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Source: Wikipedia (All Souls College, Oxford) 

From the Ivory Tower…	




Source: Wikipedia (Factory) 

… to building sh*t that works	




Source: Wikipedia (All Souls College, Oxford) 

… and back.	




More about me…	


¢  Past MapReduce teaching experience:	

l  Numerous tutorials	

l  Several semester-long MapReduce courses	


¢  Lin & Dyer MapReduce textbook	

http://mapreduce.cc/ 

Follow me at @lintool	


http://lintool.github.io/MapReduce-course-2013s/ 



What we’ll cover	


¢  Big data	


¢  MapReduce overview	


¢  Importance of local aggregation	


¢  Sequencing computations	


¢  Iterative graph algorithms	


¢  MapReduce and abstract algebra	


Focus on design patterns and general principles	




What we won’t cover	


¢  MapReduce for machine learning (supervised and unsupervised)	


¢  MapReduce for similar item detection	


¢  MapReduce for information retrieval	


¢  Hadoop for data warehousing	


¢  Extensions and alternatives to MapReduce	




Source: Wikipedia (Hard disk drive) 

Big Data	




How much data?	


>10 PB data, 75B DB 
calls per day (6/2012)	


processes 20 PB a day (2008)	

crawls 20B web pages a day (2012)	


>100 PB of user data + ���
500 TB/day (8/2012)	


Wayback Machine: 240B web 
pages archived, 5 PB (1/2013)	


LHC: ~15 PB a year���
	


LSST: 6-10 PB a year ���
(~2015)	
640K ought to be 

enough for anybody.	


150 PB on 50k+ servers ���
running 15k apps (6/2011)	


S3: 449B objects, peak 290k 
request/second (7/2011)	

1T objects (6/2012)	


SKA: 0.3 – 1.5 EB ���
per year (~2020)	




Source: Wikipedia (Everest) 

Why big data?	
 Science	

Engineering	

Commerce	




Emergence of the 4th Paradigm	


Data-intensive e-Science	

Maximilien Brice, © CERN 

Science	




Engineering	

The unreasonable effectiveness of data	


Count and normalize!	


Source: Wikipedia (Three Gorges Dam) 



No data like more data!	


(Banko and Brill, ACL 2001) 
(Brants et al., EMNLP 2007) 

s/knowledge/data/g;	




Commerce	


Know thy customers	


Data → Insights → Competitive advantages 	


Source: Wikiedia (Shinjuku, Tokyo) 



How big data?	

Why big data?	


Source: Wikipedia (Noctilucent cloud) 



Source: Google 

MapReduce	




Typical Big Data Problem	


¢  Iterate over a large number of records	


¢  Extract something of interest from each	


¢  Shuffle and sort intermediate results	


¢  Aggregate intermediate results	


¢  Generate final output	


Key idea: provide a functional 
abstraction for these two operations	


Map	


Reduce	


(Dean and Ghemawat, OSDI 2004) 



g g g g g 

f f f f f Map	


Fold	


Roots in Functional Programming	




MapReduce	


¢  Programmers specify two functions:	

map (k1, v1) → [<k2, v2>]	

reduce (k2, [v2]) → [<k3, v3>]	

l  All values with the same key are sent to the same reducer	


¢  The execution framework handles everything else…	




map map map map 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

a 1 5 b 2 7 c 2 3 6 8 

r1 s1 r2 s2 r3 s3 



MapReduce	


¢  Programmers specify two functions:	

map (k, v) → <k’, v’>*	

reduce (k’, v’) → <k’, v’>*	

l  All values with the same key are sent to the same reducer	


¢  The execution framework handles everything else…	


What’s “everything else”?	




MapReduce “Runtime”	


¢  Handles scheduling	

l  Assigns workers to map and reduce tasks	


¢  Handles “data distribution”	

l  Moves processes to data	


¢  Handles synchronization	

l  Gathers, sorts, and shuffles intermediate data	


¢  Handles errors and faults	

l  Detects worker failures and restarts	


¢  Everything happens on top of a distributed filesystem	




MapReduce	


¢  Programmers specify two functions:	

map (k, v) → <k’, v’>*	

reduce (k’, v’) → <k’, v’>*	

l  All values with the same key are reduced together	


¢  The execution framework handles everything else…	


¢  Not quite…usually, programmers also specify:	

partition (k’, number of partitions) → partition for k’	

l  Often a simple hash of the key, e.g., hash(k’) mod n	

l  Divides up key space for parallel reduce operations	

combine (k’, v’) → <k’, v’>*	

l  Mini-reducers that run in memory after the map phase	

l  Used as an optimization to reduce network traffic	




combine combine combine combine 

b a 1 2 c 9 a c 5 2 b c 7 8 

partition partition partition partition 

map map map map 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

a 1 5 b 2 7 c 2 9 8 

r1 s1 r2 s2 r3 s3 

c 2 3 6 8 



Two more details…	


¢  Barrier between map and reduce phases	

l  But intermediate data can be copied over as soon as mappers finish	


¢  Keys arrive at each reducer in sorted order	

l  No enforced ordering across reducers	




What’s the big deal?	


