MapReduce Algorithm Design WWW 2013 Tutorial, Rio de Janeiro

Jimmy Lin
University of Maryland Monday, May I3, 20 I3

More about me...

- Past MapReduce teaching experience:
- Numerous tutorials
- Several semester-long MapReduce courses
http://lintool.github.io/MapReduce-course-2013s/
- Lin \& Dyer MapReduce textbook http://mapreduce.cc/

What we'll cover

- Big data
- MapReduce overview
- Importance of local aggregation
- Sequencing computations
- Iterative graph algorithms
- MapReduce and abstract algebra

Focus on design patterns and general principles

What we won't cover

- MapReduce for machine learning (supervised and unsupervised)
- MapReduce for similar item detection
- MapReduce for information retrieval
- Hadoop for data warehousing
- Extensions and alternatives to MapReduce

processes 20 PB a day (2008) crawls 20B web pages a day (2012)

JPMorganChase

I 50 PB on $50 \mathrm{k}+$ servers running I5k apps (6/20II)

$>100 \mathrm{~PB}$ of user data + $500 \mathrm{~TB} /$ day $(8 / 20 \mathrm{I} 2)$
> 10 PB data, 75B DB calls per day (6/20I2)

facebook.

S3: 449B objects, peak 290k request/second (7/20II) IT objects (6/20|2)

Wayback Machine: 240B web pages archived, 5 PB (I/2013)

LHC: ~15 PB a year

LSST: 6-IO PB a year (~2015)

$$
\text { SKA: } 0.3 \text { - I. } 5 \text { EB }
$$

per year (~2020)

How much data?

Why big data? Science

Engineering
 Commerce

No data like more data!

s/knowledge/data/g;

Why big data?
 How big data?

Typical Big Data Problem

- Iterate over a large number of records

Maßxtract something of interest from each

- Shuffle and sort intermediate results
- Aggregate intermediate results Reduce
- Generate final output

Key idea: provide a functional abstraction for these two operations

Roots in Functional Programming

Map

Fold

MapReduce

- Programmers specify two functions:
$\left.\operatorname{map}\left(k_{1}, v_{1}\right) \rightarrow\left[<k_{2}, v_{2}\right\rangle\right]$
reduce $\left(k_{2},\left[v_{2}\right]\right) \rightarrow\left[<k_{3}, v_{3}>\right]$
- All values with the same key are sent to the same reducer
o The execution framework handles everything else...

MapReduce

- Programmers specify two functions:
map (k, v) $\rightarrow\left\langle k^{\prime}, v^{\prime}\right\rangle^{*}$
reduce (k^{\prime}, v^{\prime}) $\rightarrow\left\langle k^{\prime}, v^{\prime}\right\rangle^{*}$
- All values with the same key are sent to the same reducer
o The execution framework handles everything else...

MapReduce "Runtime"

- Handles scheduling
- Assigns workers to map and reduce tasks
- Handles "data distribution"
- Moves processes to data
- Handles synchronization
- Gathers, sorts, and shuffles intermediate data
- Handles errors and faults
- Detects worker failures and restarts
- Everything happens on top of a distributed filesystem

MapReduce

- Programmers specify two functions:
$\operatorname{map}(k, v) \rightarrow<k^{\prime}, v^{\prime}>*$
reduce (k^{\prime}, v^{\prime}) $\rightarrow\left\langle k^{\prime}, v^{\prime}\right\rangle^{*}$
- All values with the same key are reduced together
- The execution framework handles everything else...
- Not quite...usually, programmers also specify:
partition (k ', number of partitions) \rightarrow partition for k^{\prime}
- Often a simple hash of the key, e.g., hash(k') mod n
- Divides up key space for parallel reduce operations
combine (k^{\prime}, v^{\prime}) $\rightarrow\left\langle k^{\prime}, v^{\prime}\right\rangle *$
- Mini-reducers that run in memory after the map phase
- Used as an optimization to reduce network traffic

Shuffle and Sort: aggregate values by keys

\section*{a | 1 | 5 |
| :--- | :--- | :--- |}

b	2	7

| 2 | 9 | 8 | 8 |
| :--- | :--- | :--- | :--- | :--- |

Two more details...

- Barrier between map and reduce phases
- But intermediate data can be copied over as soon as mappers finish
- Keys arrive at each reducer in sorted order
- No enforced ordering across reducers

What's the big deal?

- Developers need the right level of abstraction
- Moving beyond the von Neumann architecture
- We need better programming models
- Abstractions hide low-level details from the developers
- No more race conditions, lock contention, etc.
- MapReduce separating the what from how
- Developer specifies the computation that needs to be performed
- Execution framework ("runtime") handles actual execution

The datacenter is the computer!

MapReduce can refer to...

- The programming model
- The execution framework (aka "runtime")
- The specific implementation

Usage is usually clear from context!

MapReduce Implementations

- Google has a proprietary implementation in C++
- Bindings in Java, Python
o Hadoop is an open-source implementation in Java
- Development led by Yahoo, now an Apache project
- Used in production at Yahoo, Facebook, Twitter, Linkedln, Netflix, ...
- The de facto big data processing platform
- Rapidly expanding software ecosystem
- Lots of custom research implementations
- For GPUs, cell processors, etc.

