT) 0.2865† 0.4779† 0.5741† 0.2100† 0.6822† 0.6062†

observed that although each BERT variant can achieve an improvement over
BERT, such improvements are neither significant nor consistent across datasets
or query types. On Robust04, BERTLarge, ELECTRA, and RoBERTa show some
improvement over BERTBase for both query types, but their results on GOV2
are only on par with or even worse than BERTBase. On the other hand, ALBERT
is less effective than BERT on Robust04 with keyword queries and GOV2 with
description queries, but improves over BERTBase in the other settings.

Compared with the inconsistent improvements brought by different BERT
variants, the benefits of pre–fine-tuning on MS MARCO are much more stable.
While the differences are significant only on GOV2, the pre–fine-tuned BERTBase

numerically outperforms the vanilla BERTBase across different query types and
datasets. Moreover, the pre–fine-tuned ELECTRA yields an improvement with
significant increases in a variety of settings.

4.3 Deep vs. Shallow Relevance Judgments

Table 3 shows the training effectiveness of MaxP across a spectrum of training
and validation data sizes. Table 3a shows several baselines to put the results in
context, including a BERT-MaxP model fine-tuned on only the MS MARCO
collection (i.e., the pre–fine-tuned setting without further fine-tuning on the
target domain) and the BERT-MaxP scores previously reported by Dai and
Callan [5] and Li et al. [9]. Table 3b shows the BERT-MaxP metrics obtained
by fine-tuning with each deep or shallow sampled dataset at different sampling



160 X. Zhang et al.

T
a
b
le

3
.
R

es
u
lt

s
o
f
d
ee

p
a
n
d

sh
a
ll
ow

sa
m

p
li
n
g

ex
p
er

im
en

ts
.

R
o
b
u
s
t
0
4

G
O
V

2

B
M

2
5

0
.4
2
4
0

0
.4
7
4
0

B
M

2
5
R
M

3
0
.4
3
1
0

0
.4
8
5
1

Z
e
ro

-s
h
o
t
[2
0
]

0
.4
7
5
1

0
.5
0
0
7

B
E
R
T
B
a
se

[5
]

0
.4
6
9
0

-

B
E
R
T
B
a
se

(p
F
T
)
[9
]

0
.4
9
3
1

0
.5
6
0
0

(a
)
n
D
C
G
@
2
0

o
f
b
a
se

li
n
e
s
a
n
d

p
ri
o
r
w
o
rk

.
T
h
e
z
e
ro

-s
h
o
t
se

tt
in

g
u
se

s
th

e
B
E
R
T
B
a
se

c
h
e
c
k
p
o
in
t
fi
n
e
-t
u
n
e
d

o
n

th
e
M

S
M

A
R
C
O

p
a
ss
a
g
e

d
a
ta

se
t.

R
o
b
u
s
t
0
4

G
O
V

2

B
E
R
T
B
a
s
e

B
E
R
T
B
a
s
e

(
p
F
T
)

B
E
R
T
B
a
s
e

B
E
R
T
B
a
s
e

(
p
F
T
)

s
h
a
ll
o
w

d
e
e
p

s
h
a
ll
o
w

d
e
e
p

s
h
a
ll
o
w

d
e
e
p

s
h
a
ll
o
w

d
e
e
p

r
=

0
.1

0
.4
0
8
7

0
.4
1
1
1

0
.4
3
1
4

0
.4
4
2
7

0
.4
6
9
2

0
.4
5
3
8

0
.5
0
3
4

0
.5
1
9
7

r
=

0
.3

0
.4
5
9
2

0
.4
5
0
7

0
.4
6
5
8

0
.4
7
0
2

0
.4
8
6
1

0
.4
9
2
3

0
.5
2
9
0

0
.5
2
3
6

r
=

0
.5

0
.4
7
3
0

0
.4
5
9
3

0
.4
8
0
7

0
.4
7
2
5

0
.5
0
6
2

0
.5
0
3
9

0
.5
4
0
2

0
.5
3
8
4

r
=

0
.7

0
.4
7
7
9

0
.4
7
5
0

0
.4
8
2
1

0
.4
8
0
7

0
.5
1
0
6

0
.5
1
6
9

0
.5
3
5
8

0
.5
3
7
3

r
=

0
.9

0
.4
8
1
2

0
.4
7
1
1

0
.4
8
6
7

0
.4
7
8
7

0
.5
2
2
2

0
.5
2
0
2

0
.5
4
8
8

0
.5
4
2
9

r
=

1
.0

0
.4
7
6
7

0
.4
8
5
7

0
.5
1
7
5

0
.5
4
7
3

(b
)
n
D
C
G
@
2
0

o
n

o
ri
g
in

a
l
a
n
d

p
re

–
fi
n
e
-t
u
n
e
d

(p
F
T
)
B
E
R
T
B
a
se

:
re

su
lt
s
o
f
fi
n
e
-t
u
n
in

g
B
E
R
T
-M

a
xP

u
si
n
g

“
d
e
e
p
”

a
n
d

“
sh

a
ll
o
w
”

r
-s
a
m

p
le
d

ju
d
g
m
e
n
ts
.



Comparing Score Aggregation Approaches 161

Fig. 1. Plots of baselines and our experiments with deep and shallow sampling.

rates r. As mentioned in Sect. 3.4, we report the median nDCG@20 of the five
experiments under the same settings.

