
Anserini at TREC 2018: CENTRE, Common Core,
and News Tracks
Peilin Yang and Jimmy Lin1

1 David R. Cheriton School of Computer Science, University of Waterloo
yangpeilyn@gmail.com,jimmylin@uwaterloo.ca

1 INTRODUCTION
Anserini is an open-source information retrieval toolkit built on
Lucene [3, 4]. The goal of our effort is to support information
retrieval research using the popular open-source Lucene search
library by allowing researchers to easily replicate results with mod-
ern ranking models on diverse test collections.

Although there are many open-source search engines developed
and maintained by academic research groups, most of them are
designed primarily to facilitate the publication of research papers,
and as such, they often suffer from poor usability, incomplete doc-
umentation, and a host of other issues. The growing complexity
of modern software ecosystems and the diverse capabilities that
are required to build useful end-to-end search applications places
academic research groups at a huge disadvantage relative to Lucene.
Except for a handful of commercial web search engines that deploy
custom infrastructure, Lucene has become the de facto platform
in industry for building production search applications—used by
organizations as diverse as Twitter, Reddit, Bloomberg, and Target.
It has an active developer base, diverse features and capabilities,
and lies at the center of a vibrant ecosystem. However, Lucene lacks
systematic support for information retrieval research—in particu-
lar, ad hoc experimentation using standard test collections. This
is where Anserini comes in: we enable cutting-edge information
retrieval research using Lucene.

At TREC 2018, we participated in the CENTRE, Common Core,
and News Tracks. Each is described in its own section below. Our
development efforts centered around the v0.1.0 release of Anserini,
which is based on Lucene 6.3.0 (not the latest release).

2 CENTRE TRACK
To accomplish the objectives discussed in the introduction, we
are engaged in an ongoing effort to reproduce effective retrieval
ranking models in Anserini, which will provide researchers a solid
foundation to build on. For TREC, our primary objective was to
reimplement axiomatic semantic term matching [1] in our toolkit.
Although the paper of Yang and Hui [2], which applied the tech-
nique to web collections, was selected as one of the reproduction
targets of the CENTRE Track, we were not particularly interested
in optimizing for the track’s metrics (i.e., Root Mean Square Er-
ror with respect to the original submission). Since the original
implementation was in Indri, there will inevitably be differences
in document processing (e.g., tokenization, stopwords, stemming,
etc.) that, while important, are not interesting from the perspective
of reproducibility.

In a recent policy, ACM defines a number of terms related to
reproducibility as follows:1 repeatable (“a researcher can reliably

1https://www.acm.org/publications/policies/artifact-review-badging

repeat her own computation”), replicable (“an independent group
can obtain the same result using the author’s own artifacts”), and
reproducible (“an independent group can obtain the same result
using artifacts which they develop completely independently”). Our
work might be characterized as “self-reproducibility”; although one
of the authors of the original paper led the Anserini implementation
effort, we go beyond repeatability because a completely different
codebase was developed from scratch. Because of this, and the
fact that we had access to the original code, we did not encounter
any challenges during the process. To facilitate future reuse of the
Anserini implementation, we have built an extensive regression
framework that ensures others will be able to repeat our results.

Although the derivations of the models underlying Yang and
Hui [2] are couched within the framework of axiomatic retrieval,
the approach is operationalized as query expansion: A “working set”
is constructed from an initial ranking, from which expansion terms
are computed. These expansion terms are then combined with the
original query to yield the final ranking in a second retrieval stage.
This procedure means that semantic term matching can be applied
to any “base” ranking model. That is, we can use any ranking
function to aid in the construction of the working set (i.e., for
gathering pseudo-relevant documents), and use the same ranking
function (or even a different one) for the expanded query. Our
implementation in Anserini makes such explorations easy.

Another feature of our implementation worth mentioning con-
cerns how the working set is populated. In the original formulation,
non-relevant documents are sampled from a particular source, and
the non-determinism of this sampling process makes runs non-
repeatable. We address this by allowing the developer to supply a
specific random seed as a configuration parameter. Repeatability
can be ensured as long as these seeds are carefully recorded and
tracked (just like any other experimental setting).

Yang and Hui [2] described different combinations of target
collections and sources for building the working sets. The target
collection is what we search against for the initial and expanded
query, and the composition of the working set affects the score of
the expansion terms. One might think that the target collection is
simply the collection for the task, in this case, ClueWeb12. However,
this was, in fact, not what Yang and Hui did in their TREC 2013
experiments. Due to reasons of computational efficiency, they first
created a smaller sub-collection fromClueWeb12, which then served
as the target collection on which subsequent experiments were
performed. To quote:

[W]e first use Indri’s default language model to re-
trieve 10,000 top ranked documents for each query
and then filter out the documents that have spam
score less than -130. The filtered documents are used
to build a much smaller index.

