MapReduce Algorithm Design

WWW 2013 Tutorial, Rio de Janeiro

Jimmy Lin University of Maryland Monday, May 13, 2013

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

From the Ivory Tower...

Source: Wikipedia (All Souls College, Oxford)

... to building sh*t that works

... and back.

Source: Wikipedia (All Souls College, Oxford)

More about me...

- Past MapReduce teaching experience:
 - Numerous tutorials
 - Several semester-long MapReduce courses http://lintool.github.io/MapReduce-course-2013s/
- Lin & Dyer MapReduce textbook

http://mapreduce.cc/

Graeme Hirst, Series Editor

What we'll cover

- Big data
- MapReduce overview
- Importance of local aggregation
- Sequencing computations
- Iterative graph algorithms
- MapReduce and abstract algebra

Focus on design patterns and general principles

What we won't cover

- MapReduce for machine learning (supervised and unsupervised)
- MapReduce for similar item detection
- MapReduce for information retrieval
- Hadoop for data warehousing
- Extensions and alternatives to MapReduce

Big Data

Source: Wikipedia (Hard disk drive)

JPMorganChase 🕻

150 PB on 50k+ servers running 15k apps (6/2011)

>10 PB data, 75B DB calls per day (6/2012)

Wayback Machine: 240B web pages archived, 5 PB (1/2013)

>100 PB of user data + 500 TB/day (8/2012)

facebook.

LHC:~15 PB a year

S3: 449B objects, peak 290k request/second (7/2011) IT objects (6/2012)

640K ought to be enough for anybody.

LSST: 6-10 PB a year (~2015)

SKA: 0.3 – 1.5 EB per year (~2020)

How much data?

Why big data? Science Engineering Commerce

Science

Emergence of the 4th Paradigm Data-intensive e-Science

Engineering

The unreasonable effectiveness of data

Count and normalize!

an an 25% character (statements) (st

No data like more data!

s/knowledge/data/g;

(Banko and Brill, ACL 2001) (Brants et al., EMNLP 2007) Know thy customers

E

PEARLBAR

3855-1081

 $Data \rightarrow Insights \rightarrow Competitive advantages$

Commerce

EPSON

BERNING THE

Source: Wikiedia (Shinjuku, Tokyo)

Why big data? How big data?

Source: Wikipedia (Noctilucent cloud)

MapReduce

Typical Big Data Problem

• Iterate over a large number of records

Maaxtract something of interest from each

• Shuffle and sort intermediate results

• Aggregate intermediate results Reduce

• Generate final output

Key idea: provide a functional abstraction for these two operations

Roots in Functional Programming

MapReduce

- Programmers specify two functions:
 - map $(k_1, v_1) \rightarrow [\langle k_2, v_2 \rangle]$ reduce $(k_2, [v_2]) \rightarrow [\langle k_3, v_3 \rangle]$
 - All values with the same key are sent to the same reducer
- The execution framework handles everything else...

MapReduce

• Programmers specify two functions:

map (k, v) \rightarrow <k', v'>* reduce (k', v') \rightarrow <k', v'>*

- All values with the same key are sent to the same reducer
- The execution framework handles everything else...

What's "everything else"?

MapReduce "Runtime"

- Handles scheduling
 - Assigns workers to map and reduce tasks
- Handles "data distribution"
 - Moves processes to data
- Handles synchronization
 - Gathers, sorts, and shuffles intermediate data
- Handles errors and faults
 - Detects worker failures and restarts
- Everything happens on top of a distributed filesystem

MapReduce

• Programmers specify two functions:

map (k, v) \rightarrow <k', v'>* reduce (k', v') \rightarrow <k', v'>*

- All values with the same key are reduced together
- The execution framework handles everything else...
- Not quite...usually, programmers also specify:
 partition (k', number of partitions) → partition for k'
 - Often a simple hash of the key, e.g., hash(k') mod n
 - Divides up key space for parallel reduce operations combine $(k', v') \rightarrow \langle k', v' \rangle^*$
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic

Two more details...

- Barrier between map and reduce phases
 - But intermediate data can be copied over as soon as mappers finish
- Keys arrive at each reducer in sorted order
 - No enforced ordering across reducers

What's the big deal?

- Developers need the right level of abstraction
 - Moving beyond the von Neumann architecture
 - We need better programming models
- Abstractions hide low-level details from the developers
 - No more race conditions, lock contention, etc.
- MapReduce separating the *what* from *how*
 - Developer specifies the computation that needs to be performed
 - Execution framework ("runtime") handles actual execution

The datacenter is the computer!

MapReduce can refer to...

- The programming model
- The execution framework (aka "runtime")
- The specific implementation

Usage is usually clear from context!