MapReduce algorithm design

- The execution framework handles "everything else"...
- Scheduling: assigns workers to map and reduce tasks
- "Data distribution": moves processes to data
- Synchronization: gathers, sorts, and shuffles intermediate data
- Errors and faults: detects worker failures and restarts
o Limited control over data and execution flow
- All algorithms must expressed in m, r, c, p
- You don't know:
- Where mappers and reducers run
- When a mapper or reducer begins or finishes
- Which input a particular mapper is processing
- Which intermediate key a particular reducer is processing

HDFS Architecture

Putting everything together...

Shuffle and Sort

Preserving State

Implementation Don'ts

- Don't unnecessarily create objects
- Object creation is costly
- Garbage collection is costly
- Don't buffer objects
- Processes have limited heap size (remember, commodity machines)
- May work for small datasets, but won't scale!

Secondary Sorting

- MapReduce sorts input to reducers by key
- Values may be arbitrarily ordered
- What if want to sort value also?
- E.g., $k \rightarrow\left(v_{1}, r\right),\left(v_{3}, r\right),\left(v_{4}, r\right),\left(v_{8}, r\right) \ldots$

Secondary Sorting: Solutions

- Solution I:
- Buffer values in memory, then sort
- Why is this a bad idea?
- Solution 2:
- "Value-to-key conversion" design pattern: form composite intermediate key, (k, vı)
- Let execution framework do the sorting
- Preserve state across multiple key-value pairs to handle processing
- Anything else we need to do?

Importance of Local Aggregation

- Ideal scaling characteristics:
- Twice the data, twice the running time
- Twice the resources, half the running time
- Why can't we achieve this?
- Synchronization requires communication
- Communication kills performance (network is slow!)
- Thus... avoid communication!
- Reduce intermediate data via local aggregation
- Combiners can help

Word Count: Baseline

1: class Mapper
2: \quad method $\operatorname{MAP}(\operatorname{docid} a, \operatorname{doc} d)$
3: \quad for all term $t \in \operatorname{doc} d$ do
4: \quad Emit(term t, count 1)
class Reducer
method Reduce(term t, counts $\left[c_{1}, c_{2}, \ldots\right]$)
sum $\leftarrow 0$
for all count $c \in$ counts $\left[c_{1}, c_{2}, \ldots\right]$ do
$s u m \leftarrow s u m+c$
Emit(term t, count s)

What's the impact of combiners?

Word Count: Version I

1: class Mapper
2: \quad method $\operatorname{Map}(\operatorname{docid} a, \operatorname{doc} d)$
3: $\quad H \leftarrow$ new AssociativeArray
4: \quad for all term $t \in \operatorname{doc} d$ do $H\{t\} \leftarrow H\{t\}+1$
for all term $t \in H$ do
Emit(term t, count $H\{t\}$)
\triangleright Tally counts for entire document

Are combiners still needed?

Word Count: Version 2

1: class Mapper
2: method Initialize
3: $\quad H \leftarrow$ new AssociativeArray
4: \quad method $\operatorname{Map}(\operatorname{docid} a, \operatorname{doc} d)$
5: \quad for all term $t \in \operatorname{doc} d$ do
6: $\quad H\{t\} \leftarrow H\{t\}+1$
method Close
for all term $t \in H$ do
Emit(term t, count $H\{t\}$)

Are combiners still needed?

Design Pattern for Local Aggregation

- "In-mapper combining"
- Fold the functionality of the combiner into the mapper by preserving state across multiple map calls
- Advantages
- Speed
- Why is this faster than actual combiners?
- Disadvantages
- Explicit memory management required
- Potential for order-dependent bugs

Combiner Design

- Combiners and reducers share same method signature
- Sometimes, reducers can serve as combiners
- Often, not...
o Remember: combiner are optional optimizations
- Should not affect algorithm correctness
- May be run 0 , I, or multiple times
o Example: find average of integers associated with the same key

Computing the Mean: Version I

```
class Mapper
        method MAP(string }t\mathrm{ , integer r)
            Emit(string t, integer r
class Reducer
        method Reduce(string t, integers [ }\mp@subsup{r}{1}{},\mp@subsup{r}{2}{},\ldots.]
            sum}\leftarrow
            cnt}\leftarrow
            for all integer re integers [ }\mp@subsup{r}{1}{},\mp@subsup{r}{2}{},\ldots]\mathrm{ do
            sum}\leftarrow\mathrm{ sum +r
            cnt }\leftarrowcnt+
            ravg}\leftarrowsum/cn
            EmiT(string t, integer ravg
```

Why can't we use reducer as combiner?

Computing the Mean: Version 2

```
class Mapper
    method MAP (string \(t\), integer \(r\) )
        Emit(string \(t\), integer \(r\) )
    class Combiner
    method Combine(string \(t\), integers \(\left[r_{1}, r_{2}, \ldots\right]\) )
        sum \(\leftarrow 0\)
        cnt \(\leftarrow 0\)
        for all integer \(r \in\) integers \(\left[r_{1}, r_{2}, \ldots\right]\) do
        sum \(\leftarrow\) sum \(+r\)
        \(c n t \leftarrow c n t+1\)
        Emit(string \(t\), pair \((\) sum, cnt)) \(\triangleright\) Separate sum and count
    class Reducer
    method REDUCE(string \(t\), pairs \(\left.\left[\left(s_{1}, c_{1}\right),\left(s_{2}, c_{2}\right) \ldots\right]\right)\)
        sum \(\leftarrow 0\)
        cnt \(\leftarrow 0\)
        for all pair \((s, c) \in\) pairs \(\left[\left(s_{1}, c_{1}\right),\left(s_{2}, c_{2}\right) \ldots\right]\) do
        sum \(\leftarrow\) sum \(+s\)
        \(c n t \leftarrow c n t+c\)
        \(r_{\text {avg }} \leftarrow\) sum /cnt
        Emit(string \(t\), integer \(r_{\text {avg }}\) )
```