¢  Developers need the right level of abstraction	

l  Moving beyond the von Neumann architecture	

l  We need better programming models	


¢  Abstractions hide low-level details from the developers	

l  No more race conditions, lock contention, etc.	


¢  MapReduce separating the what from how	

l  Developer specifies the computation that needs to be performed	


l  Execution framework (“runtime”) handles actual execution	




Source: Google 

The datacenter is the computer!	




Source: Google 



MapReduce can refer to…	


¢  The programming model	


¢  The execution framework (aka “runtime”)	


¢  The specific implementation	


Usage is usually clear from context!	




MapReduce Implementations	


¢  Google has a proprietary implementation in C++	

l  Bindings in Java, Python	


¢  Hadoop is an open-source implementation in Java	

l  Development led by Yahoo, now an Apache project	


l  Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix, …	


l  The de facto big data processing platform	


l  Rapidly expanding software ecosystem	


¢  Lots of custom research implementations	

l  For GPUs, cell processors, etc.	




MapReduce algorithm design	


¢  The execution framework handles “everything else”…	

l  Scheduling: assigns workers to map and reduce tasks	

l  “Data distribution”: moves processes to data	


l  Synchronization: gathers, sorts, and shuffles intermediate data	


l  Errors and faults: detects worker failures and restarts	


¢  Limited control over data and execution flow	

l  All algorithms must expressed in m, r, c, p	


¢  You don’t know:	

l  Where mappers and reducers run	


l  When a mapper or reducer begins or finishes	

l  Which input a particular mapper is processing	


l  Which intermediate key a particular reducer is processing	




Implementation Details	


Source: www.flickr.com/photos/8773361@N05/2524173778/ 



Adapted from (Ghemawat et al., SOSP 2003) 

(file name, block id) 

(block id, block location) 

instructions to datanode 

datanode state 
(block id, byte range) 

block data 

HDFS namenode 

HDFS datanode 

Linux file system 

… 

HDFS datanode 

Linux file system 

… 

File namespace 
/foo/bar 

block 3df2 

Application 

HDFS Client 

HDFS Architecture	




Putting everything together…	


datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

namenode 

namenode daemon 

job submission node 

jobtracker 



Shuffle and Sort	


Mapper	


Reducer	


other mappers	


other reducers	


circular buffer ���
(in memory)	


spills (on disk)	


merged spills ���
(on disk)	


intermediate files ���
(on disk)	


Combiner	


Combiner	




Preserving State	


Mapper object	


setup	


map	


cleanup	


state	

one object per task	


Reducer object	


setup	


reduce	


close	


state	


one call per input ���
key-value pair	


one call per ���
intermediate key	


API initialization hook	


API cleanup hook	




Implementation Don’ts	


¢  Don’t unnecessarily create objects	

l  Object creation is costly	

l  Garbage collection is costly	


¢  Don’t buffer objects	

l  Processes have limited heap size (remember, commodity machines)	


l  May work for small datasets, but won’t scale!	




Secondary Sorting	


¢  MapReduce sorts input to reducers by key	

l  Values may be arbitrarily ordered	


¢  What if want to sort value also?	

l  E.g., k → (v1, r), (v3, r), (v4, r), (v8, r)…	




Secondary Sorting: Solutions	


¢  Solution 1:	

l  Buffer values in memory, then sort	

l  Why is this a bad idea?	


¢  Solution 2:	

l  “Value-to-key conversion” design pattern: form composite intermediate 

key, (k, v1)	

l  Let execution framework do the sorting	


l  Preserve state across multiple key-value pairs to handle processing	


l  Anything else we need to do?	




Local Aggregation	


Source: www.flickr.com/photos/bunnieswithsharpteeth/490935152/ 



Importance of Local Aggregation	


¢  Ideal scaling characteristics:	

l  Twice the data, twice the running time	

l  Twice the resources, half the running time	


¢  Why can’t we achieve this?	

l  Synchronization requires communication	


l  Communication kills performance (network is slow!)	


¢  Thus… avoid communication!	

l  Reduce intermediate data via local aggregation	


l  Combiners can help	




Word Count: Baseline	


What’s the impact of combiners?	




Word Count: Version 1	


Are combiners still needed?	




Word Count: Version 2	


Are combiners still needed?	