https://www.acm.org/publications/policies/artifact-review-badging


Target Collection Working Set Comments

1 CW12Lite2013 CW12Lite2013 directly comparable to UDInfolabWEB1
2 CW12Lite2013 SP13 directly comparable to UDInfolabWEB2
3 CW12Lite2013 Wiki

4 CW12Lite2018 CW12Lite2018 similar to UDInfolabWEB1, but using Anserini to create sub-collection
5 CW12Lite2018 SP18 similar to UDInfolabWEB2, but using Anserini to create sub-collection + 2018 web snippets
6 CW12Lite2018 Wiki

7 CW12 CW12 similar to UDInfolabWEB1, but without creating sub-collection first
8 CW12 SP13 similar to UDInfolabWEB2, but without creating sub-collection first
9 CW12 SP18 similar to above, except with 2018 web snippets
10 CW12 Wiki

Table 1: Different possible combinations of target collections and working sets for axiomatic semantic term matching.

Run Description AP NDCG@20 ERR@20

Anserini-UDInfolabWEB1-1 #7, using BM25 and β = 0.5 0.1329 0.19754 0.20112
Anserini-UDInfolabWEB1-2 #9, using BM25 and β = 0.5 0.2172 0.25322 0.23460
Anserini-UDInfolabWEB1-3 #10, using BM25 and β = 0.5 0.1233 0.18550 0.16617

Anserini-UDInfolabWEB2-1 #1, using QL and β = 1.7 0.0880 0.15602 0.15770
Anserini-UDInfolabWEB2-2 #4, using QL and β = 1.7 0.1096 0.16391 0.18595
Anserini-UDInfolabWEB2-3 #6, using BM25 and β = 0.5 0.1119 0.17599 0.16384

Table 2: Submitted runs to the CENTRE Track.

This reduced sub-collection is referred to as CW12Lite2013. Fortu-
nately, we still have access to the exact docids that comprise this
sub-collection, and hence can attempt to replicate results based on it.
Using this sub-collection as the target collection, we experimented
with three different working sets: using CW12Lite2013 itself, us-
ing web snippets from 2013 (which we call SP13),2 and using a
Wikipedia dump from June 20, 2018 (which we call Wiki). These
three combinations are shown as the first three rows of Table 1
(rows numbered 1 to 3). Using each combination, we can then apply
our implementation of axiomatic semantic term matching from
Anserini. In particular, the first two conditions are directly compa-
rable to the UDInfolabWEB1 and UDInfolabWEB2 runs, respectively,
expect with our Anserini implementation.

Although first creating a sub-collection was primarily an effi-
ciency optimization made in TREC 2013, we were interested in
the effects of sub-collection creation with more modern tools. To
create what we call the CW12Lite2018 target collection, we used
Lucene’s query likelihood with Dirichlet smoothing implementa-
tion to fetch the top 10,000 documents (from all 50 queries). We did
not, however, perform spam score filtering, as in CW12Lite2013.
Using this sub-collection as the target collection, we experimented
with the combinations shown in the middle three rows in Table 1
(rows numbered 4 to 6). We also crawled new web snippets in July
2018, which we call SP18.

Finally, we eliminated the sub-collection creation step and used
the entire ClueWeb12 collection as the target. With vastly improved
hardware since 2013, Lucene makes such experiments practical; we

2Fortunately, we have retained the web snippets from 2013.

are able to build a single monolithic index over the entire collection
(without partitioning) and run experiments with acceptable (albeit
non-interactive) latencies. Working set combinations with all of
ClueWeb12 as the target collection (CW12) is shown in the four rows
on the bottom in Table 1 (rows numbered 7 to 10).

Given these combinations, we have one more variable in our
experimental design: the retrieval model for both gathering the
initial ranked list and for retrieval using the expanded query. The
TREC 2013 experiments used F2Log, but here we additionally tried
BM25 and query likelihood (QL) with Dirichlet smoothing.

Out of all the possible experimental conditions, we selected
the six shown in Table 2 as our final CENTRE Track submissions.
Detailed commands for replicating these runs, including building
the index from scratch and generating the run files, are documented
in a runbook checked into the Anserini code repository.3

We used the newly released qrels file to evaluate the submitted
runs and the results are presented in Table 2.

3 COMMON CORE TRACK
We submitted a total of ten runs to the Common Core Track, de-
scribed as follows:

• anserini_bm25: BM25 baseline.
• anserini_sdm: BM25 + sequential dependence model.
• anserini_rm3: BM25 + RM3.

3Available from the main Anserini repo, http://anserini.io; given the impermanence
of web links, we strive to keep Anserini documentation up to date and intuitively
organized in lieu of providing a specific URL.