Computing the Mean: Version 3

```
class Mapper
    method MAP(string t, integer r)
        Emit(string t, pair (r,1))
class Combiner
    method CombinE(string t, pairs [(s, , c, ),(s, , c2) \ldots.])
    sum}\leftarrow
    cnt \leftarrow0
    for all pair (s,c)\in pairs [( }\mp@subsup{s}{1}{},\mp@subsup{c}{1}{}),(\mp@subsup{s}{2}{},\mp@subsup{c}{2}{})\ldots]\mathrm{ do
        sum}\leftarrowsum+
        cnt}\leftarrowcnt+
    Emit(string t, pair (sum,cnt))
class Reducer
    method Reduce(string t,pairs [(s, , c1), (s2, c, ) \ldots.])
        sum}\leftarrow
        cnt }\leftarrow
        for all pair (s,c)\in pairs [( }\mp@subsup{s}{1}{},\mp@subsup{c}{1}{}),(\mp@subsup{s}{2}{},\mp@subsup{c}{2}{})\ldots]\mathrm{ do
        sum}\leftarrowsum+
        cnt}\leftarrowcnt+
        ravg}\leftarrow\textrm{sum}/\textrm{cnt
        Emit(string t, pair (ravg,cnt))
```


Computing the Mean: Version 4

```
: class Mapper
    method Initialize
        S\leftarrownew AssociativeArray
        C}\leftarrow\mathrm{ new AssociativeArray
        method MaP(string t, integer r)
        S{t}\leftarrowS{t}+r
        C{t}}\leftarrowC{t}+
    method Close
        for all term t\inS do
        Emit(term t, pair (S{t},C{t}))
```


Sequencing Computations

।. Turn synchronization into a sorting problem

- Leverage the fact that keys arrive at reducers in sorted order
- Manipulate the sort order and partitioning scheme to deliver partial results at appropriate junctures

2. Create appropriate algebraic structures to capture computation

- Build custom data structures to accumulate partial results

Algorithm Design: Running Example

- Term co-occurrence matrix for a text collection
- $M=N \times N$ matrix ($N=$ vocabulary size)
- $M_{i j}$: number of times i and j co-occur in some context (for concreteness, let's say context = sentence)
- Why?
- Distributional profiles as a way of measuring semantic distance
- Semantic distance useful for many language processing tasks
- Basis for large classes of more sophisticated algorithms

MapReduce: Large Counting Problems

- Term co-occurrence matrix for a text collection
$=$ specific instance of a large counting problem
- A large event space (number of terms)
- A large number of observations (the collection itself)
- Goal: keep track of interesting statistics about the events
- Basic approach
- Mappers generate partial counts
- Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: "Pairs"

- Each mapper takes a sentence:
- Generate all co-occurring term pairs
- For all pairs, emit $(a, b) \rightarrow$ count
o Reducers sum up counts associated with these pairs
- Use combiners!

Pairs: Pseudo-Code

: class Mapper
2: \quad method $\operatorname{MAP}(\operatorname{docid} a, \operatorname{doc} d)$
3: \quad for all term $w \in \operatorname{doc} d$ do
4: \quad for all term $u \in \operatorname{Neighbors}(w)$ do
5 :
Emit(pair (w, u), count 1) \triangleright Emit count for each co-occurrence
: class Reducer
method Reduce(pair p, counts $\left[c_{1}, c_{2}, \ldots\right]$)
$s \leftarrow 0$
for all count $c \in \operatorname{counts}\left[c_{1}, c_{2}, \ldots\right]$ do
$s \leftarrow s+c$
\triangleright Sum co-occurrence counts
$\operatorname{Emit}($ pair p, count s)

"Pairs" Analysis

- Advantages
- Easy to implement, easy to understand
- Disadvantages
- Lots of pairs to sort and shuffle around (upper bound?)
- Not many opportunities for combiners to work

Another Try: "Stripes"

- Idea: group together pairs into an associative array

$$
\begin{aligned}
& (\mathrm{a}, \mathrm{~b}) \rightarrow 1 \\
& (\mathrm{a}, \mathrm{c}) \rightarrow 2 \\
& (\mathrm{a}, \mathrm{~d}) \rightarrow 5 \\
& (\mathrm{a}, \mathrm{e}) \rightarrow 3 \\
& (\mathrm{a}, \mathrm{f}) \rightarrow 2
\end{aligned} \quad \mathrm{a} \rightarrow\{\mathrm{~b}: 1, \mathrm{c}: 2, \text { d: } 5, \mathrm{e}: 3, \text { f: } 2\}
$$