Design Pattern for Local Aggregation	


¢  “In-mapper combining”	

l  Fold the functionality of the combiner into the mapper by preserving 

state across multiple map calls	


¢  Advantages	


l  Speed	

l  Why is this faster than actual combiners?	


¢  Disadvantages	

l  Explicit memory management required	


l  Potential for order-dependent bugs	




Combiner Design	


¢  Combiners and reducers share same method signature	

l  Sometimes, reducers can serve as combiners	

l  Often, not…	


¢  Remember: combiner are optional optimizations	

l  Should not affect algorithm correctness	


l  May be run 0, 1, or multiple times	


¢  Example: find average of integers associated with the same key	




Computing the Mean: Version 1	


Why can’t we use reducer as combiner?	




Computing the Mean: Version 2	


Why doesn’t this work?	




Computing the Mean: Version 3	


Fixed? 



Computing the Mean: Version 4	


Are combiners still needed?	




Sequencing Computations	


Source: www.flickr.com/photos/richardandgill/565921252/ 



Sequencing Computations	


1.  Turn synchronization into a sorting problem	

l  Leverage the fact that keys arrive at reducers in sorted order	

l  Manipulate the sort order and partitioning scheme to deliver partial 

results at appropriate junctures	


2.  Create appropriate algebraic structures to capture computation	

l  Build custom data structures to accumulate partial results	




Algorithm Design: Running Example	


¢  Term co-occurrence matrix for a text collection	

l  M = N x N matrix (N = vocabulary size)	

l  Mij: number of times i and j co-occur in some context ���

(for concreteness, let’s say context = sentence)	


¢  Why?	

l  Distributional profiles as a way of measuring semantic distance	


l  Semantic distance useful for many language processing tasks	


l  Basis for large classes of more sophisticated algorithms	




MapReduce: Large Counting Problems	


¢  Term co-occurrence matrix for a text collection���
= specific instance of a large counting problem	

l  A large event space (number of terms)	


l  A large number of observations (the collection itself)	


l  Goal: keep track of interesting statistics about the events	


¢  Basic approach	

l  Mappers generate partial counts	


l  Reducers aggregate partial counts	


How do we aggregate partial counts efficiently?	




First Try: “Pairs”	


¢  Each mapper takes a sentence:	

l  Generate all co-occurring term pairs	

l  For all pairs, emit (a, b) → count	


¢  Reducers sum up counts associated with these pairs	


¢  Use combiners!	




Pairs: Pseudo-Code	




“Pairs” Analysis	


¢  Advantages	

l  Easy to implement, easy to understand	


¢  Disadvantages	

l  Lots of pairs to sort and shuffle around (upper bound?)	


l  Not many opportunities for combiners to work	




Another Try: “Stripes”	


¢  Idea: group together pairs into an associative array	


¢  Each mapper takes a sentence:	

l  Generate all co-occurring term pairs	


l  For each term, emit a → { b: countb, c: countc, d: countd … }	


¢  Reducers perform element-wise sum of associative arrays	


(a, b) → 1  
(a, c) → 2  
(a, d) → 5  
(a, e) → 3  
(a, f) → 2  

a → { b: 1, c: 2, d: 5, e: 3, f: 2 } 

a → { b: 1,         d: 5, e: 3 } 
a → { b: 1, c: 2, d: 2,         f: 2 } 
a → { b: 2, c: 2, d: 7, e: 3, f: 2 } 

+ 

Key idea: cleverly-constructed data st
ructure	


for aggr
egating partial 

results	




Stripes: Pseudo-Code	




“Stripes” Analysis	


¢  Advantages	

l  Far less sorting and shuffling of key-value pairs	

l  Can make better use of combiners	


¢  Disadvantages	

l  More difficult to implement	


l  Underlying object more heavyweight	


l  Fundamental limitation in terms of size of event space	




Cluster size: 38 cores 
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), 
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed) 





Relative Frequencies	


¢  How do we estimate relative frequencies from counts?	


¢  Why do we want to do this?	


¢  How do we do this with MapReduce?	


f(B|A) =
N(A,B)

N(A)
=

N(A,B)P
B0 N(A,B0)



f(B|A): “Stripes” 	


¢  Easy!	

l  One pass to compute (a, *)	


l  Another pass to directly compute f(B|A)	


a →  {b1:3, b2 :12, b3 :7, b4 :1, … } 



f(B|A): “Pairs” 	


¢  What’s the issue?	

l  Computing relative frequencies requires marginal counts	

l  But the marginal cannot be computed until you see all counts	


l  Buffering is a bad idea!	