MapReduce Implementations

- Google has a proprietary implementation in C++
 - Bindings in Java, Python
- Hadoop is an open-source implementation in Java
 - Development led by Yahoo, now an Apache project
 - Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix, ...
 - The de facto big data processing platform
 - Rapidly expanding software ecosystem
- Lots of custom research implementations
 - For GPUs, cell processors, etc.

MapReduce algorithm design

- The execution framework handles "everything else"...
 - Scheduling: assigns workers to map and reduce tasks
 - "Data distribution": moves processes to data
 - Synchronization: gathers, sorts, and shuffles intermediate data
 - Errors and faults: detects worker failures and restarts
- Limited control over data and execution flow
 - All algorithms must expressed in m, r, c, p
- You don't know:
 - Where mappers and reducers run
 - When a mapper or reducer begins or finishes
 - Which input a particular mapper is processing
 - Which intermediate key a particular reducer is processing

Implementation Details

MARAAAA

N

Fueres at

SUN

Source: www.flickr.com/photos/8773361@N05/2524173778/

HDFS Architecture

Putting everything together...

Shuffle and Sort

Preserving State

Implementation Don'ts

- Don't unnecessarily create objects
 - Object creation is costly
 - Garbage collection is costly
- Don't buffer objects
 - Processes have limited heap size (remember, commodity machines)
 - May work for small datasets, but won't scale!

Secondary Sorting

- MapReduce sorts input to reducers by key
 - Values may be arbitrarily ordered
- What if want to sort value also?
 - E.g., $k \to (v_1, r)$, (v_3, r) , (v_4, r) , (v_8, r) ...

Secondary Sorting: Solutions

- Solution I:
 - Buffer values in memory, then sort
 - Why is this a bad idea?
- Solution 2:
 - "Value-to-key conversion" design pattern: form composite intermediate key, (k, v₁)
 - Let execution framework do the sorting
 - Preserve state across multiple key-value pairs to handle processing
 - Anything else we need to do?

Local Aggregation

Source: www.flickr.com/photos/bunnieswithsharpteeth/490935152/

Importance of Local Aggregation

- Ideal scaling characteristics:
 - Twice the data, twice the running time
 - Twice the resources, half the running time
- Why can't we achieve this?
 - Synchronization requires communication
 - Communication kills performance (network is slow!)
- Thus... avoid communication!
 - Reduce intermediate data via local aggregation
 - Combiners can help

Word Count: Baseline

```
1: class MAPPER
       method MAP(docid a, doc d)
2:
           for all term t \in \text{doc } d do
3:
               EMIT(term t, count 1)
4:
1: class Reducer.
       method REDUCE(term t, counts [c_1, c_2, \ldots])
2:
           sum \leftarrow 0
3:
           for all count c \in \text{counts} [c_1, c_2, \ldots] do
4:
               sum \leftarrow sum + c
5:
           EMIT(term t, count s)
6:
```

What's the impact of combiners?

Word Count: Version I

- 1: class Mapper
- 2: **method** MAP(docid a, doc d)
- 3: $H \leftarrow \text{new AssociativeArray}$
- 4: for all term $t \in \operatorname{doc} d$ do
- 5: $H\{t\} \leftarrow H\{t\} + 1$
- 6: for all term $t \in H$ do
- 7: EMIT(term t, count $H\{t\}$)

 \triangleright Tally counts for entire document

Are combiners still needed?

Word Count: Version 2

Are combiners still needed?

Design Pattern for Local Aggregation

- "In-mapper combining"
 - Fold the functionality of the combiner into the mapper by preserving state across multiple map calls
- Advantages
 - Speed
 - Why is this faster than actual combiners?
- Disadvantages
 - Explicit memory management required
 - Potential for order-dependent bugs

Combiner Design

• Combiners and reducers share same method signature

- Sometimes, reducers can serve as combiners
- Often, not...
- Remember: combiner are optional optimizations
 - Should not affect algorithm correctness
 - May be run 0, 1, or multiple times
- Example: find average of integers associated with the same key

Computing the Mean: Version I

1: class MAPPER method MAP(string t, integer r) 2: EMIT(string t, integer r) 3: 1: class Reducer. method REDUCE(string t, integers $[r_1, r_2, \ldots]$) 2: $sum \leftarrow 0$ 3: $cnt \leftarrow 0$ 4: for all integer $r \in$ integers $[r_1, r_2, \ldots]$ do 5: $sum \leftarrow sum + r$ 6: $cnt \leftarrow cnt + 1$ 7: $r_{avg} \leftarrow sum/cnt$ 8: EMIT(string t, integer r_{ava}) 9:

Why can't we use reducer as combiner?