- Each mapper takes a sentence:
- Generate all co-occurring term pairs
- For each term, emit a $\rightarrow\left\{\right.$ b: count ${ }_{b}$, c : count ${ }_{c}$, d: count $\left._{\mathrm{d}} \ldots\right\}$
- Reducers perform element-wise sum of associative arrays

$$
\begin{array}{r}
\begin{array}{l}
\mathrm{a} \rightarrow\{\mathrm{~b}: 1, \quad \mathrm{~d}: 5, \mathrm{e}: 3\} \\
+\quad \mathrm{a} \rightarrow\{\mathrm{~b}: 1, \mathrm{c}: 2, \mathrm{~d}: 2, \quad \mathrm{f}: 2\}
\end{array} \\
\begin{array}{l}
\mathrm{a} \rightarrow\{\mathrm{~b}: 2, \mathrm{c}: 2, \mathrm{~d}: 7, \text { e: } 3, \mathrm{f:} 2\} \\
\text { Key idea: cleverly-constructed data structure } \\
\text { for aggregating partial results }
\end{array}
\end{array}
$$

Stripes: Pseudo-Code

```
class Mapper
    method Map(docid a, doc d)
        for all term }w\in\operatorname{doc}d\mathrm{ do
            H}\leftarrow\mathrm{ new AssociativeArray
            for all term }u\in\operatorname{Neighbors}(w)\mathrm{ do
                H{u}\leftarrowH{u}+1
                        \triangleright ~ T a l l y ~ w o r d s ~ c o - o c c u r r i n g ~ w i t h ~ w ~
            Emit(Term w, Stripe H)
    class Reducer
    method Reduce(term w, stripes [ }\mp@subsup{H}{1}{},\mp@subsup{H}{2}{},\mp@subsup{H}{3}{},\ldots]
        Hf}\leftarrow\mp@code{new AssociativeArray
        for all stripe H\instripes [ }\mp@subsup{H}{1}{},\mp@subsup{H}{2}{},\mp@subsup{H}{3}{},\ldots\mathrm{ ] do
            Sum(H
                                \triangleright \text { Element-wise sum}
            Emit(term w,stripe }\mp@subsup{H}{f}{}
```


"Stripes" Analysis

- Advantages
- Far less sorting and shuffling of key-value pairs
- Can make better use of combiners
- Disadvantages
- More difficult to implement
- Underlying object more heavyweight
- Fundamental limitation in terms of size of event space

Comparis on of "pairs" vs. "stripes" for computing word co-occurrence matrices

Effect of cluster size on "stripes" algorithm
relative size of EC2 cluster

Relative Frequencies

- How do we estimate relative frequencies from counts?

$$
f(B \mid A)=\frac{N(A, B)}{N(A)}=\frac{N(A, B)}{\sum_{B^{\prime}} N\left(A, B^{\prime}\right)}
$$

- Why do we want to do this?
o How do we do this with MapReduce?

f(B|A): "Stripes"

$$
a \rightarrow\left\{b_{1}: 3, b_{2}: 12, b_{3}: 7, b_{4}: 1, \ldots\right\}
$$

o Easy!

- One pass to compute (a, *)
- Another pass to directly compute $f(B \mid A)$

f(B|A): "Pairs"

- What's the issue?
- Computing relative frequencies requires marginal counts
- But the marginal cannot be computed until you see all counts
- Buffering is a bad idea!
- Solution:
- What if we could get the marginal count to arrive at the reducer first?

f(B|A): "Pairs"

$\left(\mathrm{a},{ }^{*}\right) \rightarrow 32 \quad$ Reducer holds this value in memory
$\left(a, b_{1}\right) \rightarrow 3$
$\left(a, b_{2}\right) \rightarrow 12$
$\left(a, b_{3}\right) \rightarrow 7$
$\left(a, b_{4}\right) \rightarrow 1$
$\left(a, b_{1}\right) \rightarrow 3 / 32$
$\left(a, b_{2}\right) \rightarrow 12 / 32$
$\left(a, b_{3}\right) \rightarrow 7 / 32$
$\left(a, b_{4}\right) \rightarrow 1 / 32$
o For this to work:

- Must emit extra ($\mathrm{a},{ }^{*}$) for every b_{n} in mapper
- Must make sure all a's get sent to same reducer (use partitioner)
- Must make sure (a, *) comes first (define sort order)
- Must hold state in reducer across different key-value pairs

"Order Inversion"

- Common design pattern:
- Take advantage of sorted key order at reducer to sequence computations
- Get the marginal counts to arrive at the reducer before the joint counts
- Optimization:
- Apply in-memory combining pattern to accumulate marginal counts

Synchronization: Pairs vs. Stripes

- Approach I: turn synchronization into an ordering problem
- Sort keys into correct order of computation
- Partition key space so that each reducer gets the appropriate set of partial results
- Hold state in reducer across multiple key-value pairs to perform computation
- Illustrated by the "pairs" approach
- Approach 2: construct data structures to accumulate partial results
- Each reducer receives all the data it needs to complete the computation
- Illustrated by the "stripes" approach

Issues and Tradeoffs

- Number of key-value pairs
- Object creation overhead
- Time for sorting and shuffling pairs across the network
- Size of each key-value pair
- De/serialization overhead

Hidden Markov Models

An HMM $\lambda=(A, B, \Pi)$ is characterized by:

- N states: $Q=\left\{q_{1}, q_{2}, \ldots q_{N}\right\}$
- $\mathrm{N} \times \mathrm{N}$ Transition probability matrix $A=\left[a_{i j}\right]$

$$
a_{i j}=p\left(q_{j} \mid q_{i}\right) \quad \sum_{j} a_{i j}=1 \quad \forall i
$$