¢  Solution:	

l  What if we could get the marginal count to arrive at the reducer first?	




f(B|A): “Pairs” 	


¢  For this to work:	


l  Must emit extra (a, *) for every bn in mapper	

l  Must make sure all a’s get sent to same reducer (use partitioner)	


l  Must make sure (a, *) comes first (define sort order)	


l  Must hold state in reducer across different key-value pairs	


(a, b1) → 3  
(a, b2) → 12  
(a, b3) → 7 
(a, b4) → 1  
… 

(a, *) → 32  

(a, b1) → 3 / 32  
(a, b2) → 12 / 32 
(a, b3) → 7 / 32 
(a, b4) → 1 / 32 
… 

Reducer holds this value in memory 



“Order Inversion”	


¢  Common design pattern:	

l  Take advantage of sorted key order at reducer to sequence 

computations	

l  Get the marginal counts to arrive at the reducer before the joint counts	


¢  Optimization:	

l  Apply in-memory combining pattern to accumulate marginal counts	




Synchronization: Pairs vs. Stripes	


¢  Approach 1: turn synchronization into an ordering problem	

l  Sort keys into correct order of computation	

l  Partition key space so that each reducer gets the appropriate set of 

partial results	

l  Hold state in reducer across multiple key-value pairs to perform 

computation	

l  Illustrated by the “pairs” approach	


¢  Approach 2: construct data structures to accumulate partial 
results	

l  Each reducer receives all the data it needs to complete the computation	

l  Illustrated by the “stripes” approach	




Issues and Tradeoffs	


¢  Number of key-value pairs	

l  Object creation overhead	

l  Time for sorting and shuffling pairs across the network	


¢  Size of each key-value pair	

l  De/serialization overhead	




Lots are algorithms are just 
fancy conditional counts!	


Source: http://www.flickr.com/photos/guvnah/7861418602/ 



Hidden Markov Models	


An HMM                         is characterized by:	

l  N states:	

l  N x N Transition probability matrix	


l  V observation symbols:	

l  N x |V| Emission probability matrix���
���
	


l  Prior probabilities vector	


aij = p(qj |qi)
X

j

aij = 1 8i

A = [aij ]

NX

i=1

⇡i = 1

� = (A,B,⇧)

Q = {q1, q2, . . . qN}

O = {o1, o2, . . . oV }
B = [biv]

biv = bi(ov) = p(ov|qi)

⇧ = [⇡i,⇡2, . . .⇡N ]



Forward-Backward	


�t(j)

. .
 . 

. 	
qj

. . . . 	


↵t(j)

otot�1 ot+1

↵t(j) = P (o1, o2 . . . ot, qt = j|�) �t(j) = P (ot+1, ot+2...oT |qt = i,�)



Estimating Emissions Probabilities	


¢  Basic idea:	


¢  Let’s define:	


¢  Thus:	


bj(vk) =	

expected number of times in state j and observing symbol vk	


expected number of times in state j	


�t(j) =
P (qt = j, O|�)

P (O|�) =
↵t(j)�t(j)

P (O|�)

b̂j(vk) =

PT
i=1\Ot=vk

�t(j)
PT

i=1 �t(j)



Forward-Backward	


. .
 . 

. 	
qj

. . . . 	


otot�1 ot+1 ot+2

qi

↵t(i) �t+1(j)

aijbj(ot+1)



Estimating Transition Probabilities	


¢  Basic idea:	


¢  Let’s define:	


¢  Thus:	


aij =	

expected number of transitions from state i to state j	


expected number of transitions from state i	


⇠t(i, j) =
↵t(i)aijbj(ot+1)�t+1(j)

P (O|�)

âij =

PT�1
t=1 ⇠t(i, j)PT�1

t=1

PN
j=1 ⇠t(i, j)



MapReduce Implementation: Mapper	


136 CHAPTER 6. EM ALGORITHMS FOR TEXT PROCESSING

1: class Mapper

2: method Initialize(integer iteration)
3: hS,Oi  ReadModel

4: ✓  hA, B,⇡i  ReadModelParams(iteration)
5: method Map(sample id, sequence x)
6: ↵ Forward(x, ✓) . cf. Section 6.2.2
7: �  Backward(x, ✓) . cf. Section 6.2.4
8: I  new AssociativeArray . Initial state expectations
9: for all q 2 S do . Loop over states

10: I{q} ↵
1

(q) · �
1

(q)
11: O  new AssociativeArray of AssociativeArray . Emissions
12: for t = 1 to |x| do . Loop over observations
13: for all q 2 S do . Loop over states
14: O{q}{x

t

} O{q}{x
t

} + ↵
t

(q) · �
t

(q)
15: t t + 1
16: T  new AssociativeArray of AssociativeArray . Transitions
17: for t = 1 to |x|� 1 do . Loop over observations
18: for all q 2 S do . Loop over states
19: for all r 2 S do . Loop over states
20: T{q}{r} T{q}{r} + ↵

t

(q) · A
q

(r) · B
r

(x
t+1

) · �
t+1

(r)
21: t t + 1
22: Emit(string ‘initial ’, stripe I)
23: for all q 2 S do . Loop over states
24: Emit(string ‘emit from ’ + q, stripe O{q})
25: Emit(string ‘transit from ’ + q, stripe T{q})