By plotting the scores in Fig. 1, it can be observed that while effectiveness
benefits from more training and validation labels, there is no clear trend in
terms of the superiority of the two schemes. It is not the case that one judgment
scheme consistently yields better effectiveness than the other. This observation
applies regardless of whether the model is pre–fine-tuned on MS MARCO. This
is an interesting finding that differs from the results of Yilmaz and Robertson
[19], who conducted similar experiments, but in a feature-based learning-to-rank
context. Note that an important caveat here is that our sampling schemes apply
only to sampling training data—in all cases, our test data are “complete”. We
have not explored the case where the test data are also sampled, in which case
there may be differences between the two schemes for evaluating effectiveness.



162 X. Zhang et al.

5 Conclusion

In this work, we reproduced the three passage score aggregation approaches
proposed in Dai and Callan [5]. We found that the MaxP aggregation approach
is the most effective, and furthermore, the differences between MaxP and AvgP
are larger than in the original work. We generalized this finding by conducting
the same experiments on the GOV2 dataset and reaching the same conclusion.
We found that MaxP can further benefit from pre–fine-tuning the model on the
MS MARCO passage dataset, but does not necessarily benefit from replacing
BERT with a newer variant. While none of the general-purpose pretrained models
consistently improved over BERT, the pre–fine-tuned ELECTRA model achieved
significant improvements under many settings. Finally, we explored the impact
of fine-tuning BERT with shallow or deep judgments via sampling, finding that
the model performed similarly regardless of which judgment scheme was used.

Acknowledgments. This research was supported in part by the Canada First
Research Excellence Fund and the Natural Sciences and Engineering Research Council
(NSERC) of Canada. In addition, we would like to thank Google Cloud and TensorFlow
Research Cloud for credits to support this work.

References

1. Akkalyoncu Yilmaz, Z., Yang, W., Zhang, H., Lin, J.: Cross-domain modeling of
sentence-level evidence for document retrieval. In: Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.
3481–3487 (2019)

2. Allan, J., Carterette, B., Aslam, J.A., Pavlu, V., Dachev, B., Kanoulas, E.: Million
query track 2007 overview. In: Proceedings of TREC 2007 (2007)

3. Bajaj, P., et al.: MS MARCO: a human generated machine reading comprehension
dataset. arXiv preprint arXiv:1611.09268v3 (2018)

4. Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: ELECTRA: pre-training text
encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555
(2020)

5. Dai, Z., Callan, J.: Deeper text understanding for IR with contextual neural lan-
guage modeling. In: Proceedings of the 42nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2019),
pp. 985–988 (2019)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4171–4186 (2019)

7. Fan, Y., Guo, J., Lan, Y., Xu, J., Zhai, C., Cheng, X.: Modeling diverse relevance
patterns in ad-hoc retrieval. In: Proceedings of the 41st International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 375–384
(2018)

http://arxiv.org/abs/1611.09268v3
http://arxiv.org/abs/2003.10555


Comparing Score Aggregation Approaches 163

8. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a
lite BERT for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942 (2019)

9. Li, C., Yates, A., MacAvaney, S., He, B., Sun, Y.: PARADE: passage representation
aggregation for document reranking. arXiv preprint arXiv:2008.09093 (2020)

10. Lin, J., Nogueira, R., Yates, A.: Pretrained transformers for text ranking: BERT
and beyond. arXiv preprint arXiv:2010.06467 (2020)

11. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

12. MacAvaney, S., Yates, A., Cohan, A., Goharian, N.: CEDR: contextualized embed-
dings for document ranking. In: Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 1101–1104
(2019)

13. Nogueira, R., Cho, K.: Passage re-ranking with BERT. arXiv preprint
arXiv:1901.04085 (2019)

14. Pang, L., Lan, Y., Guo, J., Xu, J., Xu, J., Cheng, X.: DeepRank: a new deep
architecture for relevance ranking in information retrieval. In: Proceedings of the
2017 ACM on Conference on Information and Knowledge Management, pp. 257–
266 (2017)

15. Wolf, T., et al.: HuggingFace’s transformers: state-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771 (2019)

16. Yang, P., Fang, H., Lin, J.: Anserini: enabling the use of Lucene for information
retrieval research. In: Proceedings of the 40th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2017),
pp. 1253–1256 (2017)

17. Yang, W., Lu, K., Yang, P., Lin, J.: Critically examining the “neural hype” weak
baselines and the additivity of effectiveness gains from neural ranking models. In:
Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2019), pp. 1129–1132 (2019)

18. Yates, A., Jose, K.M., Zhang, X., Lin, J.: Flexible IR pipelines with Capreolus.
In: Proceedings of the 29th ACM International Conference on Information and
Knowledge Management, pp. 3181–3188 (2020)

19. Yilmaz, E., Robertson, S.E.: Deep versus shallow judgments in learning to rank. In:
Proceedings of the 32nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2009), pp. 662–663 (2009)

20. Zhang, X., Yates, A., Lin, J.: A little bit is worse than none: Ranking with limited
training data. In: Proceedings of SustaiNLP: Workshop on Simple and Efficient
Natural Language Processing, pp. 107–112 (2020)

http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/2008.09093
http://arxiv.org/abs/2010.06467
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1910.03771

	Comparing Score Aggregation Approaches for Document Retrieval with Pretrained Transformers
	1 Introduction
	2 Related Work
	2.1 Passage Aggregation
	2.2 BERT Variants

	3 Experimental Setup
	3.1 BERT with MaxP, FirstP, SumP, and AvgP Aggregation
	3.2 BERT Variants
	3.3 Deep and Shallow Sampling
	3.4 Experimental Details

	4 Results and Discussion
	4.1 Reproduction and Generalization of Aggregation Approaches
	4.2 MaxP with BERT Variants
	4.3 Deep vs. Shallow Relevance Judgments

	5 Conclusion
	References