- V observation symbols: $O=\left\{o_{1}, o_{2}, \ldots o_{V}\right\}$
- $\mathrm{N} \times|\mathrm{V}|$ Emission probability matrix $B=\left[b_{i v}\right]$

$$
b_{i v}=b_{i}\left(o_{v}\right)=p\left(o_{v} \mid q_{i}\right)
$$

- Prior probabilities vector $\Pi=\left[\pi_{i}, \pi_{2}, \ldots \pi_{N}\right]$

$$
\sum_{i=1}^{N} \pi_{i}=1
$$

Forward-Backward

$$
\alpha_{t}(j)=P\left(o_{1}, o_{2} \ldots o_{t}, q_{t}=j \mid \lambda\right)
$$

\bigcirc_{o}

Estimating Emissions Probabilities

- Basic idea:

$$
b_{j}\left(v_{k}\right)=\frac{\text { expected number of times in state } j \text { and observing symbol } v_{k}}{\text { expected number of times in state } j}
$$

- Let's define:

$$
\gamma_{t}(j)=\frac{P\left(q_{t}=j, O \mid \lambda\right)}{P(O \mid \lambda)}=\frac{\alpha_{t}(j) \beta_{t}(j)}{P(O \mid \lambda)}
$$

o Thus:

$$
\hat{b}_{j}\left(v_{k}\right)=\frac{\sum_{i=1 \cap O_{t}=v_{k}}^{T} \gamma_{t}(j)}{\sum_{i=1}^{T} \gamma_{t}(j)}
$$

Forward-Backward

Estimating Transition Probabilities

- Basic idea:

$$
a_{i j}=\frac{\text { expected number of transitions from state } i \text { to state } j}{\text { expected number of transitions from state } i}
$$

- Let's define:

$$
\xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)}{P(O \mid \lambda)}
$$

o Thus:

$$
\hat{a}_{i j}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \xi_{t}(i, j)}
$$

MapReduce Implementation: Mapper

class Mapper
method Initialize(integer iteration)
$\langle\mathcal{S}, \mathcal{O}\rangle \leftarrow$ Read model
$\theta \leftarrow\langle A, B, \pi\rangle \leftarrow$ ReadModelParams(iteration)
method Map(sample $i d$, sequence \mathbf{x})
$\alpha \leftarrow \operatorname{Forward}(\mathbf{x}, \theta)$
$\beta \leftarrow \operatorname{BackWARD}(\mathbf{x}, \theta)$
$I \leftarrow$ new AssociativeArray
for all $q \in \mathcal{S}$ do

$$
\begin{aligned}
\hat{b}_{j}\left(v_{k}\right) & =\frac{\sum_{i=1 \cap O_{t}=v_{k}}^{T} \gamma_{t}(j)}{\sum_{i=1}^{T} \gamma_{t}(j)} \\
\hat{a}_{i j} & =\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \xi_{t}(i, j)}
\end{aligned}
$$

$$
I\{q\} \leftarrow \alpha_{1}(q) \cdot \beta_{1}(q)
$$

$O \leftarrow$ new AssociativeArray of AssociativeArray
for $t=1$ to $|\mathbf{x}|$ do
for all $q \in \mathcal{S}$ do
$O\{q\}\left\{x_{t}\right\} \leftarrow O\{q\}\left\{x_{t}\right\}+\alpha_{t}(q) \cdot \beta_{t}(q)$
$t \leftarrow t+1$

$$
\gamma_{t}(j)=\frac{\alpha_{t}(j) \beta_{t}(j)}{P(O \mid \lambda)}
$$

$T \leftarrow$ new AssociativeArray of Associative Array
for $t=1$ to $|\mathbf{x}|-1$ do
for all $q \in \mathcal{S}$ do
for all $r \in \mathcal{S}$ do
$T\{q\}\{r\} \leftarrow T\{q\}\{r\}+\alpha_{t}(q) \cdot A_{q}(r) \cdot B_{r}\left(x_{t+1}\right) \cdot \beta_{t+1}(r)$

$$
t \leftarrow t+1
$$

Emit(string 'initial', stripe I)
for all $q \in \mathcal{S}$ do
Emit(string 'emit from' $+q$, stripe $O\{q\}$)

$$
\xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)}{P(O \mid \lambda)}
$$

Emit(string 'transit from' $+q$, stripe $T\{q\}$)