Figure 6.8: Mapper pseudo-code for training hidden Markov models using EM. The mappers
map over training instances (i.e., sequences of observations x

i

) and generate the expected counts
of initial states, emissions, and transitions taken to generate the sequence.

b̂j(vk) =

PT
i=1\Ot=vk

�t(j)
PT

i=1 �t(j)

âij =

PT�1
t=1 ⇠t(i, j)PT�1

t=1

PN
j=1 ⇠t(i, j)

�t(j) =
↵t(j)�t(j)

P (O|�)

⇠t(i, j) =
↵t(i)aijbj(ot+1)�t+1(j)

P (O|�)



MapReduce Implementation: Reducer	


6.3. EM IN MAPREDUCE 137

1: class Combiner

2: method Combine(string t, stripes [C
1

, C
2

, . . .])
3: C

f

 new AssociativeArray

4: for all stripe C 2 stripes [C
1

, C
2

, . . .] do
5: Sum(C

f

, C)
6: Emit(string t, stripe C

f

)

1: class Reducer

2: method Reduce(string t, stripes [C
1

, C
2

, . . .])
3: C

f

 new AssociativeArray

4: for all stripe C 2 stripes [C
1

, C
2

, . . .] do
5: Sum(C

f

, C)
6: z  0
7: for all hk, vi 2 C

f

do
8: z  z + v
9: P

f

 new AssociativeArray . Final parameters vector
10: for all hk, vi 2 C

f

do
11: P

f

{k} v/z

12: Emit(string t, stripe P
f

)

Figure 6.9: Combiner and reducer pseudo-code for training hidden Markov models using EM.
The HMMs considered in this book are fully parameterized by multinomial distributions, so
reducers do not require special logic to handle di↵erent types of model parameters (since they
are all of the same type).

b̂j(vk) =

PT
i=1\Ot=vk

�t(j)
PT

i=1 �t(j)

âij =

PT�1
t=1 ⇠t(i, j)PT�1

t=1

PN
j=1 ⇠t(i, j)

�t(j) =
↵t(j)�t(j)

P (O|�)

⇠t(i, j) =
↵t(i)aijbj(ot+1)�t+1(j)

P (O|�)



Iterative Algorithms: Graphs	


Source: Wikipedia (Water wheel) 



What’s a graph?	


¢  G = (V,E), where	

l  V represents the set of vertices (nodes)	

l  E represents the set of edges (links)	


l  Both vertices and edges may contain additional information	


¢  Different types of graphs:	

l  Directed vs. undirected edges	


l  Presence or absence of cycles	


¢  Graphs are everywhere:	

l  Hyperlink structure of the web	


l  Physical structure of computers on the Internet	

l  Interstate highway system	


l  Social networks	




Source: Wikipedia (Königsberg) 



Source: Wikipedia (Kaliningrad) 



Some Graph Problems	


¢  Finding shortest paths	

l  Routing Internet traffic and UPS trucks	


¢  Finding minimum spanning trees	

l  Telco laying down fiber	


¢  Finding Max Flow	

l  Airline scheduling	


¢  Identify “special” nodes and communities	

l  Breaking up terrorist cells, spread of avian flu	


¢  Bipartite matching	

l  Monster.com, Match.com	


¢  And of course... PageRank	




Graphs and MapReduce	


¢  A large class of graph algorithms involve:	

l  Performing computations at each node: based on node features, edge 

features, and local link structure	

l  Propagating computations: “traversing” the graph	


¢  Key questions:	

l  How do you represent graph data in MapReduce?	


l  How do you traverse a graph in MapReduce?	


In reality: grap
h algorithms ���

in MapReduce suck!	




Representing Graphs	


¢  G = (V, E)	


¢  Two common representations	


l  Adjacency matrix	

l  Adjacency list	




Adjacency Matrices	


Represent a graph as an n x n square matrix M	

l  n = |V|	

l  Mij = 1 means a link from node i to j	


1	
 2	
 3	
 4	


1	
 0	
 1	
 0	
 1	


2	
 1	
 0	
 1	
 1	


3	
 1	
 0	
 0	
 0	


4	
 1	
 0	
 1	
 0	


1	


2	


3	


4	




Adjacency Matrices: Critique	


¢  Advantages:	

l  Amenable to mathematical manipulation	

l  Iteration over rows and columns corresponds to computations on 

outlinks and inlinks	


¢  Disadvantages:	