Computing the Mean: Version 2

```
1: class MAPPER
       method MAP(string t, integer r)
2:
           EMIT(string t, integer r)
3:
1: class Combiner.
       method COMBINE(string t, integers [r_1, r_2, \ldots])
2:
           sum \leftarrow 0
3:
     cnt \leftarrow 0
4:
          for all integer r \in integers [r_1, r_2, \ldots] do
5:
               sum \leftarrow sum + r
6:
               cnt \leftarrow cnt + 1
7:
           EMIT(string t, pair (sum, cnt))
                                                                       \triangleright Separate sum and count
8:
1: class Reducer
       method REDUCE(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
2:
           sum \leftarrow 0
3:
          cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
               sum \leftarrow sum + s
6:
               cnt \leftarrow cnt + c
7:
           r_{avg} \leftarrow sum/cnt
8:
           EMIT(string t, integer r_{avg})
9:
                                                       Why doesn't this work?
```

Computing the Mean: Version 3

```
1: class MAPPER
       method MAP(string t, integer r)
2:
            EMIT(string t, pair (r, 1))
3:
1: class Combiner.
       method COMBINE(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
2:
           sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
                sum \leftarrow sum + s
6:
                cnt \leftarrow cnt + c
7:
           EMIT(string t, pair (sum, cnt))
8:
1: class Reducer
       method REDUCE(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
2:
            sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
                sum \leftarrow sum + s
6:
                cnt \leftarrow cnt + c
7:
           r_{avg} \leftarrow sum/cnt
8:
            EMIT(string t, pair (r_{avg}, cnt))
9:
```


Computing the Mean: Version 4

- 1: class Mapper
- 2: method Initialize
- 3: $S \leftarrow \text{new AssociativeArray}$
- 4: $C \leftarrow \text{new AssociativeArray}$
- \mathfrak{p} : method MAP(string t, integer r)
- $6: \qquad S\{t\} \leftarrow S\{t\} + r$
- 7: $C\{t\} \leftarrow C\{t\} + 1$
- 8: method CLOSE
- 9: for all term $t \in S$ do
- 10: EMIT(term t, pair $(S\{t\}, C\{t\}))$

Are combiners still needed?

Sequencing Computations

Source: www:flickr.com/photos/richardandgill/565921252/

Sequencing Computations

- 1. Turn synchronization into a sorting problem
 - Leverage the fact that keys arrive at reducers in sorted order
 - Manipulate the sort order and partitioning scheme to deliver partial results at appropriate junctures
- 2. Create appropriate algebraic structures to capture computation
 - Build custom data structures to accumulate partial results

Algorithm Design: Running Example

- Term co-occurrence matrix for a text collection
 - M = N x N matrix (N = vocabulary size)
 - M_{ij}: number of times *i* and *j* co-occur in some context (for concreteness, let's say context = sentence)
- Why?
 - Distributional profiles as a way of measuring semantic distance
 - Semantic distance useful for many language processing tasks
 - Basis for large classes of more sophisticated algorithms

MapReduce: Large Counting Problems

- Term co-occurrence matrix for a text collection
 - = specific instance of a large counting problem
 - A large event space (number of terms)
 - A large number of observations (the collection itself)
 - Goal: keep track of interesting statistics about the events
- Basic approach
 - Mappers generate partial counts
 - Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: "Pairs"

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For all pairs, emit (a, b) \rightarrow count
- Reducers sum up counts associated with these pairs
- Use combiners!

Pairs: Pseudo-Code

1: class Mapper
2: method MAP(docid a , doc d)
3: for all term $w \in \operatorname{doc} d$ do
4: for all term $u \in NEIGHBORS(w)$ do
5: EMIT(pair (w, u) , count 1) \triangleright Emit count for each co-occurrence
1: class Reducer
2: method REDUCE(pair p , counts $[c_1, c_2, \ldots]$)
$s \leftarrow 0$
4: for all count $c \in \text{counts} [c_1, c_2, \ldots]$ do
5: $s \leftarrow s + c$ \triangleright Sum co-occurrence counts
6: $\operatorname{EMIT}(\operatorname{pair} p, \operatorname{count} s)$

"Pairs" Analysis

- Advantages
 - Easy to implement, easy to understand
- Disadvantages
 - Lots of pairs to sort and shuffle around (upper bound?)
 - Not many opportunities for combiners to work

Another Try: "Stripes"

• Idea: group together pairs into an associative array

$$\begin{array}{ll} (a,\,b) \to 1 \\ (a,\,c) \to 2 \\ (a,\,d) \to 5 \\ (a,\,e) \to 3 \\ (a,\,f) \to 2 \end{array} \qquad \qquad a \to \{\,b:\,1,\,c:\,2,\,d:\,5,\,e:\,3,\,f:\,2\,\} \end{array}$$

• Each mapper takes a sentence:

- Generate all co-occurring term pairs
- For each term, emit $a \rightarrow \{ b: count_b, c: count_c, d: count_d \dots \}$