MapReduce Implementation: Reducer

```
class Combiner
    method Combine(string t,stripes [ }\mp@subsup{C}{1}{},\mp@subsup{C}{2}{},\ldots.]
    Cf}
    for all stripe C stripes [ }\mp@subsup{C}{1}{},\mp@subsup{C}{2}{},\ldots]\mathrm{ do
        Sum(C 
    Emit(string}t\mathrm{ ,stripe }\mp@subsup{C}{f}{}\mathrm{ )
class Reducer
    method Reduce(string t,stripes [C , , C2, ..])
    Cf}\leftarrow\leftarrow\mathrm{ new AssociativeArray
    for all stripe C\in stripes [ }\mp@subsup{C}{1}{},\mp@subsup{C}{2}{},\ldots]\mathrm{ do
        Sum(C 
    z\leftarrow0
    for all }\langlek,v\rangle\in\mp@subsup{C}{f}{}\mathrm{ do
        z \leftarrow z + v
        P
        for all }\langlek,v\rangle\in\mp@subsup{C}{f}{}\mathrm{ do
        Pf}{k}\leftarrowv/
            Emit(string t, stripe }\mp@subsup{P}{f}{}\mathrm{ )
class Reducer
method Reduce(string \(t\), stripes \(\left.\left[C_{1}, C_{2}, \ldots\right]\right)\)
\(C_{f} \leftarrow\) new AssociativeArray
for all stripe \(C \in\) stripes \(\left[C_{1}, C_{2}, \ldots\right]\) do \(\operatorname{Sum}\left(C_{f}, C\right)\)
\(z \leftarrow 0\)
for all \(\langle k, v\rangle \in C_{f}\) do
\[
z \leftarrow z+v
\]
\(P_{f} \leftarrow\) new AssociativeArray
for all \(\langle k, v\rangle \in C_{f}\) do
\[
P_{f}\{k\} \leftarrow v / z
\]
Emit(string \(t\), stripe \(P_{f}\) )
```

$$
\begin{aligned}
\hat{b}_{j}\left(v_{k}\right) & =\frac{\sum_{i=1 \cap O_{t}=v_{k}}^{T} \gamma_{t}(j)}{\sum_{i=1}^{T} \gamma_{t}(j)} \\
\hat{a}_{i j} & =\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \xi_{t}(i, j)}
\end{aligned}
$$

$$
\gamma_{t}(j)=\frac{\alpha_{t}(j) \beta_{t}(j)}{P(O \mid \lambda)}
$$

$$
\xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)}{P(O \mid \lambda)}
$$

What's a graph?

○ $G=(V, E)$, where

- V represents the set of vertices (nodes)
- E represents the set of edges (links)
- Both vertices and edges may contain additional information
- Different types of graphs:
- Directed vs. undirected edges
- Presence or absence of cycles
- Graphs are everywhere:
- Hyperlink structure of the web
- Physical structure of computers on the Internet
- Interstate highway system
- Social networks

Some Graph Problems

- Finding shortest paths
- Routing Internet traffic and UPS trucks
- Finding minimum spanning trees
- Telco laying down fiber
- Finding Max Flow
- Airline scheduling
- Identify "special" nodes and communities
- Breaking up terrorist cells, spread of avian flu
- Bipartite matching
- Monster.com, Match.com
o And of course... PageRank

Graphs and MapReduce

- A large class of graph algorithms involve:
- Performing computations at each node: based on node features, edge features, and local link structure
- Propagating computations: "traversing" the graph
- Key questions:
- How do you represent graph data in MapReduce?
- How do you traverse a graph in MapReduce?

Representing Graphs

- $G=(V, E)$
- Two common representations
- Adjacency matrix
- Adjacency list

Adjacency Matrices

Represent a graph as an $n \times n$ square matrix M

- $n=|\mathrm{V}|$
- $M_{i j}=I$ means a link from node i to j

	\mathbf{I}	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
\mathbf{I}	0	I	0	I
$\mathbf{2}$	I	0	I	I
$\mathbf{3}$	I	0	0	0
$\mathbf{4}$	I	0	I	0

Adjacency Matrices: Critique

- Advantages:
- Amenable to mathematical manipulation
- Iteration over rows and columns corresponds to computations on outlinks and inlinks
- Disadvantages:
- Lots of zeros for sparse matrices
- Lots of wasted space

Adjacency Lists

Take adjacency matrices... and throw away all the zeros

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	1	0	1
$\mathbf{2}$	1	0	1	1
$\mathbf{3}$	1	0	0	0
$\mathbf{4}$	1	0	1	0

I: 2, 4
2: I, 3, 4
3: I
4: I, 3

Adjacency Lists: Critique

- Advantages:
- Much more compact representation
- Easy to compute over outlinks
- Disadvantages:
- Much more difficult to compute over inlinks

Single-Source Shortest Path

o Problem: find shortest path from a source node to one or more target nodes

- Shortest might also mean lowest weight or cost
- Single processor machine: Dijkstra's Algorithm
- MapReduce: parallel breadth-first search (BFS)

Finding the Shortest Path

- Consider simple case of equal edge weights
- Solution to the problem can be defined inductively
- Here's the intuition:
- Define: b is reachable from a if b is on adjacency list of a DISTANCETO(s) $=0$
- For all nodes p reachable from s,

DISTANCETO $(p)=1$

- For all nodes n reachable from some other set of nodes M,
$\operatorname{DISTANCETO}(n)=I+\min (\operatorname{DISTANCETO}(m), m \in M)$

Visualizing Parallel BFS

From Intuition to Algorithm

- Data representation:
- Key: node n
- Value: d (distance from start), adjacency list (nodes reachable from n)
- Initialization: for all nodes except for start node, $d=\infty$
- Mapper:
- $\forall m \in$ adjacency list: emit $(m, d+I)$
- Sort/Shuffle
- Groups distances by reachable nodes
- Reducer:
- Selects minimum distance path for each reachable node
- Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

- Each MapReduce iteration advances the "frontier" by one hop
- Subsequent iterations include more and more reachable nodes as frontier expands
- Multiple iterations are needed to explore entire graph
- Preserving graph structure:
- Problem: Where did the adjacency list go?
- Solution: mapper emits (n, adjacency list) as well