l  Lots of zeros for sparse matrices	


l  Lots of wasted space	




Adjacency Lists	


Take adjacency matrices… and throw away all the zeros	


1: 2, 4	

2: 1, 3, 4	

3: 1	

4: 1, 3	


1 2 3 4 
1 0 1 0 1 
2 1 0 1 1 
3 1 0 0 0 
4 1 0 1 0 



Adjacency Lists: Critique	


¢  Advantages:	

l  Much more compact representation	

l  Easy to compute over outlinks	


¢  Disadvantages:	

l  Much more difficult to compute over inlinks	




Single-Source Shortest Path	


¢  Problem: find shortest path from a source node to one or 
more target nodes	

l  Shortest might also mean lowest weight or cost	


¢  Single processor machine: Dijkstra’s Algorithm	


¢  MapReduce: parallel breadth-first search (BFS)	




Finding the Shortest Path	


¢  Consider simple case of equal edge weights	


¢  Solution to the problem can be defined inductively	


¢  Here’s the intuition:	

l  Define: b is reachable from a if b is on adjacency list of a	


	
DISTANCETO(s) = 0	

l  For all nodes p reachable from s, ���
	
DISTANCETO(p) = 1	


l  For all nodes n reachable from some other set of nodes M, 
	
DISTANCETO(n) = 1 + min(DISTANCETO(m), m ∈ M)	


s	


m3	


m2	


m1	


n	


…	


…	


…	


d1	


d2	


d3	




Source: Wikipedia (Wave) 



Visualizing Parallel BFS	


n0 

n3 
n2 

n1 

n7 

n6 

n5 

n4 

n9 

n8 



From Intuition to Algorithm	


¢  Data representation:	

l  Key: node n	

l  Value: d (distance from start), adjacency list (nodes reachable from n)	


l  Initialization: for all nodes except for start node, d = ∞	


¢  Mapper:	

l  ∀m ∈ adjacency list: emit (m, d + 1)	


¢  Sort/Shuffle	

l  Groups distances by reachable nodes	


¢  Reducer:	

l  Selects minimum distance path for each reachable node	


l  Additional bookkeeping needed to keep track of actual path	




Multiple Iterations Needed	


¢  Each MapReduce iteration advances the “frontier” by one hop	

l  Subsequent iterations include more and more reachable nodes as 

frontier expands	

l  Multiple iterations are needed to explore entire graph	


¢  Preserving graph structure:	

l  Problem: Where did the adjacency list go?	


l  Solution: mapper emits (n, adjacency list) as well	




BFS Pseudo-Code	




Stopping Criterion	


¢  When a node is first discovered, we’ve found the shortest path	

l  Maximum number of iterations is equal to the diameter of the graph	


¢  Practicalities of implementation in MapReduce	




Comparison to Dijkstra	


¢  Dijkstra’s algorithm is more efficient 	

l  At each step, only pursues edges from minimum-cost path inside frontier	


¢  MapReduce explores all paths in parallel	

l  Lots of “waste”	


l  Useful work is only done at the “frontier”	


¢  Why can’t we do better using MapReduce?	




Single Source: Weighted Edges	


¢  Now add positive weights to the edges	

l  Why can’t edge weights be negative?	


¢  Simple change: add weight w for each edge in adjacency list	

l  In mapper, emit (m, d + wp) instead of (m, d + 1) for each node m	


¢  That’s it?	




Stopping Criterion	


¢  How many iterations are needed in parallel BFS (positive edge 
weight case)?	


¢  When a node is first discovered, we’ve found the shortest path	


Not true!	




Additional Complexities	


s 

p 
q 

r 

search frontier 

10 

n1 

n2 
n3 

n4 

n5 

n6 n7 
n8 

n9 

1 

1 
1 

1 

1 

1 
1 

1 



Stopping Criterion	


¢  How many iterations are needed in parallel BFS (positive edge 
weight case)?	


¢  Practicalities of implementation in MapReduce	




All-Pairs?	


¢  Floyd-Warshall Algorithm: difficult to MapReduce-ify…	


¢  Multiple-source shortest paths in MapReduce: run multiple 
parallel BFS simultaneously	

l  Assume source nodes {s0, s1, … sn}	


l  Instead of emitting a single distance, emit an array of distances, with 
respect to each source	


l  Reducer selects minimum for each element in array	


¢  Does this scale?	




Application: Social Search	


Source: Wikipedia (Crowd) 



Social Search	


¢  When searching, how to rank friends named “John”?	

l  Assume undirected graphs	

l  Rank matches by distance to user	


¢  Naïve implementations:	

l  Precompute all-pairs distances	


l  Compute distances at query time	


¢  Can we do better?	