• Reducers perform element-wise sum of associative arrays

$$\begin{array}{rl} \mathbf{a} \rightarrow \{b; 1, & d; 5, e; 3\} \\ \hline \mathbf{a} \rightarrow \{b; 1, c; 2, d; 2, & f; 2\} \\ a \rightarrow \{b; 2, c; 2, d; 7, e; 3, f; 2\} \\ \hline Key \ idea: \ cleverly-constructed \ data \ structure \ for \ aggregating \ partial \ results \end{array}$$

.00

Stripes: Pseudo-Code

1: class Mapper
2: method MAP(docid a , doc d)
3: for all term $w \in \operatorname{doc} d$ do
4: $H \leftarrow \text{new AssociativeArray}$
5: for all term $u \in NEIGHBORS(w)$ do
6: $H\{u\} \leftarrow H\{u\} + 1$ \triangleright Tally words co-occurring with w
7: $EMIT(Term w, Stripe H)$
1: class Reducer
2: method REDUCE(term w , stripes $[H_1, H_2, H_3, \ldots]$)
3: $H_f \leftarrow \text{new AssociativeArray}$
4: for all stripe $H \in \text{stripes } [H_1, H_2, H_3, \ldots]$ do
5: $SUM(H_f, H)$ \triangleright Element-wise sum
6: EMIT(term w , stripe H_f)

"Stripes" Analysis

• Advantages

- Far less sorting and shuffling of key-value pairs
- Can make better use of combiners
- Disadvantages
 - More difficult to implement
 - Underlying object more heavyweight
 - Fundamental limitation in terms of size of event space

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices

Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

1x 4x 2x 3x 5000 4000 4x $R^2 = 0.997$ running time (seconds) relative speedup 3x 3000 2000 2x Ð. 1000 1x 0 20 30 40 50 60 70 10 80 90 size of EC2 cluster (number of slave instances)

Effect of cluster size on "stripes" algorithm

relative size of EC2 cluster

Relative Frequencies

• How do we estimate relative frequencies from counts?

$$f(B|A) = \frac{N(A,B)}{N(A)} = \frac{N(A,B)}{\sum_{B'} N(A,B')}$$

- Why do we want to do this?
- How do we do this with MapReduce?

f(B|A): "Stripes"

$$a \rightarrow \{b_1:3, b_2:12, b_3:7, b_4:1, \dots\}$$

• Easy!

- One pass to compute (a, *)
- Another pass to directly compute f(B|A)

f(B|A): "Pairs"

- What's the issue?
 - Computing relative frequencies requires marginal counts
 - But the marginal cannot be computed until you see all counts
 - Buffering is a bad idea!
- Solution:
 - What if we could get the marginal count to arrive at the reducer first?

f(B|A): "Pairs"

• For this to work:

- Must emit extra (a, *) for every b_n in mapper
- Must make sure all a's get sent to same reducer (use partitioner)
- Must make sure (a, *) comes first (define sort order)
- Must hold state in reducer across different key-value pairs

"Order Inversion"

- Common design pattern:
 - Take advantage of sorted key order at reducer to sequence computations
 - Get the marginal counts to arrive at the reducer before the joint counts
- Optimization:
 - Apply in-memory combining pattern to accumulate marginal counts

Synchronization: Pairs vs. Stripes

• Approach I: turn synchronization into an ordering problem

- Sort keys into correct order of computation
- Partition key space so that each reducer gets the appropriate set of partial results
- Hold state in reducer across multiple key-value pairs to perform computation
- Illustrated by the "pairs" approach
- Approach 2: construct data structures to accumulate partial results
 - Each reducer receives all the data it needs to complete the computation
 - Illustrated by the "stripes" approach

Issues and Tradeoffs

- Number of key-value pairs
 - Object creation overhead
 - Time for sorting and shuffling pairs across the network
- Size of each key-value pair
 - De/serialization overhead

Lots are algorithms are just fancy conditional counts!

Source: http://www.flickr.com/photos/guvnah/7861418602/

Hidden Markov Models

An HMM $\lambda = (A, B, \Pi)$ is characterized by:

- N states: $Q = \{q_1, q_2, \dots q_N\}$
- N x N Transition probability matrix $A = [a_{ij}]$

$$a_{ij} = p(q_j | q_i) \qquad \sum_j a_{ij} = 1 \quad \forall i$$

- V observation symbols: $O = \{o_1, o_2, \dots o_V\}$
- N x |V| Emission probability matrix $B = [b_{iv}]$

$$b_{iv} = b_i(o_v) = p(o_v|q_i)$$

• Prior probabilities vector $\Pi = [\pi_i, \pi_2, \dots \pi_N]$ $\sum_{i=1}^N \pi_i = 1$

Forward-Backward

Estimating Emissions Probabilities

• Basic idea:

 $b_j(v_k) = \frac{\text{expected number of times in state } j \text{ and observing symbol } v_k}{\text{expected number of times in state } j}$

• Let's define:

$$\gamma_t(j) = \frac{P(q_t = j, O|\lambda)}{P(O|\lambda)} = \frac{\alpha_t(j)\beta_t(j)}{P(O|\lambda)}$$