BFS Pseudo-Code

```
class Mapper
    method Map(nid n, node N)
    d}\leftarrowN.Distance
    Emit(nid n,N) \triangleright Pass along graph structure
    for all nodeid m\inN.AdJaCENCYLIsT do
            Emit(nid m,d+1) \triangleright Emit distances to reachable nodes
class Reducer
    method Reduce(nid m,[d
    dmin}<<
    M\leftarrow\emptyset
    for all d\in counts [d},\mp@subsup{d}{1}{},\mp@subsup{d}{2}{},\ldots]\mathrm{ do
            if IsNode(d) then
                M\leftarrowd \triangleright Recover graph structure
        else if d<d min then }\quad\triangleright\mathrm{ Look for shorter distance
            dmin}\leftarrow
    M.Distance }\leftarrow\mp@subsup{d}{min}{
     Update shortest distance
    Emit(nid m, node M)
```


Stopping Criterion

- When a node is first discovered, we've found the shortest path
- Maximum number of iterations is equal to the diameter of the graph
- Practicalities of implementation in MapReduce

Comparison to Dijkstra

- Dijkstra's algorithm is more efficient
- At each step, only pursues edges from minimum-cost path inside frontier
- MapReduce explores all paths in parallel
- Lots of "waste"
- Useful work is only done at the "frontier"
- Why can't we do better using MapReduce?

Single Source: Weighted Edges

- Now add positive weights to the edges
- Why can't edge weights be negative?
- Simple change: add weight w for each edge in adjacency list
- In mapper, emit $\left(m, d+w_{p}\right)$ instead of $(m, d+I)$ for each node m
o That's it?

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- When a node is first discovered, we've found the shortest path

Additional Complexities

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Practicalities of implementation in MapReduce

All-Pairs?

- Floyd-Warshall Algorithm: difficult to MapReduce-ify...
- Multiple-source shortest paths in MapReduce: run multiple parallel BFS simultaneously
- Assume source nodes $\left\{s_{0}, s_{1}, \ldots s_{n}\right\}$
- Instead of emitting a single distance, emit an array of distances, with respect to each source
- Reducer selects minimum for each element in array
- Does this scale?

Social Search

- When searching, how to rank friends named "John"?
- Assume undirected graphs
- Rank matches by distance to user
- Naïve implementations:
- Precompute all-pairs distances
- Compute distances at query time
- Can we do better?

Landmark Approach (aka sketches)

- Select n seeds $\left\{s_{0}, s_{\mid}, \ldots s_{n}\right\}$
- Compute distances from seeds to every node:

$$
\begin{aligned}
& A=[2, I, I] \\
& B=[1, I, 2] \\
& C=[4,3, I] \\
& D=[1,2,4]
\end{aligned}
$$

- What can we conclude about distances?
- Insight: landmarks bound the maximum path length
- Lots of details:
- How to more tightly bound distances
- How to select landmarks (random isn't the best...)
o Use multi-source parallel BFS implementation in MapReduce!

Graphs and MapReduce

- A large class of graph algorithms involve:
- Performing computations at each node: based on node features, edge features, and local link structure
- Propagating computations: "traversing" the graph
- Generic recipe:
- Represent graphs as adjacency lists
- Perform local computations in mapper
- Pass along partial results via outlinks, keyed by destination node
- Perform aggregation in reducer on inlinks to a node
- Iterate until convergence: controlled by external "driver"
- Don't forget to pass the graph structure between iterations

PageRank

Given page x with inlinks $t_{/} \ldots t_{n}$, where

- $C(t)$ is the out-degree of t
- α is probability of random jump
- N is the total number of nodes in the graph

$$
P R(x)=\alpha\left(\frac{1}{N}\right)+(1-\alpha) \sum_{i=1}^{n} \frac{P R\left(t_{i}\right)}{C\left(t_{i}\right)}
$$

Computing PageRank

- Properties of PageRank
- Can be computed iteratively
- Effects at each iteration are local
- Sketch of algorithm:
- Start with seed $P R_{i}$ values
- Each page distributes $P R_{i}$ "credit" to all pages it links to
- Each target page adds up "credit" from multiple in-bound links to compute $P R_{i+1}$
- Iterate until values converge

Simplified PageRank

- First, tackle the simple case:
- No random jump factor
- No dangling nodes
- Then, factor in these complexities...
- Why do we need the random jump?
- Where do dangling nodes come from?

Sample PageRank Iteration (I)

Sample PageRank Iteration (2)

PageRank in MapReduce

PageRank Pseudo-Code

```
class Mapper
    method \(\operatorname{Map}(\) nid \(n\), node \(N)\)
    \(p \leftarrow N\).PageRank \(/ \mid N\).AdjacencyList \(\mid\)
    \(\operatorname{Emit}(\) nid \(n, N)\)
        \(\triangleright\) Pass along graph structure
        for all nodeid \(m \in N\).AdJacencyList do
            Emit(nid \(m, p\) )
        \(\triangleright\) Pass PageRank mass to neighbors
class Reducer
    method Reduce(nid \(\left.m,\left[p_{1}, p_{2}, \ldots\right]\right)\)
        \(M \leftarrow \emptyset\)
        for all \(p \in\) counts \(\left[p_{1}, p_{2}, \ldots\right.\) ] do
        if \(\operatorname{IsNode}(p)\) then
            \(M \leftarrow p \quad \triangleright\) Recover graph structure
        else
            \(s \leftarrow s+p\)
                            \(\triangleright\) Sums incoming PageRank contributions
    M.PAGERANK \(\leftarrow s\)
    \(\operatorname{Emit}(\) nid \(m\), node \(M\) )
```