Landmark Approach (aka sketches)	


¢  Select n seeds {s0, s1, … sn}	


¢  Compute distances from seeds to every node:	


l  What can we conclude about distances?	


l  Insight: landmarks bound the maximum path length	


¢  Lots of details:	


l  How to more tightly bound distances	

l  How to select landmarks (random isn’t the best…)	


¢  Use multi-source parallel BFS implementation in MapReduce!	


A 	
=	
[2, 1, 1]	

B 	
=	
[1, 1, 2]	

C 	
=	
[4, 3, 1]	

D 	
=	
[1, 2, 4]	




Source: Wikipedia (Wave) 

<pause/>	




Graphs and MapReduce	


¢  A large class of graph algorithms involve:	

l  Performing computations at each node: based on node features, edge 

features, and local link structure	

l  Propagating computations: “traversing” the graph	


¢  Generic recipe:	

l  Represent graphs as adjacency lists	


l  Perform local computations in mapper	


l  Pass along partial results via outlinks, keyed by destination node	


l  Perform aggregation in reducer on inlinks to a node	

l  Iterate until convergence: controlled by external “driver”	


l  Don’t forget to pass the graph structure between iterations	




Given page x with inlinks t1…tn, where	

l  C(t) is the out-degree of t	

l  α is probability of random jump	


l  N is the total number of nodes in the graph	


PageRank	


X	


t1	


t2	


tn	

…	


PR(x) = ↵

✓
1

N

◆
+ (1� ↵)

nX

i=1

PR(ti)

C(ti)



Computing PageRank	


¢  Properties of PageRank	

l  Can be computed iteratively	

l  Effects at each iteration are local	


¢  Sketch of algorithm:	

l  Start with seed PRi values	


l  Each page distributes PRi “credit” to all pages it links to	


l  Each target page adds up “credit” from multiple in-bound links to 
compute PRi+1	


l  Iterate until values converge	




Simplified PageRank	


¢  First, tackle the simple case:	

l  No random jump factor	

l  No dangling nodes	


¢  Then, factor in these complexities…	

l  Why do we need the random jump?	


l  Where do dangling nodes come from?	




Sample PageRank Iteration (1)	


n1 (0.2) 

n4 (0.2) 

n3 (0.2) 
n5 (0.2) 

n2 (0.2) 

0.1 

0.1 

0.2 0.2 

0.1 0.1 

0.066 0.066 
0.066 

n1 (0.066) 

n4 (0.3) 

n3 (0.166) 
n5 (0.3) 

n2 (0.166) Iteration 1 



Sample PageRank Iteration (2)	


n1 (0.066) 

n4 (0.3) 

n3 (0.166) 
n5 (0.3) 

n2 (0.166) 

0.033 

0.033 

0.3 0.166 

0.083 0.083 

0.1 0.1 
0.1 

n1 (0.1) 

n4 (0.2) 

n3 (0.183) 
n5 (0.383) 

n2 (0.133) Iteration 2 



PageRank in MapReduce	


n5 [n1, n2, n3] n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5] 

n2 n4 n3 n5 n1 n2 n3 n4 n5 

n2 n4 n3 n5 n1 n2 n3 n4 n5 

n5 [n1, n2, n3] n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5] 

Map 

Reduce 



PageRank Pseudo-Code	




Complete PageRank	


¢  Two additional complexities	

l  What is the proper treatment of dangling nodes?	

l  How do we factor in the random jump factor?	


¢  Solution: 	

l  Second pass to redistribute “missing PageRank mass” and account for 

random jumps	


l  p is PageRank value from before, p' is updated PageRank value	

l  N is the number of nodes in the graph	


l  m is the missing PageRank mass	


¢  Additional optimization: make it a single pass!	


p0 = ↵

✓
1

N

◆
+ (1� ↵)

⇣m
N

+ p
⌘



PageRank Convergence	


¢  Alternative convergence criteria	

l  Iterate until PageRank values don’t change	

l  Iterate until PageRank rankings don’t change	


l  Fixed number of iterations	


¢  Convergence for web graphs?	

l  Not a straightforward question	


¢  Watch out for link spam:	

l  Link farms	


l  Spider traps	


l  …	




Beyond PageRank	


¢  Variations of PageRank	

l  Weighted edges	

l  Personalized PageRank	


¢  Variants on graph random walks	

l  Hubs and authorities (HITS)	


l  SALSA	




Other Classes of Graph Algorithms	


¢  Subgraph pattern matching	


¢  Computing simple graph statistics	


l  Degree vertex distributions	


¢  Computing more complex graph statistics	

l  Clustering coefficients	

l  Counting triangles	




mapper	
 mapper	
 mapper	
 mapper	


reducer	


compute partial gradient	


single reducer	


mappers	


update model 	

iterate until convergence	


✓(t+1)  ✓(t) � �(t) 1

n

nX

i=0

r`(f(xi; ✓(t)), yi)