• Thus:

$$\hat{b}_j(v_k) = \frac{\sum_{i=1 \cap O_t = v_k}^T \gamma_t(j)}{\sum_{i=1}^T \gamma_t(j)}$$

Forward-Backward

Estimating Transition Probabilities

• Basic idea:

 $a_{ij} = \frac{\text{expected number of transitions from state } i \text{ to state } j}{\text{expected number of transitions from state } i}$

• Let's define:

$$\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{P(O|\lambda)}$$

• Thus:

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \xi_t(i,j)}$$

MapReduce Implementation: Mapper

1:	class Mapper
2:	method INITIALIZE(integer <i>iteration</i>) ∇T (i)
3:	$\langle \mathcal{S}, \mathcal{O} \rangle \leftarrow \text{ReadModel}$ $\hat{k}_{(u)} = \sum_{i=1 \cap O_t = v_k}^{i} \gamma_t(j)$
4:	$ \hat{b}_{j}(v_{k}) = \frac{\sum_{i=1}^{T} \gamma_{t}(j)}{\sum_{i=1}^{T} \gamma_{t}(j)} $
5:	method MAP(sample <i>id</i> , sequence \mathbf{x})
6:	$\alpha \leftarrow \text{FORWARD}(\mathbf{x}, \theta)$
7:	$\beta \leftarrow \text{BACKWARD}(\mathbf{x}, \theta)$ $\hat{a}_{ij} = \frac{\sum_{t=1}^{t} \zeta_t(t, j)}{\sum_{t=1}^{t} V_t(t, j)}$
8:	$\hat{a} \leftarrow \text{FORWARD}(\mathbf{x}, \theta) \\ \beta \leftarrow \text{BACKWARD}(\mathbf{x}, \theta) \\ I \leftarrow \text{new ASSOCIATIVEARRAY} \qquad \hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \xi_t(i, j)}$
9:	for all $q \in S$ do
10:	$I\{q\} \leftarrow \alpha_1(q) \cdot \beta_1(q)$
11:	$O \leftarrow \text{new AssociativeArray of AssociativeArray}$
12:	for $t = 1$ to $ \mathbf{x} $ do
13:	$\int \int \int ds = \int ds = \int \int ds = \int \int \int \int ds = \int \int \int \int \int ds = \int \int \int \int \int \partial f = \int \int \int \partial f = \int \int \partial f = \int \partial f =$
14:	$O\{q\}\{x_t\} \leftarrow O\{q\}\{x_t\} + \alpha_t(q) \cdot \beta_t(q) \qquad P(O \lambda)$
15:	$t \leftarrow t + 1$
16:	$T \leftarrow \text{new AssociativeArray of AssociativeArray}$
17:	for $t = 1$ to $ \mathbf{x} - 1$ do
18:	$\mathbf{for} \mathbf{all} q \in \mathcal{S} \mathbf{do}$
19:	$\mathbf{for} \mathbf{all} r \in \mathcal{S} \mathbf{do}$
20:	$T\{q\}\{r\} \leftarrow T\{q\}\{r\} + \alpha_t(q) \cdot A_q(r) \cdot B_r(x_{t+1}) \cdot \beta_{t+1}(r)$
21:	$t \leftarrow t + 1$
22:	EMIT(string 'initial', stripe I) $\alpha_{t}(i)a_{i}b_{i}(\alpha_{t+1})\beta_{t+1}(i)$
23:	for all $q \in S$ do EVER(string time to mit from λ + q string $O(q)$ $\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{P(O \lambda)}$
24:	EMIT(string 'emit from '+q, stripe $O\{q\}$) $P(O \lambda)$
25:	EMIT(string 'transit from ' + q, stripe $T\{q\}$)

MapReduce Implementation: Reducer

```
\hat{b}_j(v_k) = \frac{\sum_{i=1 \cap O_t = v_k}^{T} \gamma_t(j)}{\sum_{i=1}^{T} \gamma_t(j)}
 1: class Combiner
          method COMBINE(string t, stripes [C_1, C_2, \ldots])
 2:
                C_f \leftarrow \text{new AssociativeArray}
 3:
                                                                                                           \hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{i=1}^{N} \xi_t(i,j)}
                for all stripe C \in stripes [C_1, C_2, \ldots] do
 4:
                     \operatorname{SUM}(C_f, C)
 5:
                EMIT(string t, stripe C_f)
 6:
 1: class REDUCER.
          method REDUCE(string t, stripes [C_1, C_2, \ldots])
 2:
                C_f \leftarrow \text{new AssociativeArray}
 3:
                                                                                                                           \gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{P(O|\lambda)}
                for all stripe C \in stripes [C_1, C_2, \ldots] do
 4:
                     \operatorname{SUM}(C_f, C)
 5:
               z \leftarrow 0
 6:
               for all \langle k, v \rangle \in C_f do
 7:
                     z \leftarrow z + v
 8:
                                                                                                \xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{P(O|\lambda)}
               P_f \leftarrow \text{new AssociativeArray}
 9:
               for all \langle k, v \rangle \in C_f do
10:
                     P_f\{k\} \leftarrow v/z
11:
                EMIT(string t, stripe P_f)
12:
```

Iterative Algorithms: Graphs

Source: Wikipedia (Water wheel)

What's a graph?