Complete PageRank

- Two additional complexities
- What is the proper treatment of dangling nodes?
- How do we factor in the random jump factor?
- Solution:
- Second pass to redistribute "missing PageRank mass" and account for random jumps

$$
p^{\prime}=\alpha\left(\frac{1}{N}\right)+(1-\alpha)\left(\frac{m}{N}+p\right)
$$

- p is PageRank value from before, p ' is updated PageRank value
- N is the number of nodes in the graph
- m is the missing PageRank mass
- Additional optimization: make it a single pass!

PageRank Convergence

- Alternative convergence criteria
- Iterate until PageRank values don't change
- Iterate until PageRank rankings don't change
- Fixed number of iterations
- Convergence for web graphs?
- Not a straightforward question
o Watch out for link spam:
- Link farms
- Spider traps
- ...

Beyond PageRank

- Variations of PageRank
- Weighted edges
- Personalized PageRank
- Variants on graph random walks
- Hubs and authorities (HITS)
- SALSA

Other Classes of Graph Algorithms

- Subgraph pattern matching
- Computing simple graph statistics
- Degree vertex distributions
- Computing more complex graph statistics
- Clustering coefficients
- Counting triangles

Batch Gradient Descent in MapReduce

$$
\theta^{(t+1)} \leftarrow \theta^{(t)}-\gamma^{(t)} \frac{1}{n} \underbrace{\sum_{i=0}^{n} \nabla \ell\left(f\left(\mathrm{x}_{i} ; \theta^{(t)}\right)\right.}_{\text {single reducer }}, y_{i})
$$

MapReduce sucks at iterative algorithms

- Hadoop task startup time
- Stragglers
- Needless graph shuffling
o Checkpointing at each iteration

In-Mapper Combining

- Use combiners
- Perform local aggregation on map output
- Downside: intermediate data is still materialized
- Better: in-mapper combining
- Preserve state across multiple map calls, aggregate messages in buffer, emit buffer contents at end
- Downside: requires memory management

Emit all key-value pairs at once

Better Partitioning

- Default: hash partitioning
- Randomly assign nodes to partitions
- Observation: many graphs exhibit local structure
- E.g., communities in social networks
- Better partitioning creates more opportunities for local aggregation
- Unfortunately, partitioning is hard!
- Sometimes, chick-and-egg...
- But cheap heuristics sometimes available
- For webgraphs: range partition on domain-sorted URLs

Schimmy Design Pattern

- Basic implementation contains two dataflows:
- Messages (actual computations)
- Graph structure ("bookkeeping")
o Schimmy: separate the two dataflows, shuffle only the messages
- Basic idea: merge join between graph structure and messages
both relatimoshscetatildbis joimkisyently partitioned and sorted by join key

Do the Schimmy!

- Schimmy = reduce side parallel merge join between graph structure and messages
- Consistent partitioning between input and intermediate data
- Mappers emit only messages (actual computation)
- Reducers read graph structure directly from HDFS

Experiments

- Cluster setup:
- 10 workers, each 2 cores (3.2 GHz Xeon), 4GB RAM, 367 GB disk
- Hadoop 0.20 .0 on RHELS 5.3
- Dataset:
- First English segment of ClueWeb09 collection
- 50.2 m web pages (1.53 TB uncompressed, 247 GB compressed)
- Extracted webgraph: I. 4 billion edges, 7.0 GB
- Dataset arranged in crawl order
- Setup:
- Measured per-iteration running time (5 iterations)
- 100 partitions

Results

Results

Results

Results

Results

Sequencing Computations

।. Turn synchronization into a sorting problem

- Leverage the fact that keys arrive at reducers in sorted order
- Manipulate the sort order and partitioning scheme to deliver partial results at appropriate junctures

2. Create appropriate algebraic structures to capture computation

- Build custom data structures to accumulate partial results

Monoids!

- What's a monoid?
- An algebraic structure with
- A single associative binary operation
- An identity
- Examples:
- Natural numbers form a commutative monoid under + with identity 0
- Natural numbers form a commutative monoid under \times with identity I
- Finite strings form a monoid under concatenation with identity ""

Monoids and MapReduce

- Recall averaging example: why does it work?
- AVG is non-associative
- Tuple of (sum, count) forms a monoid under element-wise addition
- Destroy the monoid at end to compute average
- Also explains the various failed algorithms
- "Stripes" pattern works in the same way!
- Associate arrays form a monoid under element-wise addition

Abstract Algebra and MapReduce

- Create appropriate algebraic structures to capture computation
- Algebraic properties
- Associative: order doesn't matter!
- Commutative: grouping doesn't matter!
- Idempotent: duplicates don't matter!
- Identity: this value doesn't matter!
- Zero: other values don't matter!
- Different combinations lead to monoids, groups, rings, lattices, etc.

Recent thoughts, see: Jimmy Lin. Monoidify! Monoids as a Design Principle for Efficient MapReduce Algorithms. arXiv: I304.7544, April 20 I3.