Batch Gradient Descent in MapReduce	




Source: http://www.flickr.com/photos/fusedforces/4324320625/ 



MapReduce sucks at iterative algorithms	


¢  Hadoop task startup time	


¢  Stragglers	


¢  Needless graph shuffling	


¢  Checkpointing at each iteration	




In-Mapper Combining	


¢  Use combiners	

l  Perform local aggregation on map output	

l  Downside: intermediate data is still materialized	


¢  Better: in-mapper combining	

l  Preserve state across multiple map calls, aggregate messages in buffer, 

emit buffer contents at end	

l  Downside: requires memory management	


setup	


map	


cleanup	


buffer	


Emit all key-value pairs at once	




Better Partitioning	


¢  Default: hash partitioning	

l  Randomly assign nodes to partitions	


¢  Observation: many graphs exhibit local structure	

l  E.g., communities in social networks	


l  Better partitioning creates more opportunities for local aggregation	


¢  Unfortunately, partitioning is hard!	

l  Sometimes, chick-and-egg… 	


l  But cheap heuristics sometimes available	


l  For webgraphs: range partition on domain-sorted URLs	




Schimmy Design Pattern	


¢  Basic implementation contains two dataflows:	

l  Messages (actual computations)	

l  Graph structure (“bookkeeping”)	


¢  Schimmy: separate the two dataflows, shuffle only the messages	

l  Basic idea: merge join between graph structure and messages	


S T 

both relations sorted by join key 

S1 T1 S2 T2 S3 T3 

both relations consistently partitioned and sorted by join key 



S1 T1 

Do the Schimmy!	


¢  Schimmy = reduce side parallel merge join between graph 
structure and messages	

l  Consistent partitioning between input and intermediate data	


l  Mappers emit only messages (actual computation)	


l  Reducers read graph structure directly from HDFS	


S2 T2 S3 T3 

Reducer Reducer Reducer 

intermediate data 
(messages) 

intermediate data 
(messages) 

intermediate data 
(messages) 

from HDFS 
(graph structure) 

from HDFS 
(graph structure) 

from HDFS 
(graph structure) 



Experiments	


¢  Cluster setup:	

l  10 workers, each 2 cores (3.2 GHz Xeon), 4GB RAM, 367 GB disk	

l  Hadoop 0.20.0 on RHELS 5.3	


¢  Dataset:	

l  First English segment of ClueWeb09 collection	


l  50.2m web pages (1.53 TB uncompressed, 247 GB compressed)	


l  Extracted webgraph: 1.4 billion edges, 7.0 GB	


l  Dataset arranged in crawl order	


¢  Setup:	


l  Measured per-iteration running time (5 iterations)	

l  100 partitions	




Results	


“Best Practices” 



Results	
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Results	
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Results	
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Sequencing Computations	


Source: www.flickr.com/photos/richardandgill/565921252/ 



Sequencing Computations	


1.  Turn synchronization into a sorting problem	

l  Leverage the fact that keys arrive at reducers in sorted order	

l  Manipulate the sort order and partitioning scheme to deliver partial 

results at appropriate junctures	


2.  Create appropriate algebraic structures to capture computation	

l  Build custom data structures to accumulate partial results	


Monoids!	




Monoids!	


¢  What’s a monoid?	


¢  An algebraic structure with	


l  A single associative binary operation	

l  An identity	


¢  Examples:	

l  Natural numbers form a commutative monoid under + with identity 0	


l  Natural numbers form a commutative monoid under × with identity 1	


l  Finite strings form a monoid under concatenation with identity “”	


l  …	




Monoids and MapReduce	


¢  Recall averaging example: why does it work?	

l  AVG is non-associative	

l  Tuple of (sum, count) forms a monoid under element-wise addition	


l  Destroy the monoid at end to compute average	


l  Also explains the various failed algorithms	


¢  “Stripes” pattern works in the same way!	

l  Associate arrays form a monoid under element-wise addition 	


Go forth and monoidify!	




Abstract Algebra and MapReduce	


¢  Create appropriate algebraic structures to capture computation	


¢  Algebraic properties	


l  Associative: order doesn’t matter!	

l  Commutative: grouping doesn’t matter!	


l  Idempotent: duplicates don’t matter!	


l  Identity: this value doesn’t matter!	


l  Zero: other values don’t matter!	


l  …	


¢  Different combinations lead to monoids, groups, rings, lattices, 
etc.	


Source: Guy Steele 

Recent thoughts, see: Jimmy Lin. Monoidify! Monoids as a Design Principle 
for Efficient MapReduce Algorithms. arXiv:1304.7544, April 2013.	




Source: Google 

Questions?	