- G = (V,E), where
 - V represents the set of vertices (nodes)
 - E represents the set of edges (links)
 - Both vertices and edges may contain additional information
- Different types of graphs:
 - Directed vs. undirected edges
 - Presence or absence of cycles
- Graphs are everywhere:
 - Hyperlink structure of the web
 - Physical structure of computers on the Internet
 - Interstate highway system
 - Social networks

KONINGSBERGA

Source: Wikipedia (Kaliningrad)

Some Graph Problems

- Finding shortest paths
 - Routing Internet traffic and UPS trucks
- Finding minimum spanning trees
 - Telco laying down fiber
- Finding Max Flow
 - Airline scheduling
- Identify "special" nodes and communities
 - Breaking up terrorist cells, spread of avian flu
- Bipartite matching
 - Monster.com, Match.com
- And of course... PageRank

Graphs and MapReduce

- A large class of graph algorithms involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Key questions:
 - How do you represent graph data in MapReduce?
 - How do you traverse a graph in MapReduce?

In reality: graph algorithms in MapReduce suck!

Representing Graphs

- G = (V, E)
- Two common representations
 - Adjacency matrix
 - Adjacency list

Adjacency Matrices

Represent a graph as an $n \ge n$ square matrix M

- *n* = |V|
- $M_{ij} = I$ means a link from node *i* to *j*

		2	3	4
	0		0	I
2	I	0	I	I
3	I	0	0	0
4		0		0

Adjacency Matrices: Critique

• Advantages:

- Amenable to mathematical manipulation
- Iteration over rows and columns corresponds to computations on outlinks and inlinks
- Disadvantages:
 - Lots of zeros for sparse matrices
 - Lots of wasted space

Adjacency Lists

Take adjacency matrices... and throw away all the zeros

	1	2	3	4		
1	0	1	0	1		I:2,4
2	1	0	1	1		2:1,3,4
3	1	0	0	0		3: I 4: I, 3
4	1	0	1	0		т. г, Ј

Adjacency Lists: Critique

• Advantages:

- Much more compact representation
- Easy to compute over outlinks
- Disadvantages:
 - Much more difficult to compute over inlinks

Single-Source Shortest Path

- **Problem:** find shortest path from a source node to one or more target nodes
 - Shortest might also mean lowest weight or cost
- Single processor machine: Dijkstra's Algorithm
- MapReduce: parallel breadth-first search (BFS)

Finding the Shortest Path

- Consider simple case of equal edge weights
- Solution to the problem can be defined inductively
- Here's the intuition:
 - Define: b is reachable from a if b is on adjacency list of a
 DISTANCETO(s) = 0
 - For all nodes p reachable from s, DISTANCETO(p) = I
 - For all nodes *n* reachable from some other set of nodes *M*, DISTANCETO(*n*) = $I + \min(DISTANCETO(m), m \in M)$

Source: Wikipedia (Wave)

Visualizing Parallel BFS

From Intuition to Algorithm

- Data representation:
 - Key: node *n*
 - Value: *d* (distance from start), adjacency list (nodes reachable from *n*)
 - Initialization: for all nodes except for start node, $d = \infty$
- Mapper:
 - $\forall m \in adjacency \ list: emit \ (m, d + 1)$
- Sort/Shuffle
 - Groups distances by reachable nodes
- Reducer:
 - Selects minimum distance path for each reachable node
 - Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

- Each MapReduce iteration advances the "frontier" by one hop
 - Subsequent iterations include more and more reachable nodes as frontier expands
 - Multiple iterations are needed to explore entire graph
- Preserving graph structure:
 - Problem: Where did the adjacency list go?
 - Solution: mapper emits (n, adjacency list) as well

BFS Pseudo-Code

```
1: class Mapper.
        method MAP(nid n, node N)
2:
            d \leftarrow N.\text{Distance}
 3:
            E_{MIT}(nid n, N)
                                                                       \triangleright Pass along graph structure
 4:
            for all nodeid m \in N. ADJACENCYLIST do
 5:
                 EMIT(nid m, d+1)
                                                              \triangleright Emit distances to reachable nodes
 6:
 1: class Reducer.
        method REDUCE(nid m, [d_1, d_2, \ldots])
 2:
            d_{min} \leftarrow \infty
 3:
            M \leftarrow \emptyset
 4:
            for all d \in \text{counts } [d_1, d_2, \ldots] do
 5:
                 if IsNode(d) then
 6:
                     M \leftarrow d
                                                                           \triangleright Recover graph structure
 7:
                 else if d < d_{min} then
                                                                         ▷ Look for shorter distance
 8:
                     d_{min} \leftarrow d
 9:
            M.DISTANCE \leftarrow d_{min}
                                                                          ▷ Update shortest distance
10:
            E_{MIT}(nid \ m, node \ M)
11:
```