2

http://anserini.io


Run AP NDCG P@10 Pool

anserini_bm25 0.2284 0.5064 0.4500 Y
anserini_sdm 0.2364 0.5127 0.4860 Y
anserini_rm3 0.2680 0.5422 0.4680 Y
anserini_ax 0.2734 0.5582 0.4960 Y
anserini_ax17 0.2059 0.4942 0.4060 Y

anserini_ql 0.2294 0.5059 0.4660 N
anserini_qlsdm 0.2326 0.5071 0.4740 N
anserini_qlrm3 0.2501 0.5359 0.4660 N
anserini_qlax 0.2749 0.5484 0.4780 N
anserini_qlax17 0.2039 0.4875 0.4280 N

Median (Auto) 0.1745 0.4483 0.3340 -
Max (Auto) 0.3958 0.6849 0.7280 -
Median (All) 0.2112 0.4925 0.4140 -
Max (All) 0.5353 0.7792 0.8340 -

Table 3: Anserini results in the Common Core Track, com-
pared to summary statistics provided by NIST.

• anserini_ax: BM25 + axiomatic semantic term matching, with
working set from the Washington Post collection itself.

• anserini_ax17: BM25 + axiomatic semantic term matching,
with working set from the New York Times collection used in
Core17.

• anserini_ql: QL baseline.
• anserini_qlsdm: QL + sequential dependence model.
• anserini_qlrm3: QL + RM3.
• anserini_qlax: QL + axiomatic semantic term matching, with
working set from the Washington Post collection itself.

• anserini_qlax17: QL + axiomatic semantic termmatching, with
working set from the New York Times collection used in Core17.

A detailed runbook checked into our Anserini code repository
describes how these runs can be replicated.4

The effectiveness of our submitted runs in terms of standard
retrieval metrics are shown in Table 3. The final column indicates
whether or not the run contributed to the judgment pools. The final
four rows in the table show mean of per topic median and max
scores across two different categories of runs: automatic runs (Auto)
and all runs (All). These values are based on summary statistics
provided by NIST.

4 NEWS TRACK
We participated in the background linking task of the News Track,
submitting five runs. Our main focus was to explore different ap-
proaches to constructing a keyword query from a query article.
• anserini_1000w: Each term in the query article is assigned a
weight equal to its tf-idf score. The query is constructed by
selecting up to 1000 terms based on these scores. The selected
terms comprise a weighted query for searching the collection
using BM25 to generate the final ranked list.

• anserini_nsdm: We selected the first 1000 terms from the query
article and used those as the “query” to search the collection

4See similar note with respect to the CENTRE runbook.

NDCG@5
Run mean median

anserini_1000w 0.3529 0.3433
anserini_nsdm 0.3347 0.3456
anserini_nax 0.2948 0.2402
anserini_sdmp 0.3271 0.3435
anserini_axp 0.3030 0.2832

Table 4: Anserini results in the background linking task of
the News Track, compared to summary statistics provided
by NIST.

using the sequential dependence model with BM25. Due to limits
on the number of clauses in a Lucene query, we were not able to
use the entire document as the query.

• anserini_nax: We ran BM25 with axiomatic semantic term
matching using the query article as the “query”. That is, we con-
structed an initial query using up to the first 1000 terms from the
query article without weights. BM25 is used to perform an initial
retrieval, and then axiomatic semantic term matching is used to
select up to 20 expansion terms. The expanded query (original
terms from the query article and the expansion terms) is used
to search the collection with BM25 to produce the final ranked
list, with β = 0.4 to control the importance of the semantic term
match weights.

• anserini_sdmp: Instead of treating the entire query article as a
single query, we selected the five longest paragraphs and formed
five individual queries, each comprising up to 1000 terms (from
the paragraph). These were used as input to the sequential de-
pendence model to query the collection using BM25. The final
ranking is generated by selecting results of the paragraph queries
in a round-robin fashion.

• anserini_axp: Similar to anserini_sdmp, but we used BM25
with axiomatic semantic term matching for each of the individual
paragraph queries. We selected up to 20 expansion terms (each),
with β = 0.4 to control the importance of the semantic term
match weights.

All of our background linking runs contained a post-processing
step to eliminate duplicate articles. Results from the evaluation are
shown in Table 4. It appears that our simplest approach of selecting
terms from the query article to form a weighted query is the most
effective in terms of mean NDCG@5.

REFERENCES
[1] Hui Fang and ChengXiang Zhai. 2006. Semantic Term Matching in Axiomatic

Approaches to Information Retrieval. In Proceedings of the 29th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2006). Seattle, Washington, 115–122.

[2] Peilin Yang and Hui Fang. 2013. Evaluating the Effectiveness of Axiomatic Ap-
proaches in Web Track. In Proceedings of the Twenty-Second Text REtrieval Confer-
ence (TREC 2013). Gaithersburg, Maryland.

[3] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the Use of Lucene
for Information Retrieval Research. In Proceedings of the 40th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2017). Tokyo, Japan, 1253–1256.

[4] Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini: Reproducible Ranking
Baselines Using Lucene. Journal of Data and Information Quality 10, 4 (2018),
Article 16.

3


	1 Introduction
	2 CENTRE Track
	3 Common Core Track
	4 News Track
	References