Stopping Criterion

- When a node is first discovered, we've found the shortest path
 - Maximum number of iterations is equal to the diameter of the graph
- Practicalities of implementation in MapReduce

Comparison to Dijkstra

- Dijkstra's algorithm is more efficient
 - At each step, only pursues edges from minimum-cost path inside frontier
- MapReduce explores all paths in parallel
 - Lots of "waste"
 - Useful work is only done at the "frontier"
- Why can't we do better using MapReduce?

Single Source: Weighted Edges

- Now add positive weights to the edges
 - Why can't edge weights be negative?
- Simple change: add weight *w* for each edge in adjacency list
 - In mapper, emit $(m, d + w_p)$ instead of (m, d + I) for each node m
- That's it?

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- When a node is first discovered, we've found the shortest path

Additional Complexities

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Practicalities of implementation in MapReduce

All-Pairs?

- Floyd-Warshall Algorithm: difficult to MapReduce-ify...
- Multiple-source shortest paths in MapReduce: run multiple parallel BFS simultaneously
 - Assume source nodes $\{s_0, s_1, \dots, s_n\}$
 - Instead of emitting a single distance, emit an array of distances, with respect to each source
 - Reducer selects minimum for each element in array

• Does this scale?

Application: Social Search

mb & cafe

次即

食屋

为家佐居

adles M

迎散

Social Search

- When searching, how to rank friends named "John"?
 - Assume undirected graphs
 - Rank matches by distance to user
- Naïve implementations:
 - Precompute all-pairs distances
 - Compute distances at query time
- Can we do better?

Landmark Approach (aka sketches)

- Select *n* seeds $\{s_0, s_1, \ldots, s_n\}$
- Compute distances from seeds to every node:

A = [2, 1, 1] B = [1, 1, 2] C = [4, 3, 1]D = [1, 2, 4]

- What can we conclude about distances?
- Insight: landmarks bound the maximum path length
- Lots of details:
 - How to more tightly bound distances
 - How to select landmarks (random isn't the best...)
- Use multi-source parallel BFS implementation in MapReduce!

<pause/>

Source: Wikipedia (Wave)

Graphs and MapReduce

- A large class of graph algorithms involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Generic recipe:
 - Represent graphs as adjacency lists
 - Perform local computations in mapper
 - Pass along partial results via outlinks, keyed by destination node
 - Perform aggregation in reducer on inlinks to a node
 - Iterate until convergence: controlled by external "driver"
 - Don't forget to pass the graph structure between iterations

PageRank

Given page x with inlinks $t_1 \dots t_n$, where

- C(t) is the out-degree of t
- α is probability of random jump
- N is the total number of nodes in the graph

$$PR(x) = \alpha \left(\frac{1}{N}\right) + (1-\alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$

Computing PageRank

- Properties of PageRank
 - Can be computed iteratively
 - Effects at each iteration are local
- Sketch of algorithm:
 - Start with seed PR_i values
 - Each page distributes *PR*, "credit" to all pages it links to
 - Each target page adds up "credit" from multiple in-bound links to compute PR_{i+1}
 - Iterate until values converge

Simplified PageRank

- First, tackle the simple case:
 - No random jump factor
 - No dangling nodes
- Then, factor in these complexities...
 - Why do we need the random jump?
 - Where do dangling nodes come from?

Sample PageRank Iteration (I)

Sample PageRank Iteration (2)

PageRank in MapReduce

PageRank Pseudo-Code

```
1: class Mapper
       method MAP(nid n, node N)
2:
           p \leftarrow N.PageRank/|N.AdjacencyList|
3:
           E_{MIT}(nid n, N)
                                                               ▷ Pass along graph structure
4:
           for all nodeid m \in N. ADJACENCYLIST do
 5:
              E_{MIT}(nid m, p)
                                                       ▷ Pass PageRank mass to neighbors
6:
1: class Reducer.
       method REDUCE(nid m, [p_1, p_2, \ldots])
2:
           M \leftarrow \emptyset
3:
           for all p \in \text{counts} [p_1, p_2, \ldots] do
4:
               if IsNode(p) then
5:
                  M \leftarrow p
                                                                  ▷ Recover graph structure
6:
               else
7:
                                                ▷ Sums incoming PageRank contributions
                  s \leftarrow s + p
8:
           M.PageRank \leftarrow s
9:
           E_{MIT}(nid m, node M)
10:
```

Complete PageRank

- Two additional complexities
 - What is the proper treatment of dangling nodes?
 - How do we factor in the random jump factor?
- Solution:
 - Second pass to redistribute "missing PageRank mass" and account for random jumps

$$p' = \alpha \left(\frac{1}{N}\right) + (1 - \alpha) \left(\frac{m}{N} + p\right)$$

- *p* is PageRank value from before, *p*' is updated PageRank value
- N is the number of nodes in the graph
- *m* is the missing PageRank mass
- Additional optimization: make it a single pass!

PageRank Convergence

• Alternative convergence criteria

- Iterate until PageRank values don't change
- Iterate until PageRank rankings don't change
- Fixed number of iterations
- o Convergence for web graphs?
 - Not a straightforward question
- Watch out for link spam:
 - Link farms
 - Spider traps
 - ...

Beyond PageRank

- Variations of PageRank
 - Weighted edges
 - Personalized PageRank
- Variants on graph random walks
 - Hubs and authorities (HITS)
 - SALSA

Other Classes of Graph Algorithms

- Subgraph pattern matching
- Computing simple graph statistics
 - Degree vertex distributions
- Computing more complex graph statistics
 - Clustering coefficients
 - Counting triangles

Batch Gradient Descent in MapReduce

Source: http://www.flickr.com/photos/fusedforces/4324320625/

MapReduce sucks at iterative algorithms

- Hadoop task startup time
- Stragglers
- Needless graph shuffling
- Checkpointing at each iteration

In-Mapper Combining

- Use combiners
 - Perform local aggregation on map output
 - Downside: intermediate data is still materialized
- Better: in-mapper combining
 - Preserve state across multiple map calls, aggregate messages in buffer, emit buffer contents at end
 - Downside: requires memory management

Better Partitioning

- Default: hash partitioning
 - Randomly assign nodes to partitions
- Observation: many graphs exhibit local structure
 - E.g., communities in social networks
 - Better partitioning creates more opportunities for local aggregation
- Unfortunately, partitioning is **hard**!
 - Sometimes, chick-and-egg...
 - But cheap heuristics sometimes available
 - For webgraphs: range partition on domain-sorted URLs

Schimmy Design Pattern

- Basic implementation contains two dataflows:
 - Messages (actual computations)
 - Graph structure ("bookkeeping")
- Schimmy: separate the two dataflows, shuffle only the messages
 - Basic idea: merge join between graph structure and messages

both relationshorter tidays join kisyently partitioned and sorted by join key

Do the Schimmy!

- Schimmy = reduce side parallel merge join between graph structure and messages
 - Consistent partitioning between input and intermediate data
 - Mappers emit only messages (actual computation)
 - Reducers read graph structure directly from HDFS

Experiments

• Cluster setup:

- 10 workers, each 2 cores (3.2 GHz Xeon), 4GB RAM, 367 GB disk
- Hadoop 0.20.0 on RHELS 5.3
- Dataset:
 - First English segment of ClueWeb09 collection
 - 50.2m web pages (1.53 TB uncompressed, 247 GB compressed)
 - Extracted webgraph: I.4 billion edges, 7.0 GB
 - Dataset arranged in crawl order
- Setup:
 - Measured per-iteration running time (5 iterations)
 - 100 partitions

Sequencing Computations

Source: www:flickr.com/photos/richardandgill/565921252/

Sequencing Computations

- 1. Turn synchronization into a sorting problem
 - Leverage the fact that keys arrive at reducers in sorted order
 - Manipulate the sort order and partitioning scheme to deliver partial results at appropriate junctures
- 2. Create appropriate algebraic structures to capture computation
 - Build custom data structures to accumulate partial results

Monoids!

- What's a monoid?
- An algebraic structure with
 - A single associative binary operation
 - An identity
- Examples:
 - Natural numbers form a commutative monoid under + with identity 0
 - Natural numbers form a commutative monoid under × with identity I
 - Finite strings form a monoid under concatenation with identity ""
 - ...

Monoids and MapReduce

- Recall averaging example: why does it work?
 - AVG is non-associative
 - Tuple of (sum, count) forms a monoid under element-wise addition
 - Destroy the monoid at end to compute average
 - Also explains the various failed algorithms
- "Stripes" pattern works in the same way!
 - Associate arrays form a monoid under element-wise addition

Abstract Algebra and MapReduce

- Create appropriate algebraic structures to capture computation
- Algebraic properties
 - Associative: order doesn't matter!
 - Commutative: grouping doesn't matter!
 - Idempotent: duplicates don't matter!
 - Identity: this value doesn't matter!
 - Zero: other values don't matter!
 - ...
- Different combinations lead to monoids, groups, rings, lattices, etc.

Recent thoughts, see: Jimmy Lin. Monoidify! Monoids as a Design Principle for Efficient MapReduce Algorithms. arXiv:1304.7544, April 2013.

